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Abstract
Drosophila suzukii is a significant pest of soft- and thin-skinned fruit crops. Synthetic pesticides
remain the primary control method; however, their use raises concerns about insect resistance
and harmful pesticide residues in produce. Methyl jasmonate (MeJA), a plant growth regulator
in the jasmonate family, plays a key role in plant defence against herbivores and has been identi-
fied as a repellent for arthropods of medical and veterinary relevance.This study examined the
effect of MeJA on D. suzukii female oviposition and adult behaviour using two-choice bioas-
says. In a two-choice cage, doses above 1287.5 µg/filter paper deterredD. suzukii females from
oviposition bymore than 90%on artificial fruits. Using a two-choice planar olfactometer,MeJA
also repelled both sexes with median repellent dose (RD50) values of 55.24 µg/filter paper for
females, 55.03 µg/filter paper for males, and 55.14 µg/filter paper for total adults. Interestingly,
MeJA demonstrated a dose-dependent dual effect: at 309.0 µg/filter paper, it functioned as a
bio-repellent, while lower doses (3.86–15.45 µg/filter paper) acted as an attractant. This dual
effect suggests that MeJA could serve as both a repellent and an attractant depending on its
dose, with potential applications as a lure in traps.

Introduction

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), has
emerged as one of the most destructive pests of soft- and thin-skinned fruits worldwide, caus-
ing significant economic losses in fruit production (Walsh et al., 2011; De Ros, 2024; see fig. 1).
This invasive species, native to Southeast Asia, has rapidly expanded its distribution throughout
Europe, a spread facilitated by favourable climatic conditions driven by climate change, includ-
ing rising temperatures andmilder winters (Skendžić et al., 2021), which createmore favourable
conditions for its survival and reproduction. Unlikemost otherDrosophila species that typically
infest overripe or damaged fruits, female D. suzukii lay their eggs in ripening, marketable fruit,
rendering them unsuitable for sale and consumption (Shrader et al., 2018). Consequently, the
infestation not only leads to direct economic loss from damaged produce but also increases
susceptibility to secondary infections by microorganisms such as fungi and bacteria, which can
lead to conditions like sour rot and further accelerate postharvest spoilage (Ioriatti et al., 2017).

Currently, the primary control strategies for managingD. suzukii infestations rely heavily on
the repeated use of synthetic chemical pesticides. However, extensive insecticide applications
have led to numerous challenges, including rapid development of insecticide resistance in D.
suzukii populations (Gress and Zalom, 2022), negative impacts on non-target organisms, and
increasing concerns regarding pesticide residues in fruit products (Gomes et al., 2020). These
factors have consequently led to stricter regulations and the withdrawal of several active ingre-
dients from the market, further limiting the options for growers (Hillocks, 2012; Gensch et al.,
2024). As a result, there is an urgent need to develop effective pestmanagement strategies to con-
trol this insect while minimising chemical residues in fruits and avoiding insecticide resistance
issues associated with conventional synthetic insecticides (Tait et al., 2020). Alternative strate-
gies, including repellents and oviposition deterrents, have also been evaluated, with substances
such as methyl N,N‐dimethylanthranilate, ethyl propionate (Conroy et al., 2024), and other
plant-based repellents (Erland et al., 2015) showing varying degrees of success. Nonetheless,
these alternatives often have limitations, such as inconsistent efficacy under field conditions,
short persistence, and high costs, reducing their practicality for widespread use (Dam et al.,
2019). Consequently, there remains a critical need to explore additional naturally derived
substances that exhibit stable, effective, and economically feasible repellency againstD. suzukii,
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Figure 1. Drosophila suzukii male (left) and female (right).

thereby addressing these gaps and enhancing integrated pest man-
agement (IPM) programmes in fruit production (Santos et al.,
2023).

Methyl jasmonate (MeJA), a volatile plant hormone and nat-
urally occurring plant growth regulator belonging to the jas-
monate family, is a promising candidate for managing insect
pests due to its role in plant defence mechanisms against herbi-
vore attacks (Chen et al., 2023; Wang et al., 2019; Yao and Tian,
2005). Previous research has demonstrated MeJA’s effectiveness
as a repellent against medically important arthropods, including
mosquitoes and ticks (Bissinger and Roe, 2009; Xu et al., 2014).
MeJA-induced plant defences can also negatively impact herbivo-
rous insect pests by disrupting their development and enzymatic
activity. For example, MeJA treatment in rice significantly reduced
survival, slowed larval development, and inhibited key digestive
and detoxification enzymes in the rice leaf-folder Cnaphalocrocis
medinalis (Senthil‐Nathan, 2018). Despite these promising results,
very limited attention has been given to the direct application of
MeJA against economically significant agricultural pests, partic-
ularly invasive fruit flies such as D. suzukii, with most studies
primarily focusing on inducing plant defence responses rather
than evaluating its direct repellent or deterrent effects (Zhan et al.,
2022). Although MeJA has been widely studied in the context of
plant defence responses, there is a lack of direct evidence regard-
ing its behavioural effects on D. suzukii, especially concerning its
potential as a repellent or oviposition deterrent. This represents
a significant research gap, particularly given the urgent need for
alternative tools inD. suzukiimanagement. For example, although
field applications of MeJA in crops such as cotton have success-
fully triggered the emission of volatiles and extrafloral nectar, these
changes did not result in significant reductions of pest populations
or improvements in biological control under real-world condi-
tions (Williams et al., 2017). Interestingly, previous studies have
shown that the effects of jasmonate compounds, including MeJA
and JA, on herbivorous insects can vary depending on dose, with
lower doses sometimes promoting tolerance or development, while
higher doses suppress growth or enzymatic activity (Yang et al.,
2022). This dose-dependent behaviour may provide practical ben-
efits for IPM programmes, where MeJA could be utilised both to
repel pests from fruit crops and as an attractant in traps for mon-
itoring or mass-trapping strategies (Bayram, 2018). In particular,
push–pull strategies, which combine the use of repellents to drive
pests away from crops (‘push’) and attractants to lure them into
traps (‘pull’), have shownpromise in pestmanagement frameworks
(Alkema et al., 2019). Given MeJA’s dose-dependent dual action,
this compound may be ideally suited for integration into such sys-
tems, offering both repellent and attractant potential depending
on application context. Thus, evaluating the bioactivity of MeJA

specifically against D. suzukii is necessary to explore its full poten-
tial and practicality as a novel, natural control agent for sustainable
fruit production systems.

In light of the challenges associated with current chemical-
based control strategies and the limited exploration of MeJA in
managing D. suzukii, