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Moduli Spaces of Vector Bundles over a
Real Curve: Z/2-Betti Numbers

Thomas Baird

Abstract. Moduli spaces of real bundles over a real curve arise naturally as Lagrangian submanifolds
of the moduli space of semi-stable bundles over a complex curve. In this paper, we adapt the methods
of Atiyah–Bott’s “Yang-Mills over a Riemann Surface” to compute Z/2-Betti numbers of these spaces.

1 Introduction

1.1 Background

A real curve (Σ, σ) is a closed, complex 1-manifold Σ = (Σ, J) equipped with a
C∞-map

σ : Σ→ Σ

such that σ2 = IdΣ and dσ◦ J = − J◦dσ (we suppress J in our notation throughout).
The map σ is called the anti-holomorphic involution and the fixed point set Σσ is
called the set of real points of (Σ, σ).

Given relatively prime integers r and d with r ≥ 1, there exists a non-singular
projective moduli space MΣ(r, d) classifying stable holomorphic bundles of rank r
and degree d over the underlying complex curve Σ [Mum62]. The anti-holomorphic
involution σ induces an anti-holomorphic involution on MΣ(r, d) sending (the iso-
morphism class of) the holomorphic bundle E→ Σ to the bundle

σ(E) = σ∗E.

The set of fixed points MΣ(r, d)σ is a real submanifold that is Lagrangian with respect
to a natural Kaehler structure on MΣ(r, d). The main result of this paper is a recursive
formula for the Z2-Betti numbers of the path components of MΣ(r, d)σ .

The case of rank r = 1 was considered by Gross–Harris [GH81]. Recall that

MΣ(1, d) = Picd(Σ)

is homeomorphic to a compact torus (S1)2g , where g is the genus of Σ. For a divisor
class [D] ∈ Picd(Σ), the involution satisfies σ([D]) = [σ(D)]. The fixed point set
Pic(Σ)σ is a disjoint union of Lagrangian tori each diffeomorphic to (S1)g .

The general rank case was studied in independent papers by Biswas–Huisman–
Hurtubise [BHH10] and Schaffhauser [Sch11]. They proved that the fixed points
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lying in MΣ(r, d)σ correspond to bundles admitting an antiholomorphic lift

E
τ //

��

E

��
Σ

σ // Σ

such that either

(a) τ 2 = IdE, in which case we call (E, τ ) a real bundle over (Σ, σ), or
(b) τ 2 = − IdE, in which case we call (E, τ ) a quaterionic bundle over (Σ, σ).

The axioms defining real and quaterionic bundles make sense for C∞-bundles
E → Σ as well as for holomorphic ones. The authors [BHH10] and [Sch11] proved
that the path components of MΣ(r, d)σ are classified by isomorphism types of real
and quaterionic C∞-bundles.

Given a real curve (Σ, σ), the set of real points Σσ is a finite union of circles. If
(E, τ ) → (Σ, σ) is a real C∞-bundle, then the fixed point set Eτ forms a Rr-bundle
over Σσ . We paraphrase Propositions 4.1 and 4.2 of [BHH10].

Theorem 1.1 Real C∞-vector bundles (E, τ ) over a real curve (Σ, σ) are classified
up to isomorphism by rank r, degree d and Stieffel–Whitney class w1(Eτ ) ∈ H1(Σσ ; Z2)
subject to the condition that

d ≡ w1(Eτ )(Σσ) mod 2.

Quaternionic vector bundles are classified by rank r and degree d, subject to the condition

(1.1) d ≡ r(g − 1) mod 2

and that Σσ = ∅ if r is odd.

Remark 1.2 Condition (1.1) implies that a real curve (Σ, σ) admits a quaternionic
vector bundle of coprime rank and degree if and only if it admits a quaternionic line
bundle.

The strategy of the current paper (pursued independently by Liu–Schaffhauser
[LS13]) is to adapt the methods of Atiyah–Bott [AB83] to compute the Z/2-Betti
numbers of path components of MΣ(r, d)σ . We outline this approach in the following
section.

1.2 The Atiyah–Bott Argument

The slope of a holomorphic vector bundle E → Σ is the ratio of the degree to the
rank:

µ(E) := deg(E)/rank(E) = deg(E)/rank(E) = d/r.

The bundle E is called semi-stable (resp. stable) if for every proper subbundle F ⊂ E,
we have µ(F) ≤ µ(E) (resp. µ(F) < µ(E)). It was proven by Harder–Narasimhan
[HN75] that over a Riemann surface, every bundle E admits a canonical filtration by
subbundles

{0} = E0 ⊂ E1 ⊂ · · · ⊂ En = E
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such that µ(Ei) > µ(Ei+1) and Ei/Ei−1 is semi-stable. Let ri and di be the rank and
the degree of Ei/Ei−1. The sequence

(
(r1, d1), . . . , (rn, dn)

)
is called the Harder–

Narasimhan type or HN-type of E.
Let E → Σ be a smooth Cr-bundle of degree d, and let C(r, d) be the space of

holomorphic structures on E. Choosing a basepoint in C(r, d) determines a diffeo-
morphism

C(r, d) ∼= Ω0,1
(

Σ,End(E)
)
,

which is a contractible complex, Banach manifold after appropriate Sobolev comple-
tion [AB83, section 14]. The complex gauge group GC(r, d) acts on C(r, d), and there
is a natural bijection of sets

C(r, d)/GC(r, d)
1:1←→ {holomorphic bundles of rank r and degree d over Σ}

isomorphism

Decomposing C(r, d) according to HN-types λ =
(

(r1, d1), . . . , (rn, dn)
)

produces
an equivariant stratification1

(1.3) C(r, d) =
⋃
λ

Cλ(r, d)

into locally closed, finite codimension complex submanifolds, indexed by λ satisfy
r1 + · · ·+ rn = r, d1 + · · ·+ dn = d and d1/r1 > · · · > dn/rn. The semi-stable stratum
Css(r, d) := C((r,d))(r, d) is dense and open, and we have a surjective map

Css(r, d)/GC(r, d) � MΣ(r, d)

which is a homeomorphism when gcd(r, d) = 1. Atiyah and Bott [AB83] prove
that the stratification (1.3) is equivariantly perfect for any coefficient field. We take a
moment to explain this result.

Given a topological group G and a G-space X, the equivariant Poincaré series of X
is the generating function

PG
t (X) =

∞∑
i=0

dim
(

Hi
G(X)

)
t i ,

where H∗G(X) is the Borel equivariant cohomology of X over some fixed coefficient
field. The equivariant perfection result of Atiyah and Bott states that

(1.4) PGC(r,d)
t

(
C(r, d)

)
=
∑
λ

t2dλPGC(r,d)
t

(
Cλ(r, d)

)
,

where dλ is the complex codimension of Cλ(r, d) in C(r, d). In other words, up to
degree shifts, the equivariant Betti numbers of C(r, d) is simply the sum of those of
the strata. Because C(r, d) is contractible, it follows that

(1.5) PGC(r,d)
t

(
C(r, d)

)
= Pt

(
BGC(r, d)

)
.

Furthermore, for an unstable stratum λ =
(

(r1, d1), . . . , (rn, dn)
)

, Atiyah and Bott
demonstrate that

(1.6) PGC(r,d)
t

(
Cλ(r, d)

)
=

n∏
i=1

PGC(ri ,di )
t

(
Css(ri , di)

)
.

1Stratification (1.3) may also be interpreted as the Morse theoretic stable manifolds for the Yang–Mills
functional. This point of view will not be used in this paper.
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Rearranging (1.4) and substituting (1.5) and (1.6) yields the formula

PGC(r,d)
t

(
Css(r, d)

)
= Pt

(
BGC(r, d)

)
−
∑
λ 6=(r,d)

t2dλ
n∏

i=1
PGC(ri ,di )

t

(
Css(ri , di)

)
which expresses PGC(r,d)

t

(
Css(r, d)

)
recursively in terms of the lower rank cases

PGC(ri ,di )
t

(
Css(ri , di)

)
. Finally, if gcd(r, d) = 1 then

Pt

(
MΣ(r, d)

)
= (1− t2)PGC(r,d)

t

(
Css(r, d)

)
.

The correction factor (1− t2) = 1/Pt (BC∗) is due to the constant scalar action by C∗

acting trivially on C(r, d).
A parallel story can hold for real/quaternionic vector bundles. Given such a struc-

ture τ on a smooth Cr-bundle of degree d, define

• C(r, d, τ ) ⊂ C(r, d), the space of real/quaternionic holomorphic structures,
• GC(r, d, τ ) ⊂ GC(r, d), the real/quaternionic gauge group,

to be those operators commuting with τ . Equivalently, τ determines involutions on
C(r, d) and GC(r, d) for which C(r, d, τ ) = C(r, d)τ and GC(r, d, τ ) = GC(r, d)τ are
the fixed points. Define the moduli space of real/quaternionic semi-stable bundles of
type τ as

M(r, d, τ ) = M(Σ,σ)(r, d, τ ) := Css(r, d, τ )/GC(r, d, τ ).

According to Schaffhauser [Sch12], if gcd(r, d) = 1, then we may identify M(r, d, τ )
with a corresponding path component of the set of real points M(r, d)σ .

In the current paper, we adapt the Atiyah–Bott method to derive recursive formu-
las for the Z/2-Betti numbers of M(r, d, τ ). We will focus on moduli spaces of real
bundles, because quaternionic case reduces to the real case by the following remark.

Remark 1.7 If M(r, d, τ ) is a moduli space of quaternionic bundles such that
gcd(r, d) = 1, then by Remark 1.2, there exists a quaternionic line bundle (L, τ ′) of
some degree d′. Tensor product by (L, τ ′) defines an isomorphism between M(r, d, τ )
and the moduli space of real bundles M(r, d+rd′, τ⊗τ ′) which also has coprime rank
and degree.

1.3 Summary

In Section 2, we construct a stratification into locally closed, finite codimension sub-
manifolds

C(r, d, τ ) =
⋃
λ

Cλ(r, d, τ )

indexed by real HN-types λ =
(

(r1, d1, τ1), . . . , (rn, dn, τn)
)

, and prove that the strat-
ification satisfies the conditions necessary to apply the standard Morse theory argu-
ments.

https://doi.org/10.4153/CJM-2013-049-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-049-1


Moduli Spaces of Vector Bundles over a Real Curve: Z/2-Betti Numbers 965

In Section 3, we show that the stratification is GC(r, d, τ )-equivariantly perfect for
Z/2-coefficients. This implies a recursive formula
(1.8)

PGC(r,d,τ )
t

(
Css(r, d, τ )

)
= Pt

(
BGC(r, d, τ )

)
−

∑
λ 6=(r,d,τ )

tdλ
n∏

i=1
PGC(ri ,diτi )

t

(
Css(ri , di , τi)

)
.

Sections 4, 5, and 6 are devoted to calculating the Poincaré series Pt

(
BGC(r, d, τ )

)
which is needed as input for the recursive formula (1.8), and this calculation takes up
the bulk of the paper. The calculations involve Eilenberg–Moore spectral sequences,
which are reviewed in Appendix A. We find it convenient to work instead with the
subgroup of unitary gauge transformations G(r, d, τ ) ⊆ GC(r, d, τ ), whose inclusion
is a homotopy equivalence.

In Section 7 we prove that if gcd(r, d) = 1, then

Pt

(
MΣ(r, d, τ )

)
= (1− t)PGC(r,d)

t

(
Css(r, d, τ )

)
,

where now the factor (1− t) =
(

Pt (BR∗)
)−1

corrects for a trivial scalar action by R∗

on C(r, d, τ ). Combined with the recursive formula (1.8) this allows a calculation of
Pt

(
MΣ(r, d, τ )

)
, and we present explicit formulas for ranks r = 1, 2, and 3.

Throughout the paper, we make frequent reference to [AB83], and we recommend
that readers have a copy close at hand.

This paper covers largely the same ground as the independent paper by Liu–
Schaffhauser [LS13]. The biggest difference in methods is that we use Eilenberg–
Moore spectral sequences where they use Serre spectral sequences. Their paper also
considers more directly the case of quaternionic bundles and solves the recursion
(1.8) to get closed formulas for the Poincaré series Pt

(
MΣ(r, d, τ )

)
.

Notation. For a topological group G and a G-space X, we denote the homotopy
quotient XhG = EG ×G X. We denote holomorphic bundles by E and D and the
underlying C∞ or topological bundles by E and D.

2 The Harder–Narasimhan Stratification

2.1 Harder–Narasimhan over Complex Curves

We summarize the relevant material from [AB83, Section 7] that has not already been
explained in Section 1.

Let Σ be a Riemann surface and E → Σ a smooth Cr-bundle of degree d. Let
C(r, d) = C(E) denote the space of holomorphic structures on E (under an appropri-
ate Sobolev completion). For a given HN-type λ =

(
(r1, d1), . . . , (rk, dk)

)
, choose

a C∞-splitting of E = D1 ⊕ · · · ⊕ Dk where (ri , di) are the rank and degree of Di

respectively. This determines an injective map

k∏
i=1

Css(ri , di) ↪→ Cλ(r, d)
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that induces a homotopy equivalence of homotopy quotients

k∏
i=1

Css(ri , di)hGC(ri ,di )
∼= Cλ(r, d)hGC(r,d),

responsible for the equality of Poincaré series (1.6).
Each stratum Cλ(r, d) ⊆ C(r, d) is a finite codimension submanifold with com-

plex normal bundle Nλ → Cλ(r, d). A holomorphic bundle E ∈
∏k

i=1 Css(ri , di) ⊆
Cλ(r, d), decomposes as E = D1 ⊕ · · · ⊕ Dk and the normal bundle Nλ of Cλ(r, d)
can be identified at E with

Nλ,E
∼=
⊕
i< j

H1(Σ,D∗i ⊗D j).

The complex rank can be computed using Riemann–Roch and is given by the formula

dλ := rankCNλ =
∑
i< j

dir j − d jri + rir j(g − 1).

The points in the stratum Cλ(r, d) are fixed by the subgroup Gλ ⊂ GC(r, d) isomor-
phic to (C∗)k that acts by scalar multiplication on the summands E = D1⊕ · · ·⊕Dk.
However, Gλ acts non-trivially on the normal bundle by (t1, . . . , tk) ∈ Gλ multiply-
ing the summand H1(Σ,D∗i ⊗D j) by the scalar t−1

i t j .

2.1.1 Over CP1

For later use, we consider more explicitly the Harder–Narasimhan decomposition
and the Atiyah–Bott formula in the special case Σ = CP1 where some simplifications
occur.

By a result of Grothendieck [Gro57], holomorphic bundles over CP1 are always
isomorphic to a direct sum of line bundles. Consequently, every rank r degree d
bundle must have the form O(k1) ⊕ · · · ⊕ O(kr) for some integers k1 ≥ · · · ≥ kr

such that k1 + · · · + kr = d. The corresponding stratum in C(r, d) is a single GC(r, d)-
orbit with stabilizer isomorphic to GLr1 (C)× · · · × GLrn (C) where r1, . . . , rn are the
multiplicities of degrees occurring in the sequence d1 ≥ · · · ≥ dr. The recursive
formula (1.8) can be rewritten in this case as

Pt

(
BGC(r, 0)

)
=

∑
k1≥···≥kr

k1+···+kr=0

t
2(
∑

ki>k j
ki−k j−1)

Pt

(
BAut

( r⊕
i=1

O(ki)
))
.

If any ki has absolute value greater than one, then the index 2(
∑

ki>k j
ki − k j − 1)

is greater than r. Consequently, in the stable limit

BGC(∞, 0) := lim
r→∞

BGC(r, 0),
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we only need to consider strata for which |ki | ≤ 1 for all i. In particular, we obtain
the formula

Pt

(
BGC(∞, 0)

)
=

∞∑
n=0

t2n2

Pt

(
lim

r→∞
BAut

(
O(1)⊕n ⊕ O⊕r−2n ⊕ O(−1)⊕n

))
=

∞∑
n=0

t2n2

Pt (BUn)2Pt ( lim
r→∞

BUr−2n)

= Pt (BU)
∞∑

n=0

t2n2

Pt (BUn)2.

Substituting known values on both sides of the equation produces the formula

(2.1)
∞∏

k=1

1

(1− t2k)2
=
( ∞∏

k=1

1

1− t2k

) ∞∑
n=0

t2n2
( n∏

k=1

1

(1− t2k)2

)
.

Substituting x = t2 and simplifying yields the formula

(2.2)
∞∏

k=1

1

(1− xk)
=

∞∑
d=0

xd2∏d
k=1(1− xk)2

=

∞∑
d=0

d∏
k=1

xd

(1− xk)2
.

Remark 2.3 Equation (2.2) also has a combinatorial proof. The left-hand side of
(2.2) is the generating function

∑∞
n=0 p(n)xn, where p(n) counts partitions of n, or

equivalently the number of Young diagrams of size n. The right hand side also counts
partitions, where the d-th term is the generating function counting Young diagrams
containing a d× d-square but no (d + 1)× (d + 1)-square.

2.2 Harder–Narasimhan Over Real Curves

Let M be a smooth manifold, possibly infinite dimensional and let

M =
⋃
λ∈I

Mλ

be a partition of M into locally closed, finite codimension submanifolds Mλ. To apply
the standard Morse–Bott arguments, the index set I must admit a partial order ≤
satisfying the following properties (see [AB83, Section 1]).

(i) For each λ ∈ I, the closure Mλ is contained in
⋃
µ≥λ Mµ.

(ii) The complement of any finite subset of I contains a finite number of minimal
elements.

(iii) For each integer q, there are only finitely many strata of codimension less than
or equal to q.

A stratification satisfying all of the above is said to satisfy the Morse package.
Let (E, τ ) denote a C∞-real2 bundle over a real surface (Σ, σ) of rank r and de-

gree d. Then τ induces an involution of C(E) = C(r, d) and the set of fixed points
C(E)τ = C(E, τ ) = C(r, d, τ ) is an affine manifold modeled on Ω1(Σ, E)τ . Select

2To simplify the exposition, we refer only to real bundles in this subsection. The quaternionic case is
almost identical.
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E ∈ C(E, τ ). Because the involution τ respects the holomorphic structure of E,
it must also preserve the Harder–Narasimhan filtration E0 ⊂ E1 ⊂ · · · ⊂ Ek =
E. Consequently, the quotient bundles Di = Ei/Ei−1 are real bundles. The list(

(D1, τ1), . . . , (Dk, τk)
)

of isomorphism types of C∞-real bundles is called the real
HN-type of (E, τ ).

Proposition 2.1 The affine manifold C(r, d, τ ) admits a stratification into finite codi-
mension, locally closed submanifolds

(2.4) C(r, d, τ ) =
⋃
λ

Cλ(r, d, τ )

indexed by real HN-types λ =
(

(D1, τ1), . . . , (Dk, τk)
)

such that (E, τ ) ∼= (D1⊕· · ·⊕
Dk, τ1 ⊕ · · · ⊕ τk). The stratification admits a partial order ≤ satisfying the Morse
package.

Proof By results of Atiyah–Bott, the complex HN-stratification

(2.5) C(r, d) =
⋃
µ

Cµ(r, d)

satisfies the Morse package. Consider the filtration induced on C(r, d, τ ) ⊂ C(r, d)
by intersecting with (2.5)

(2.6) C(r, d, τ ) =
⋃
µ

(
Cµ(r, d) ∩C(r, d, τ )

)
with the restricted partial order. Because C(r, d, τ ) is the fixed point set of a Z/2-
action preserving the stratification (2.5), standard arguments from the theory of
proper group actions on manifolds tell us that (2.6) inherits the Morse package.

The decomposition (2.4) is a refinement of (2.6). Indeed for each complex HN-
type µ, we have a finite partition

Cµ(r, d) ∩C(r, d, τ ) =
⋃

f (λ)=µ
Cλ(r, d, τ )

indexed by the real HN-types λ that map to µ under the forgetful map f . Thus,
to complete the proof it is enough to show that each Cλ(r, d, τ ) is a union of path-
components of Cµ(r, d) ∩ C(r, d, τ ). Let γ : I →

(
Cµ(r, d) ∩ C(r, d, τ )

)
be a path.

Then for a fixed smooth real bundle (E, τ ), for each t the holomorphic structure γ(t)
produces a continuously varying filtration of vector bundles E1(t) ⊂ E2(t) ⊂ · · · ⊂ E
preserved by τ . Because the subbundle Ei(t) varies continuously with t , we attain a
τ -subbundle

F ⊂ γ∗E = E × I

with Ei(t) = Ft . Applying the rigidity results of Palais–Stewart [PS60] to the sphere
bundle of F, we find that Ei(0) and Ei(1) are isomorphic as Z/2-equivariant smooth
vector bundles. Therefore γ(0) and γ(1) have the same real HN-type.

Theorem 2.2 For a given real HN-type λ =
(

(r1, d1, τ1), . . . , (rk, dk, τk)
)

, a choice
of C∞-splitting of (E, τ ) = (D1⊕ · · · ⊕Dk, τ1⊕ · · · ⊕ τk) into real bundles determines
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a homotopy equivalence of homotopy quotients

k∏
i=1

Css(ri , di , τi)hGC(ri ,di ,τi )
∼= Cλ(r, d, τ )hGC(r,d,τ ).

Proof This is proved exactly like [AB83, Prop. 7.12].

For a point

E = (D1, . . . ,Dk) ∈
k∏

i=1
Css(ri , di , τi) ⊆ Cλ(r, d, τ ),

the fibre of the normal bundle Nτ
λ is identified with

(2.7) Nτ
λ,E =

(⊕
i< j

H1(Σ,D∗i ⊗D j)
) τ

=
⊕
i< j

H1(Σ,D∗i ⊗D j)
τ∗i ⊗τ j .

Let Gτ
λ ⊂ GC(r, d, τ ) be the subgroup isomorphic to (R∗)k that acts by scalar

multiplication on the summands Di . An element (t1, . . . , tk) acts trivially on∏k
i=1 Css(ri , di , τi) and acts on the normal bundle (2.7) by multiplying the summand

H1(Σ,D∗i ⊗D j)τ by t−1
i t j .

3 Equivariant Perfection

In the case of complex bundles, the basic topological result responsible for the equi-
variant perfection is the so-called Atiyah–Bott Lemma [AB83, Prop. 13.4]. In our
current situation, we require a variation on the Atiyah–Bott Lemma valid in charac-
teristic 2. A similar result, proven under more restrictive hypotheses, can be found in
Goldin–Holm [GH04, Lemma 2.3].

Lemma 3.1 Let G be a compact connected Lie group with H∗(G; Z) torsion free. Let X
be a G-space of finite type and let E→ X be a G-equivariant Rn-vector bundle. Suppose
that there exists ε ∈ G such that

• ε2 is the identity in G;
• ε acts trivially on X;
• ε acts by scalar multiplication by−1 on E.

Then the equivariant Euler class EulG(X) is not a zero divisor in H∗G(X) = H∗G(X; Z2).

Proof To begin, we reduce to the case that G is abelian. Let T ⊂ G be a maximal
torus containing ε; then by [AB83, 13.3] the functorial map

H∗G(X)→ H∗T(X)

is injective. Since the functorial map also sends EulG(E) to EulT(E), it suffices to show
that EulT(E) is not a zero divisor in H∗T(X).

Next, we reduce to the case of a circle group. Choose a decomposition T ∼= S1×T′,
where S is the circle group and ε = (−1, IdT′). Then there is a canonical isomor-
phism

H∗T(X) = H∗S1 (XhT′)
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which identifies EulT(E) with EulS(EhT′). Thus, by replacing X with XhT′ and E
with E′hT′ , it suffices to consider the case G = S1 and ε = −1.

So let S = S1 and C2 = {±1} ⊂ S.

Claim. The functorial map H∗S (X)→ H∗C2
(X) is injective.

Proof The functorial map is the induced S/C2-principal fibration ϕ

S/C2 → XhC2

ϕ
−→ XhS.

By considering the associated Gysin sequence we gain an inequality of Poincaré series

Pt (XhC2 ) ≤ Pt (XhS)(1 + t),

with equality if and only if ϕ∗ is injective. Since C2 acts trivially on X we have
equality Pt (XhC2 ) = Pt (X)Pt (BC2) = Pt (X)/(1 − t). Furthermore, using the Serre
spectral sequence of the fibration X → XhS → BS we get the inequality Pt (XhS) ≤
Pt (X)Pt (BS) = Pt (X)/(1− t2). Putting this all together we have

Pt (X)/(1− t) = Pt (XhC2 ) ≤ Pt (XhS)(1 + t)

≤ Pt (X)(1 + t)/(1− t2) = Pt (X)/(1− t),

so all of these inequalities are equalities, and we are done.

The injective map H∗S (X) → H∗C2
(X) sends EulS(E) to EulC2 (E), so it is enough

to show that EulC2 (E) is not a zero divisor in H∗C2
(X) = H∗(X) ⊗ H∗(BC2). This

becomes a straight forward argument in direct analogy with the proof of [AB83,
Prop. 13.4]. This argument is carried out in Goldin–Holm [GH04, Lemma 2.3],
though they state the lemma with unnecessarily restrictive hypotheses suited to their
applications in symplectic geometry.

Lemma 3.2 Consider a stratum Cλ(r, d, τ ) with λ =
(

(D1, τ1), . . . , (Dk, τk)
)

and

normal bundle Nτ
λ . Then EulGC(r,d,τ )(Nτ

λ) is not a zero divisor in H∗GC(r,d,τ )

(
Cλ(r, d, τ )

)
.

Proof For notational simplicity, denote Gi := GC(ri , di , τi) and Ci := Css(ri , di , τi).
As explained in Section 2.2, we have a homotopy equivalence

k∏
i=1

(Ci)hGi
∼= Cλ(r, d, τ )hGC(r,d,τ ),

under which there is an isomorphism of vector bundles

(3.1) (Nτ
λ |C1×···×Ck )h(G1×···×Gk)

∼= (Nτ
λ)hGC(r,d,τ ).

We can also form the vector bundle (3.1) in two stages. Let p ∈ Σ be a point that is
not fixed by σ, then we have short exact sequences

Gbas
i → Gi → GL(Di,p)

where Gbas
i ⊂ Gi is the subgroup that acts trivially on the fibre Di,p and GL(Di,p) is the

general linear group of the fibre. Up to homotopy, we may restrict to the subgroup

https://doi.org/10.4153/CJM-2013-049-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2013-049-1


Moduli Spaces of Vector Bundles over a Real Curve: Z/2-Betti Numbers 971

U(Di,p) ⊂ GL(Di,p). The subgroup Gbas
1 × · · · × Gbas

k is normal, so we can form the
homotopy quotient in stages:

(Nτ
λ |C1×···×Ck )h(G1×···×Gk)

∼=
(

(Nτ
λ |C1×···×Ck )h(Gbas

1 ×···×Gbas
k )

)
h(U(D1,p)×···×U(Dk,p))

.

The vector bundle (Nτ
λ |C1×···×Ck )h(Gbas

1 ×···×Gbas
k ) decomposes into summands ac-

cording to (2.7). The central subgroup
∏k

i=1 C i
2 ⊂

∏k
i=1 U (Di,p) acts trivially on

(C1 × · · · × Ck)h(Gbas
1 ×···×Gbas

k ) and (t1, . . . , tk) ∈
∏k

i=1 C i
2 acts on Nλ by scalar mul-

tiplying the summand H1
(

Σ,Hom(Di ,D j)
) τ

by t−1
i t j . Applying Lemma 3.1, we

conclude that Euler classes of the summands of (Nτ
λ |C1×···×Ck )h(G1×···×Gk) are not

zero-divisors, so Eul
(

(Nτ
λ |C1×···×Ck )h(G1×···×Gk)

)
is not a zero divisor.

Theorem 3.3 For (E, τ ) a real C∞-bundle over a real curve (Σ, σ), the Harder–
Narasimhan stratification of C(E, τ ) is G(E, τ )-equivariantly perfect, establishing the
recursive formula (1.8).

Proof This follows from Lemma 3.2 by the self-completing principle of Atiyah–Bott
[AB83, Prop. 1.9].

4 Classifying Spaces of Gauge Groups

Let G be a topological group and P → M a principal bundle over a finite cell com-
plex M. Let

G(P) = GP = MapsG(P,G)

denote the group of continuous gauge transformations. If BG can be represented by
a CW-complex (say if G is a Lie group), then there is a homotopy equivalence (see
Atiyah–Bott [AB83, Prop. 2.4])

(4.1) BG(P) ∼= MapsP(M,BG)

where Maps(M,BG) is the space of continuous maps from M to BG with compact-
open topology, and MapsP(M,BG) is the path component classifying P.

Given a Cr-vector bundle E, we denote by GC(E) the gauge group of the GLr(C)-
frame bundle of E and by G(E) the gauge group of the orthonormal frame bundle
with respect to an unspecified Hermitian metric. It is explained in [AB83, Section 8]
that the natural inclusion G(E) ↪→ GC(E) is a homotopy equivalence, so they are
largely interchangeable for our purposes. We prefer to work with G(E) to take advan-
tage of the compactness of P.

Suppose that f : N → M is a continuous map of finite complexes, and ϕ : G→ H
a homomorphism of topological groups. Combining pullback and induction (in
either order), form the H-bundle f ∗P ×G H over N. There is a canonically induced
homomorphism of gauge groups ψ : G(P)→ G( f ∗P ×G H).
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Proposition 4.1 Denote by P′ := f ∗P ×G H. The following diagram commutes up
to homotopy:

(4.2) BG(P)
Bψ //

��

BG(P′)

��
MapsP(M,BG) // MapP′(N,BH),

where Bψ is functorially induced by ψ, the vertical arrows are the isomorphism from
(4.1), and the bottom arrow is defined by composition of f and Bϕ.

Proof We use the Milnor join construction of classifying spaces to make B a functor
[Mil56b]. This construction models EG as the infinite join G∗∞. From this point of
view, diagram (4.2) is the orbit space map of the equivariant diagram

MapsG(P,G)∗∞ //

��

MapsH(P′,H)∗∞

��
MapsG(P,G∗∞) // MapH(P′,H∗∞),

which is readily seen to be commutative on the nose.

Using the identification (4.1), we have an evaluation map

ev : M × BG(P)→ BG.

Define a linear map t : Hp(M)⊗Hq(BG)→ Hq−p
(

BG(P)
)

by

t(σ ⊗ α) =

∫
σ

ev∗(α),

where the integral denotes the slant product of α with respect to σ.

Proposition 4.2 Denote by P′ := f ∗P ×G H as before. The diagram

H∗(N)⊗H∗(BH)
t //

f∗⊗Bϕ∗

��

H∗(BGP′)

Bψ∗

��
H∗(M)⊗H∗(BG)

t // H∗
(

BG(P)
)

commutes. In other words, t is natural with respect to pullback and induction of princi-
pal bundles.

Proof The square above factors as two squares that are both well known to com-
mute

H∗(N)⊗H∗(BH)
Id⊗ ev∗ //

f∗⊗Bϕ∗

��

H∗(N)⊗H∗(N × BGP̃)

∫
//

f∗⊗Bψ∗

��

H∗(BGP̃)

Bψ∗

��
H∗(M)⊗H∗(BG)

Id⊗ ev∗ // H∗(M)⊗H∗(M × BGP)

∫
// H∗(BGP).
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4.1 Loop Groups

Given a Lie group G, the loop group LG = Maps(S1,G) can be thought of as the group
of gauge transformations of the trivial G bundle over S1. By (4.1), we identify

BLG ∼= L0BG,

where L0BG is the path component of LBG = Maps(S1,BG) containing the constant
maps. Consider the fibration sequence

(4.3) ΩBG −→ LBG
ev1

−→ BG,

where ev1 is evaluation at the basepoint 1 ∈ S1.

Proposition 4.3 In case G = Ur, SUr or Or, the fibre of (4.3) is totally non-homolo-
gous to zero in characteristic 2. Consequently, there are isomorphisms

H∗(LBG) ∼= H∗(G)⊗H∗(BG)

as graded H∗(BG)-modules.

Proof We consider the case G = Or (cases G = Ur and G = SUr are similar). Let
O = limr→∞Or denote the infinite orthogonal group. By Bott Periodicity, BO is a
loop space hence has the homotopy type of a topological group by a result of Milnor
[Mil56a]. Exploiting multiplication on BO, one easily constructs a trivialization of
the bundle

LBO ∼= BO×Ω BO ∼ BO×O .

The inclusion Or → O is surjective on Z2-cohomology so the morphism of fibration
sequences

O // LBO // BO

Or
//

OO

LBOr
//

OO

BOr

OO

implies that the fibre inclusion Or → LBOr induces a cohomology surjection and
π1(BOr) acts trivially on H∗(Or). The result now follows from the Leray–Hirsch
theorem.

For the following Lemma, let M =
∨m

i=1 S1
i be a wedge of m circles. For some p,

0 ≤ p ≤ m letG be the subgroup of Maps(M,Ur) of maps that restrict to contractible
loops on the first p circles. We have a composition of maps BG→ B Maps(M,Ur) =
Maps(M,BUr), so it makes sense to define an evaluation map

ev : M × BG→ BUr

and the operator t : H∗(M)⊗H∗(BUr)→ H∗(BG) as in Proposition 4.2.
Recall that H∗(BUr; Z2) = S(c1, . . . , cr) where ck is (the mod 2 reduction of) the

universal k-th Chern class, with degree |ck| = 2k.

Lemma 4.4 The cohomology ring H∗(BG) decomposes as a tensor product of a poly-
nomial algebra generated by classes ck := t([pt]⊗ ck) for k = 1, . . . , r and an exterior
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algebra generated by classes c̄i,k = t([S1
i ] ⊗ ck) for i = 1, . . . ,m and k = 1, . . . , r

satisfying k 6= 1 if i ≤ p.

Proof We make use of a similar result stated for surface gauge groups and integral
coefficients from [AB83, Prop. 2.20].

Restriction to the base point determines a fibration sequence

(BΩ0 Ur)
p × (BΩ Ur)

m−p → BG→ BUr,

where we have homotopy equivalences BΩ Ur
∼= Ur and BΩ0 Ur

∼= SUr. By the
Leray–Hirsch theorem, it suffices to show that the classes c̄i,k generate an exterior
algebra that restricts to an isomorphism to the cohomology of the fibre. Indeed,
the inclusion BG → B Maps(M,Ur) is a cohomology surjection, so it is enough
to establish the case p = 0. Choose an embedding of M ↪→ Σ as a retract in a
closed surface (which must have genus at least m). This induces an inclusion map
B Maps(M,Ur) → B Maps(Σ,Ur) as a retract and thus a cohomology surjection.
The classes c̄i,k are identified with the image of the classes bi

k of [AB83] according
to the functoriality of Proposition 4.2, so they form an exterior algebra that restricts
isomorphically to the fibres.

5 Real Gauge Groups

Let (M, σ) be a finite cell complex M equipped with an automorphism σ ∈ Aut(M)
such that σ2 = IdM . A topological real vector bundle (E, τ ) over (M, σ) consists of
a Cr-vector bundle π : E → M and an antilinear bundle involution E → E such that
τ 2 = IdE and π ◦ τ = σ ◦ π.

Definition 5.1 Given a real bundle (E, τ ), the real gauge group is defined

GC(E, τ ) = {g ∈ GC(E) | gτ = τg}.

We prefer to work with the unitary version of real gauge groups. Fix a Hermitian
metric on E that is compatible with τ in the sense that orthonormal frames are sent
to orthonormal frames. Then we define

G(E, τ ) = G(E) ∩ GC(E, τ ).

The inclusion G(E, τ ) ↪→ GC(E, τ ) is a homotopy equivalence, because the coset
space GC(E, τ )/G(E, τ ) can be identified with the convex space of τ -compatible Her-
mitian metrics. Thus for our purposes G(E, τ ) and GC(E, τ ) are interchangeable.

The conjugation action Z/2 y Ur, sending a matrix [ai, j] to [ai, j] induces an

involution on BUr. Given a Z/2-space (X, σ), consider the space MapsZ/2(X,BUr) of
equivariant maps.

Proposition 5.1 Isomorphism classes of topological real bundles (E, τ ) over a finite
Z/2-cell complex (X, σ) are classified by π0

(
MapsZ/2(X,BUr)

)
. The classifying space

BGτE is identified with the path component MapsZ/2
E (X,BUr) classifying (E, τ ).
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Proof The classification of isomorphism classes of bundles by π0(MapsZ/2(X,BUr))
is proved in [BHH10, Section 4], so we concentrate on the second statement.

Let (E, τ ) → (X, σ) be a fixed topological real bundle, let P → X denote the
unitary frame bundle, and let Ûr = Ur oZ/2 be the semidirect product defined by
complex conjugation on Ur. Then there is a natural identification

GτE
∼= MapsÛr

(P,Ur)

with the equivariant maps from P to Ur. If we represent EUr by the Milnor join
construction, then EUr acquires a Ûr action, and the space MapsÛr

(P, EUr) forms a
GτE-bundle in a natural way, such that the orbit space MapsÛr

(P, EUr)/GτE is identified

with the component of MapsZ/2(X,BUr) classifying (E, τ ).
It remains to prove that MapsÛr

(P, EUr) is contractible. We adapt an argument
of Dold [Dol63, Section 8]. Recall that Milnor constructs EUr as the direct limit
lim→U∗n

r , where U∗n
r denotes the n-fold join of Ur. Because P is a compact cell

complex, it follows that

MapsÛr
(P, EUr) = lim

→
MapsÛr

(P,U∗n
r ).

To prove that MapsÛr
(P, EUr) is contractible, it suffices to show that for all n there is

some m such that the inclusion

(5.2) MapsÛr
(P,U∗n

r ) ↪→ MapsÛr
(P,U∗(m+n)

r )

is null-homotopic. The map (5.2) factors through the inclusion

MapsÛr
(P,U∗n

r )
i
−→ MapsÛr

(P,U∗n
r ) ∗MapsÛr

(P,U∗m
r )

and for any non-vacuous spaces X and Y , the inclusion X → X∗Y is null-homotopic,
completing the proof. An explicit contraction can be constructed along the lines
of [Dol63].

5.1 Real Loop Groups

A real loop group is simply a real gauge group for a real bundle (E, τ ) over (S1, σ)
where σ : S1 → S1 is an involution. We consider two cases: σ = IdS1 the identity map
and σ = − IdS1 the antipodal map. As usual, we work with the Hermitian version
LU τ

r ⊂ LGLr(C)τ .

Proposition 5.2 For any positive rank r, there are two isomorphism classes of topo-
logical real Cr-bundles over (S1, IdS1 ). They are classified by the first Stieffel–Whitney
number w1(Eτ ) ∈ H1(S1; Z/2) = Z/2.

Proof Equivariant maps from (S1, Id) to BUr are the same thing as maps S1 to
BOr ⊂ BUr. Up to homotopy, these are in correspondence with π1(BOr) = Z/2
and correspond to a choice of first Stieffel–Whitney class.

Proposition 5.3 For any positive rank r, there is only one topological real bundle over
(S1,− IdS1 ) up to isomorphism.
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Proof Any equivariant map from S1 to BUr can be equivariantly contracted to a
point (see [BHH10, Section 4.1]).

Remark 5.3 The path components [γ] ∈ π0(LUr) are classified by the winding
number of the map

S1 → U(1), θ 7→ det
(
γ(θ)

)
.

It is easily checked that for the examples above, LU τ
r is contained in the identity

component L0 Ur ⊂ LUr.

5.2 Cohomology of Real Loop Groups

In this section we compute the Z/2-Betti numbers of real loop groups BLU τ
r and

describe the map
i∗ : H∗(BLUr)→ H∗(BLU τ

r )

induced by inclusion. Recall from Lemma 4.4 that H∗(BLUr) ∼=
∧

(c̄1, . . . , c̄r) ⊗
S(c1, . . . , cr). The main takeaway is the following corollary.

Corollary 5.4 For the real loop groups described in Propositions 5.2 and 5.3, we have
that H∗(BLU τ

r ) is a free H∗(BUr) = S(c1, . . . , cr) module on which
∧

(c̄1, . . . , c̄r) acts
trivially. The Poincaré series satisfies

Pt (BLU τ
r ) =

1

1 + t r

r∏
k=1

(1 + tk)2

1− t2k

for σ = IdS1 independently of τ , and

Pt (BLU τ
r ) =

r∏
k=1

1 + t2k−1

1− t2k

for σ = − IdS1 .

Proof An immediate consequence of Propositions 5.5 and 5.7 below.

5.2.1 The Case σ = IdS1

Proposition 5.5 Let LU τ
r be a real loop group over (S1, IdS1 ). Then

(5.4) H∗(BLU τ
r ) ∼= H∗(SOr)⊗ S(w1, . . . ,wr)

with degrees |wk| = k, as a graded free module over S(w1, . . . ,wr). The inclusion in-
duced map i : BLU τ

r → BLUr satisfies i∗(c̄k) = 0 and i∗(ck) = w2
k .

Proof of Proposition 5.5 In this case σ acts trivially on S1, so BLU τ
r may be identi-

fied with one of the two path components of MapsZ/2(S1,BUr) = Maps(S1,BOr) =
LBOr. Then (5.4) follows immediately from Proposition 4.3, where the wi are the
Stieffel–Whitney classes.

To study i∗, we have i∗(ck) = w2
k (Milnor–Stasheff [MS74, problem 15A]) and by

Proposition 4.2

i∗(c̄k) = i∗
(

t([S1]⊗ ck)
)

= t([S1]⊗ w2
k) = 2w̄kwk = 0.
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5.2.2 The Case σ = − IdS1

We begin with a lemma. We call a fibration F → E → B cohomologically trivial if
π1(B) acts trivially on H∗(F) and the Serre spectral sequence collapses so H∗(E) ∼=
H∗(B)⊗H∗(F) as a graded H∗(B)-module.

Lemma 5.6 Let f : B′ → B be a continuous map of path-connected spaces for which
f ∗ : H∗(B) → H∗(B′) is injective and let F → E → B be a Serre fibration with π1(B)
acting trivially on H∗(F). Then E is cohomologically trivial if and only if the pullback
f ∗E is cohomologically trivial.

Proof That the pullback of a cohomologically trivial fibration is cohomologically
trivial is an easy consequence of the Leray–Hirsch Theorem. In the other direction,
the injectivity of f ∗ implies that f induces a morphism of Serre spectral sequences
which at the E2-page is the injective map

f ∗ ⊗ idH∗(F) : H∗(B)⊗H∗(F)→ H∗(B′)⊗H∗(F).

Thus if the spectral sequence for f ∗E collapses, then the spectral sequence for E must
as well.

Proposition 5.7 Let LU τ
r be a real loop group of rank r over (S1,− IdS1 ). There is an

isomorphism of H∗(BUr)-modules

H∗(BLU τ
r ) ∼= H∗(Ur)⊗ S(c1, . . . , cr)

with degrees |ck| = 2k. The inclusion induced map satisfies i∗(c̄k) = 0 and i∗(ck) = ck.

Proof Consider the fibration

(5.5) BΩ Ur → BLU τ
r → BUr

induced by evaluation at the basepoint 1 ∈ S1. Let i1 : H ↪→ LU τ
r be the subgroup

sending the base point 1 ∈ S1 to Or. Then evaluation at 1 defines a fibration

(5.6) BΩ Ur → BH
π
−→ BOr

that is a pullback of (5.5) under the inclusion

(5.7) BOr → BUr .

On the other hand, because an element of LU τ
r ⊂ Maps(S1,Ur) is determined by

its values on one half of S1, and the elements of H send ±1 ∈ S1 to the same value
in Or, there is a second injection i2 : H ↪→ LUr defined by i2(γ)(eiθ) = γ(eiθ/2) for
θ ∈ [0, 2π], producing (5.6) as a pullback of (4.3) under base map (5.7). Since (5.7)
is a cohomology injection and (4.3) is cohomologically trivial, the result follows from
two applications of Lemma 5.6. Finally, we have a commutative diagram

BLU τ
r

i // BLUr

BH
Bi2 //

Bi1

OO

BLUr,

f

OO
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where f is induced by a degree two map S1 → S1. By Proposition 4.2, f ∗(ck) =
ck and f ∗(c̄k) = 2c̄k = 0. Since both Bi∗1 and Bi∗2 are injective, i∗(ck) = ck and
i∗(c̄k) = 0.

6 Real Gauge Groups over Surfaces

This entire section is devoted to proving the following theorem.

Theorem 6.1 Suppose (Σ, σ) is a genus g surface with real points consisting of a
disjoint circles and let (E, τ ) → (Σ, σ) be a real bundle of rank r and degree d. Then
the Poincaré series of the BG(r, d, τ ) satisfies

Pt

(
BG(r, d, τ )

)
=

1− t2r

(1 + t r)a

r∏
k=1

(1 + tk)2a(1 + t2k−1)g+1−a

(1− t2k)2
.

6.1 Constructing the Real Gauge Group

We use models of real surfaces that are slightly different from [BHH10]. Let Σh =
Σh(ĝ, n) denote a genus ĝ surface with n disks removed, and boundary circles num-
bered from 1 to n:

∂Σh
∼=

n∐
i=1

S1
i .

Observe that Σh(ĝ, n) is homotopy equivalent to a wedge of 2ĝ + n− 1 circles.
Given an n-tuple of real loop groups (LU τ1

r , . . . , LU τn
r ), define G(ĝ, n, r; τ1, . . . , τn)

by the pullback diagram of groups

(6.1) G(ĝ, n, r; τ1, . . . , τn) //

��

Maps
(

Σ(ĝ, n),Ur

)
π

��∏n
i=1 LU τi

r
// ∏n

i=1 LUr,

where π is induced by restriction to the boundary circles. For technical reasons, we
prefer to work with the identity component subgroups L0 Ur ⊆ LUr, and this poses
no problem by Remark 5.3. Let Maps0

(
Σ(ĝ, n),Ur

)
denote the subgroup of maps

that restrict to contractible loops on the boundary circles. Then we have a pullback
diagram of groups

(6.2) G(ĝ, n, r; τ1, . . . , τn) //

��

Maps0

(
Σ(ĝ, n),Ur

)
π

��∏n
i=1 LU τi

r
// ∏n

i=1 L0 Ur

for which π is surjective.

Proposition 6.2 Let (Σ, σ) be a real curve with σ orientation reversing, and let
(E, τ ) → (Σ, σ) be a real bundle of rank r. Then the real gauge group G(E, τ ) is iso-
morphic to G(ĝ, n, r; τ1, . . . , τn) for some choice of ĝ, n, and τi .
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Proof Suppose that Σ has genus g and the fixed point set Σσ consists of a ≥ 0 cir-
cles. Then by the classification of real curves (found in [BHH10, Section 2]), (Σ, σ) is
equivariantly homeomorphic to a quotient

(
Σh(ĝ, n)×{0, 1}

)
/∼ with involution σ

sending (θ, j) to (θ, j + 1 mod 2). Here 2ĝ + n − 1 = g, and the quotient relation is
defined on boundary circles by (θ, 0) ∼ (θ, 1) if i ≤ a and (θ, 0) ∼ (θ+π, 1) if i > a,
where a < n if Σ \ Σσ is connected and a = n if not.

Finally, since the involution transposes the two copies of Σh(ĝ, n), and the re-
striction of E to one copy of Σh(ĝ, n) is trivial, we can identify G(E, τ ) with the sub-
group of Maps

(
Σ(ĝ, n),Ur

)
satisfying the boundary conditions of lying in the ap-

propriate real loop groups, determined by restricting (E, τ ) to the boundary circles
of Σh(ĝ, n).

6.2 The First Spectral Sequence

In this section, we use the pullback diagram (6.2) to compute the Betti numbers
of BGτ . It is convenient to first consider an auxiliary space. Denote by X the surface
Σ(ĝ, n) with an open disk removed and denote by S ⊆ ∂X the newly introduced
boundary circle. Note that X is homeomorphic to Σ(ĝ, n + 1), but the new boundary
circle will play a different role than the others. Consider the pullback diagram of
topological groups

(6.3) G̃(ĝ, n, r; τ1, . . . , τn) //

��

Maps0(X,Ur)

π

��∏n
i=1 LU τi

r
// ∏n

i=1 L0 Ur

where Maps0(X,Ur) is the subgroup of Maps(X,Ur) of maps sending all boundary
circles to contractible loops in Ur.

Lemma 6.3 Suppose that σi = IdS1 for boundary circles with i ≤ a and σi = − IdS1

for the rest. Then BG̃(ĝ, n, r; τ1, . . . , τn) has Z/2 Poincaré series

Pt

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
=

1

(1 + t r)a

r∏
k=1

(1 + tk)2a(1 + t2k−1)2ĝ+n−a

1− t2k
.

Proof Applying the classifying space functor to (6.3) results in a pullback diagram

(6.4) BG̃(ĝ, n, r; τ1, . . . , τn) //

��

B Maps0(X,Ur)

π

��∏n
i=1 BLU τi

r
// ∏n

i=1 BL0 Ur .

We calculate the Betti numbers of BG̃(ĝ, n, r; τ1, . . . , τn) using an Eilenberg–Moore
spectral sequence (EMSS). We review the EMSS in Appendix A.

Let R := H∗(
∏n

i=1 BL0 Ur) (Z/2 coefficients understood throughout). The EMSS
associated with (6.4) converges to H∗

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
and has second page
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equal to the bi-graded algebra

(6.5) EM∗,∗2 = Tor∗,∗R

(
H∗
( n∏

i=1
BLU τi

r

)
,H∗

(
B Maps0(X,Ur)

))
.

For the rest of this section we use index sets, i ∈ {1, . . . , n}, i′ ∈ {2, . . . , n},
k ∈ {1, . . . , r}, and k′ ∈ {2, . . . , r}. We use the notational convention that the
appearance of one of these subscripts means to include the full range of that index
set.

Applying Lemma 4.4 and the Kunneth theorem,

R :=
n⊗

i=1
H∗(BL0 Ur) ∼=

∧
(c̄i,k′)⊗ S(ci,k)

where |c̄i,k| = 2k− 1, |ci,k| = 2k.

Lemma 6.4 There is an isomorphism

H∗
(

B Maps0(X,Ur)
) ∼= ∧(c̄i,k′)⊗ S(ck)⊗ A,

where A is an exterior algebra with Poincaré series

Pt (A) =
r∏

k=1
(1 + t2k−1)2ĝ .

In these generators, the bundle map π∗ : R → H∗
(

Maps0(X,Ur)
)

satisfies π∗(c̄i,k′) =
c̄i,k′ , and π∗(ci,k) = ck.

Proof The surface X is homotopy equivalent to a wedge of 2ĝ + n circles and the
this equivalence send the boundary components S1

i for i = 1, . . . , n to circles in the
wedge product. The lemma now follows directly from Lemma 4.4.

Using the coordinates of Lemma 6.4, the Koszul resolution of

R→ H∗
(

B Map0(X,Ur)
)

is the differential bigraded algebra (K∗,∗, δ), where

K∗,∗ :=
∧

(c̄i,k′ , xi′,k)⊗ S(ci,k)⊗ A

with bidegrees and differentials

generator bi-degree δ-derivative
c̄i,k′ (0, 2k′ − 1) 0
ci,k (0, 2k) 0
xi′,k (−1, 2k) ci′,k + c1,k

Note in particular that K∗,∗is a free extension over R, and the cohomology
H(K∗,∗, δ) is isomorphic to H∗

(
B Map0(X,Ur)

)
as an R-module, where we under-

stand elements in Hd
(

B Map0(X,Ur)
)

to have bi-degree (0, d). By (6.5), EM∗,∗2 is
isomorphic as a bi-graded algebra to the homology of the complex(

K∗,∗ ⊗R H∗
( n∏

i=1
BLU τi

r

)
, δ ⊗R 1

)
.
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Applying Corollary 5.4 and the Kunneth theorem, we have an isomorphism of R-
modules

H∗
( n∏

i=1
BLU τi

r

) ∼= V ⊗ S(ci,k)

where V is a graded vector space with Poincaré series

Pt (V ) =
1

(1 + t r)a

r∏
k=1

(1 + tk)2a(1 + t2k−1)n−a,

and the R-module structure is defined by R→ V ⊗ S(ci,k), ci,k 7→ ci,k and c̄i,k′ 7→ 0.
Forming the tensor product gives

K∗,∗ ⊗R H∗
( n∏

i=1
BLU τi

r

) ∼= V ⊗ A⊗
∧

(xi′,k)⊗ S(ci,k).

This complex factors into V ⊗ A with trivial differential and the Kozsul complex∧
(xi′,k)⊗S(ci,k) with differential δ(xi′,k) = ci′,k +c1,k whose homology is simply S(ck).

Applying the Kunneth theorem for chain complexes gives

EM2 = V ⊗ A⊗ S(ck).

This bigraded algebra is zero outside of the column EM0,∗
2 , so it must collapse and

we deduce
Pt

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
= Pt (V )Pt (A)Pt

(
S(ck)

)
,

completing the proof.

Remark 6.6 In the proof of Lemma 6.3, we showed that EM∞ is supported in the
zeroth column. It follows from Lemma A.1 that the induced map H∗(

∏n
i=1 BLU τi

r )⊗
H∗
(

B Maps0(X,Ur)
)
→ H∗

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
is injective.

6.3 The Second Spectral Sequence

The group G(ĝ, n, r; τ1, . . . , τn) may be identified with the subgroup of

G̃(ĝ, n, r; τ1, . . . , τn) ⊂ Maps0(X,Ur)

consisting of those elements that take constant value on the remaining boundary
circle S ⊆ ∂X. This determines a pullback diagram of topological groups,

G(ĝ, n, r; τ1, . . . , τn) //

��

G̃(ĝ, n, r; τ1, . . . , τn)

π

��
Ur

// L0 Ur,

where π is restriction to the boundary circle S. Applying the classifying space functor
produces a fibre bundle pullback

(6.7) BG(ĝ, n, r; τ1, . . . , τn) //

��

BG̃(ĝ, n, r; τ1, . . . , τn)

π

��
BUr

// BL0 Ur .
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Lemma 6.5 The second page of the Eilenberg–Moore spectral sequence of the diagram
(6.7) is the bigraded algebra

EM∗,∗2
∼= Γ(z2, . . . , zr)⊗H∗

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
,

where zk′ has bi-degree (−1, 2k′− 1), Γ(z2, . . . , zr) denotes the divide power algebra on
generators z2, . . . , zr and Hd

(
BG̃(ĝ, n, r; τ1, . . . , τn)

)
is given bidegree (0, d) (i.e., lies

in the zeroth column).

Proof By Lemma 4.4 we have isomorphisms

H∗(BL0 Ur) ∼=
∧

(c̄2, . . . c̄r)⊗ S(c1, . . . , cr) and H∗(BUr) ∼= S(c1, . . . , cr).

The morphism H∗(BL0 Ur) → H∗(BUr) sends ck to ck and c̄k′ to 0. The associated
Koszul resolution (K∗,∗, δ) is

K∗,∗ ∼= Γ(z2, . . . , zr)⊗
∧

(c̄2, . . . , c̄r)⊗ S(c1, . . . , cr) = Γ(z2, . . . , zr)⊗H∗(BL0 Ur)

with generators satisfying

generator bi-degree δ-derivative
c̄k′ (0, 2k′ − 1) 0
ck (0, 2k) 0
zk′ (−1, 2k− 1) c̄k′

The morphism π∗ : H∗(BL0 Ur) → H∗
(

BG̃(ĝ, n, r; τ1, . . . , τn)
)

sends c̄k′ to 0 for
all k′ = 2, . . . , r, so the tensor product complex

K∗,∗ ⊗H∗(BL0 Ur) H∗
(

BG̃(ĝ, n, r; τ1, . . . , τn)
)

has trivial boundary operator. We conclude that

EM∗,∗2 = K∗,∗ ⊗H∗(BL0 Ur) H∗
(

BG̃(ĝ, n, r; τ1, . . . , τn)
)

= Γ(z2, . . . , zr)⊗H∗
(

BG̃(ĝ, n, r; τ1, . . . , τn)
)
.

To complete the proof of Theorem 6.1, it remains to prove that the spectral se-
quence of Lemma 6.5 collapses at EM2. We turn to this tricky problem in Section 6.4.

6.4 Collapsing the Spectral Sequence

The first idea is to stabilize with respect to rank. The trivial real line bundle over a
real space (M, σ) is the line bundle M × C with involution τtriv(m, z) =

(
σ(m), z̄

)
.

Lemma 6.6 The morphism of pullback diagrams (6.7) induced by forming a direct
sum with the trivial real line bundle

BG(ĝ, n, r; τ1, . . . , τn)→ BG(ĝ, n, r + 1; τ1 ⊕ τtriv, . . . , τn ⊕ τtriv)

determines a surjection on EM2.

Proof This is a routine check using functoriality of diagrams (A.2) and Lemma 6.5.
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An easy consequence of Lemma 6.6 is that the EMSS for BG(ĝ, n, r; τ1, . . . , τn)
collapses if the EMSS of BG(ĝ, n, r +1; τ1⊕τtriv, . . . , τn⊕τtriv) collapses. In particular,
we may focus on direct limit

BG(ĝ, n; τ1, . . . , τn) := lim
s→∞

BG(ĝ, n, r + s; τ1 ⊕ τ s
triv, . . . , τn ⊕ τ s

triv).

By working in the stable limit, we gain the following simplification.

Lemma 6.7 The homotopy type of BG(ĝ, n; τ1, . . . , τn) is independent of the degree
and Stieffel–Whitney numbers of the associated real vector bundle.

Proof First recall that BU is an H-space under the map m : BU×BU→ BU defined

as the direct limit of the maps BUr ×BUr

⊕
−→ BU2r. The multiplication map m clearly

commutes with complex conjugation action on BU, so for any Z/2-space Y , the space
of equivariant maps of the form MapsZ2

(Y,BU) becomes an H-space by point-wise
multiplication.

Applying the classifying space functor to stable version of diagram (6.1), we obtain

BG(ĝ, n; τ1, . . . , τn) //

��

B Maps
(

Σ(ĝ, n),U
)

π

��∏n
i=1 BLU τi // ∏n

i=1 BLU .

Applying Proposition 5.1 we find that BG(ĝ, n, r; τ1, . . . , τn) is identified with a
path component of the space H defined by the homotopy pullback diagram of H-
spaces

H //

��

Maps
(

Σ(ĝ, n),BU
)

π

��∏n
i=1(LBU )σi // ∏n

i=1 LBU ,

where (LBU )σi = MapsZ/2
(

(S1, σi), (BU, ·̄ )
)

. Because H is an H-space for which

π0(H) ∼= π0

(∏n
i=1(LBU )σi

) ∼= (Z/2)a is a group (here a is the number of path
components of Σσ), it follows that the path components of H are pair-wise homotopy
equivalent.

Consider now the stable version of (6.7)

(6.8) BG(ĝ, n; τ1, . . . , τn) //

��

BG̃(ĝ, n; τ1, . . . , τn)

π

��
BU // BL0 U,

where we set all Stieffel–Whitney classes to zero. We are reduced to showing that the
EMSS associated with (6.8) collapses.
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Lemma 6.8 The EMSS associated with (6.8) collapses at EM2 if and only if the mor-
phism

(6.9) H∗
(

BG̃(ĝ, n; τ1, . . . , τn)
)
→ H∗

(
BG(ĝ, n; τ1, . . . , τn)

)
is injective.

Proof By the stable version of Lemma 6.5, we have an isomorphism of bigraded
algebras

(6.10) EM∗,∗2
∼= Γ(z2, z3, . . . )⊗H∗

(
BG̃(ĝ, n; τ1, . . . , τn)

)
.

In spectral sequence terms, we want to show that EM2 = EM∞ if and only if the
column EM0,∗

2 = 1 ⊗ H∗
(

BG̃(ĝ, n; τ1, . . . , τn)
)

survives to infinity. The “only if”
direction is clear.

Arguing in the same fashion as the proof of Lemma 6.7, we find that (6.8) is a
pullback diagram of H-spaces. By [Smi70, chapter 2], EM∗,∗∗ is a spectral sequence of
(connected, commutative and cocommutative) Hopf algebras (we refer to Milnor–
Moore [MM65] for background on Hopf algebras).

Suppose now that EM∗ does not collapse at EM2. Then for some r ≥ 2, EM∗,∗2 =
EM∗,∗r , and the coboundary map dr is non-trivial. According to Lemma A.2, there
must exist an indecomposable element q ∈ EMr and a non-zero primitive element
p ∈ P(EMr) such that dr(q) = p. By (6.10), all odd total degree indecomposables lie
in the zeroth column and thus must be dr-closed. It follows that q must have even
total degree and p has odd total degree. On the other hand, by [MM65, Proposi-
tion 4.21] decomposable primitives must lie in the image of the Frobenius morphism,
hence have even degree. Thus all odd degree primitives must be indecomposable,
so p must lie in the zeroth column EM0,∗

2 . We deduce that (6.9) is not injective unless
EM∗,∗∞ = EM∗,∗2 .

We are reduced to proving that (6.9) is injective. We begin with the genus zero
case. Our strategy is to reverse the usual Atiyah–Bott argument by computing the
Betti numbers of the real moduli space directly, and then using the recursive formula
to compute Pt (BGτE).

Let M(Σ,σ)(r, d, τ ) = Css(r, d, τ )hGC(r,d,τ ) denote the topological moduli stack of
rank r, degree d real bundles of type τ . We consider two involutions σa, σb : CP1 →
CP1, where σa fixes a circle and σb has no fixed points (for example, in homogeneous
coordinates σa([z1 : z2]) = [z̄1, z̄2] and σb([z1, z2]) = [−z̄2, z̄1]).

Proposition 6.9 The moduli stacks satisfy homotopy equivalences

M(CP1,σa)(r, d, τ ) ∼= M(CP1,σb)(r, 0, τ ) ∼= BOr,

M(CP1,σb)(2r, 2r, τ ) ∼= M(CP1,σb)(2r,−2r, τ ) ∼= B Sp2r .

Proof Let E → CP1, be a semistable holomorphic bundle. Then by Section 2.1.1
we know E ∼= O(k)⊕r for some k = deg(E)/r, and Aut(E) ∼= GLr(C). Combined
with the topological classification of real bundles (Theorem 1.1), we find that up to
isomorphism there is at most one semistable real bundle of given rank and degree
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over CP1. It follows that

M(CP1,σ)(r, kr, τ ) ∼= BAut(r, kr, τ )

where Aut(r, kr, τ ) ⊆ Aut(O(k)⊕r) ∼= GLr(C) is the subgroup that commutes with
the real involution. In the σa case, choose p ∈ (CP1)σa . Then we may model O(k) =
O(kp) as the sheaf of meromorphic functions with poles of order at most k at p,
with τ acting in the obvious way. The real subgroup Aut(r, kr, τ ) ⊆ GLr(C) in this
case is easily identified with GLr(R).

In the σb case with k = 0, we have that E = CP1 × Cr is trivial, and the iso-
morphism GLr(C) = Aut(E) can be understood acting in the standard way on the
Cr factor. Then we have Aut(E, τ ) ∼= GLr(R). In the case M(CP1,σb)(2r,±2r, τ ), ten-
soring by a degree ±1 quaternionic line bundle produces an isomorphism with the
moduli space of rank 2r and degree 0 quaternionic bundles on CP1, which by similar
reasoning has automorphism group Spr(C) ⊆ GL2r(C).

Lemma 6.10 Over a genus zero curve, the Poincaré polynomial of the classifying
spaces of stable real gauge groups satisfy

Pt

(
BG(0, 1; τa)

)
=
∞∏

k=1

1

(1− tk)2
,

Pt

(
BG(0, 1; τb)

)
=
∞∏

k=1

1 + t2k−1

(1− t2k)2
.

Consequently, the EMSS of Lemma 6.5 collapses in the genus zero case.

Proof As explained in Section 2.1.1, in the stable limit r → ∞, the only con-
tributions to the recursive formula are Harder–Narasimhan strata of the form(

(n, n), (r − 2n, 0), (n,−n)
)

. In the τa case, the recursive formula (1.8) gives,

Pt

(
BG(0, 1; τa)

)
=

∞∑
n=0

tn2

Pt (BOn)2Pt ( lim
r→∞

BOr−2n)

= Pt (BO)
∞∑

n=0

tn2

Pt (BOn)2

=
( ∞∏

k=1

1

1− tk

) ∞∑
n=0

tn2 n∏
k=1

1

(1− tk)2

=
∞∏

k=1

1

(1− tk)2
,

where the last equality is deduced from (2.1) by replacing t2 by t . For the τb case the
formula (1.8) is altered by the fact that real bundles only exist in even degree and con-
sequently only HN-strata of the form

(
(2n, 2n), (2r− 4n, 0), (2n,−2n)

)
contribute.
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In this case, (1.8) gives

Pt

(
BG(0, 1; τb)

)
= Pt (BO)

∞∑
n=0

t4n2

Pt (B Spn)2

=
( ∞∏

k=1

1

1− tk

)( ∞∑
n=0

t4n2 n∏
k=1

1

(1− t4k)2

)
=
( ∞∏

k=1

1 + tk

1− t2k

)( ∞∏
k=1

1

1− t4k

)
=
∞∏

k=1

1 + tk

(1− t2k)2(1 + t2k)

=
∞∏

k=1

1 + t2k−1

(1− t2k)2

where we have employed the identity (2.2) with x = t4.

Consider now the wedge product of surfaces Y := Σ(ĝ, 0) ∨
(∨

n Σ(0, 1)
)

where
we choose base points not lying on boundaries. Here Σ(ĝ, 0) is the closed surface of
genus ĝ and Σ(0, 1) is a disk. Because Y has n boundary circles coming from the n
copies of Σ(0, 1), we can define by analogy with (6.1) the group GτY via the pullback
diagram

GτY

��

// Maps0(Y,Ur)

��
n∏

i=1
LU τi

r
//

n∏
i=1

LUr.

We fit Y into a commutative diagram of spaces

Y = Σ(ĝ, 0) ∨
(∨

n
Σ(0, 1)

)
Σ(ĝ, n)oo

Σ(ĝ, 0) t
(⊔

n
Σ(0, 1)

)
OO

X t
(⊔

n
S1
)
,oo

OO

where, as before, X is the surface Σ(ĝ, n) with a disk removed. These maps of surfaces
induce homomorphisms of gauge groups and ultimately a commuting diagram

H∗(BGτY ) H∗(BG(ĝ, n; τ1, . . . , τn)
)oo

H∗(BG(ĝ, 0)
)
⊗ H∗( n∏

i=1
BG(0, 1; τi)

)
ϕ2

OO

H∗(B Maps0(X,U)
)
⊗ H∗( n∏

i=1
BLU τi

)
.

ϕ1
oo

f

OO

By Remark 6.6, the image of f coincides with the image of (6.9). Thus, to prove that
(6.9) is injective, it suffices to prove the following lemma.
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Lemma 6.11 The Poincaré series of the image of ϕ2 ◦ϕ1 is equal to the Poincaré series
Pt

(
BG̃(ĝ, n; τ1, . . . , τn)

)
.

Proof From Lemma 6.4 and Corollary 5.4, we know that

Pt

(
B Maps0(X,U)×

n∏
i=1

BLU τi
)

= (1 + t)−n
∞∏

k=1

(1 + t2k−1)2ĝ+2n−a(1 + tk)2a

(1− t2k)n+1
.

The first morphism ϕ1 is the tensor product of the injections

H∗(BLU τi )→ H∗
(

BG(0, 1; τi)
)

and the map

H∗
(

B Maps0(X,U)
)
→ H∗

(
BG(ĝ, 0)

)
induced by the inclusion of the punctured surface X into the genus g surface Σ(ĝ, 0).
This kills only the cohomology coming from the boundary loops (see Lemma 4.4)
and we deduce that the image of ϕ1 has Poincaré series

Pt

(
Im(ϕ1)

)
=

∞∏
k=1

(1 + t2k−1)2ĝ+n−a(1 + tk)2a

(1− t2k)n+1
.

Next the kernel of ϕ2 is generated as an ideal by the classes ck − ck,i for k = 1, . . . ,∞
and i = 1, . . . , n. All of these classes lie in the image of ϕ1, so Im(ϕ2 ◦ ϕ1) has
Poincaré series

Pt

(
Im(ϕ2 ◦ ϕ1)

)
= Pt

(
Im(ϕ1)

) n∏
i=1

∞∏
k=1

(1− t2k)

=

∞∏
k=1

(1 + t2k−1)2ĝ+n−a(1 + tk)2a

(1− t2k)

which equals Pt

(
BG̃(ĝ, n; τ1, . . . , τn)

)
by Lemma 6.3.

7 Betti Numbers of Moduli Spaces

Let (E, τ )→ (Σ, σ) be a C∞-real bundle and consider the short exact sequence

(7.1) 1→ C2 → GτE → ḠτE → 1,

where C2 is the subgroup of constant maps with value± IdUr .

Lemma 7.1 If either

• the rank r of E is odd, or
• w1(Eτ ) 6= 0 in H1(Σσ ; Z/2),

then (7.1) splits to define an isomorphism GτE
∼= C2 × ḠτE. In particular, if GτE acts on a

finite type space X such that C2 acts trivially, then

P
G
τ
E

t (X) = (1− t)P
Gτ

E
t (X).
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Proof Because C2 ⊂ GτE is central, it suffices to prove that there is some homomor-
phism ϕ : GτE → Z/2 mapping C2 isomorphically onto Z/2. If r is odd, then this
can be accomplished simply by taking the determinant of the gauge group action at
a fibre.

It remains to consider the even rank case r = 2n and non-trivial w1(Eτ ). Nec-
essarily, Σσ is non-empty. By factoring through the restriction to an invariant circle
GτE → LU τ

r we only need a homomorphism LU τ
r → Z/2 separating the constant loop

−1 from the identity. In this case, we can use the model

LU τ
r
∼= LgOr = {γ : I → Or | γ(0) = gγ(2π)g−1},

where g ∈ Or has determinant−1. This model determines a short exact sequence of
groups

1→ Ω SOr

i
−→ LU τ

r

ρ
−→ Or → 1,

where ρ(γ) = γ(0) and an exact sequence on π0

(7.2) π0(Ω SOr)
i∗
−→ π0(LU τ

r )→ π0(Or),

where π0(Ω Or) and π0(Or) are cyclic groups of order 2. It follows that π0(LU τ
r ) has

order at most four. On the other hand we have natural isomorphisms

Hom
(
π0(LU τ

r ),Z/2
)

= Hom
(
π1(BLU τ

r ),Z/2
)

= Hom
(

(H1(BLU τ
r ); Z),Z/2

)
= H1(BLU τ

r ,Z/2) ∼= (Z/2)2

where the last isomorphism follows from Proposition 5.5. We conclude that
π0(LU τ

r ) ∼= (Z/2)2, so it is enough to show that the constant loop −1 ∈ LgOr

does not lie in identity path component. By a homotopy extension argument, the
−1 is homotopic to the concatenation γ · (gγg−1) where γ : I → SOn is any path
in SOr with γ(0) = 1 and γ(1) = −1. But γ · (gγg−1) represents the generator of
π1(SOr) = π0(Ω SOr) = Z/2. Finally i∗ of (7.2) is injective, so −1 ∈ LU τ

r does not
lie in the identity component.

Finally, if (7.1) and GτE acts on X with C2 acting trivially, then XhGτ
E

= BC2 × XhḠτ
E

and the identity of Poincaré series follows.

We are now able to compute some Poincaré polynomials. To begin with a simple
example, consider the case of rank r = 1. In this case, all real bundles are semistable,
so

(7.3) Pt

(
M(1, d, τ )

)
= (1−t)Pt

(
Css(1, d, τ )

)
= (1−t)Pt

(
BG(1, d, τ )

)
= (1+t)g

where in the last step we employ the formula Pt

(
BG(1, d, τ )

)
= (1+t)g

1−t . Of course,

since Gross–Harris [GH81] it is known that M(1, d, τ ) is homeomorphic to (S1)g , so
(7.3) is not new. Next, we consider rank two.

Proposition 7.2 Let Σ be a genus g real curve with a > 0 real path components and
set b := a − 1. The moduli space M(2, d, τ ) of real bundles of rank two, odd degree d,
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and fixed topological type has Poincaré series

(7.4) Pt

(
M(2, d, τ )

)
=

(1 + t)g+b(1 + t2)b(1 + t3)g−b − 2btg(1 + t)2g

(1− t)(1− t2)
.

Proof For simplicity, we set d = 1. The remaining odd degrees cases are isomorphic
by tensoring with a real line bundle.

Because the rank and degree are coprime, the action of G(2, 1, τ ) on Css(2, 1, τ )
has constant stabilizer Z/2. Thus, according to Lemma 7.1,

Pt

(
M(2, 1, τ )

)
= PḠ(2,1,τ )

t

(
Css(2, 1, τ )

)
= (1− t)PG(2,1,τ )

t

(
Css(2, 1, τ )

)
.

We wish to apply the recursive formula (1.8). Complex HN-types are determined
by a splitting E = L1 ⊕ L2 into line bundles with deg(L1) > deg(L2). For each such
complex splitting of E, there are 2a−1 = 2b real HN-types determined by possible
choices of Stieffel–Whitney numbers, and each higher stratum has Poincaré series
( (1+t)g

1−t )2. The recursive formula becomes

PG(2,1,τ )
t

(
Css(2, 1, τ )

)
= Pt

(
BG(2, 1, τ )

)
−
∞∑
i=1

t2i−1+(g−1)
( (1 + t)g

1− t

) 2

=
(1 + t)g+b(1 + t2)b(1 + t3)g−b

(1− t)2(1− t2)
− 2btg(1 + t)2g

(1− t)2(1− t2)
.

Remark 7.5 If (Σ, τ ) be a real curve of genus g, with g + 1 real path-components,
then (7.4) proves a conjectural formula due to Saveliev–Wang [SW10].

For example, for a real curve of genus g = 2 and with a = 1, 2, 3 respectively,
Pt

(
M(2, 1, τ )

)
equals

t5 + 3t4 + 4t3 + 4t2 + 3t + 1,

t5 + 4t4 + 7t3 + 7t2 + 4t + 1,

t5 + 5t4 + 10t3 + 10t2 + 5t + 1.

For a real curve of genus g = 3, a = 1, 2, 3, 4, Pt

(
M(2, 1, τ )

)
equals

t9 + 4t8 + 8t7 + 14t6 + 21t5 + 21t4 + 14t3 + 8t2 + 4t + 1,

t9 + 5t8 + 13t7 + 25t6 + 36t5 + 36t4 + 25t3 + 13t2 + 5t + 1,

t9 + 6t8 + 19t7 + 41t6 + 61t5 + 61t4 + 41t3 + 19t2 + 6t + 1,

t9 + 7t8 + 26t7 + 62t6 + 96t5 + 96t4 + 62t3 + 26t2 + 7t + 1.

For rank r greater than 2, the calculation of Pt

(
M(r, d, τ )

)
using recursion in-

volves multiple iterated geometric series.

Proposition 7.3 Let Σ be a genus g real curve with a > 0 real path components and
set b := a− 1 and let d be an integer relatively prime to 3. The moduli space M(3, d, τ )
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of real bundles of rank three, degree d, and fixed topological type has Poincaré series

Pt

(
M(3, d, τ )

)
=

(1 + t)g+b(1 + t2)2b(1 + t3)g(1 + t5)g−b

(1− t)(1− t2)2(1− t3)

− 2b t2g(1 + t)2g+b(1 + t2)b(1 + t3)g−b

t(1− t)3(1− t3)

+ 4b t3g(1 + t)3g(1 + t2 + t4)

t(1− t)2(1− t2)(1− t6)
.

Proof This is a combinatorial exercise.

Remark 7.6 A combination of tensoring by real line bundles or dualizing produces
a homeomorphism between any two real moduli spaces M(3, d, τ ) and M(3, d′, τ ′)
for which d and d′ relatively prime to 3. This explains why the above formula is
independent of degree and of Stieffel–Whitney numbers.

For example, for genus g = 2 and a = 1, 2, 3, Pt

(
M(3, 1, τ )

)
equals

t10 + 3t9 + 6t8 + 12t7 + 17t6 + 18t5 + 17t4 + 12t3 + 6t2 + 3t + 1,

t10 + 4t9 + 11t8 + 25t7 + 40t6 + 46t5 + 40t4 + 25t3 + 11t2 + 4t + 1,

t10 + 5t9 + 17t8 + 44t7 + 78t6 + 94t5 + 78t4 + 44t3 + 17t2 + 5t + 1.

Remark 7.7 Liu and Schaffhauser [LS13, Section 6.2] have produced a closed for-
mula for Pt

(
M(r, d, τ )

)
for all r, d and τ by solving the recursion relation.

Appendix A Review of the Eilenberg–Moore Spectral Sequence

We summarize the relevant parts of Section 7.1 of McLeary [McC01]. Let F → E
π
−→ B

be a fibre bundle with F connected and B simply connected. Given a continuous map
f : X → B we can form the pullback fibre bundle

(A.1)

E f
//

��

E

π

��
X

f // B.

The Eilenberg–Moore spectral sequence is a second quadrant spectral sequence of
bigraded algebras (EM p,q

r , δr) converging strongly to an associated graded of H∗(E f )
for which

E∗,∗2 = Tor∗,∗H∗(B)

(
H∗(X),H∗(E)

)
where H∗(X) and H∗(E) are H∗(B)-modules via f ∗ and π∗. The boundary maps are
bi-graded δr : EM p,q

r → EM p+r,q−r+1
r .

Lemma A.1 ([McC01, Proposition 8.23]) For the EMSS associated with the pull-
back diagram (A.1), the column EM0,∗

∞ can be identified with subalgebra of H∗(E f )
generated by im(π∗) and im( f ∗).
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The EMSS is functorial with respect to morphisms of diagrams

(A.2) X //

ϕ

��

B

ϕ

��

Eoo

ϕ

��
X′ // B′ E′oo

and the map on EM2 is the standard algebraic map

Tor∗,∗H∗(B′)

(
H∗(X′),H∗(E′)

)
→ Tor∗,∗H∗(B)

(
H∗(X),H∗(E)

)
induced by the homomorphisms of cohomology rings ϕ∗.

In case (A.1) is a diagram of H-spaces, EM∗,∗∗ becomes a spectral sequence of Hopf
algebras as explained in Smith [Smi70, chapter 2].

Lemma A.2 ([McC01, Lemma 7]) If (Er, dr) is a spectral sequence of Hopf algebras,
then for each r, in the lowest degree that dr is non-trivial, it is defined on an indecom-
posable element and has as value a primitive element.
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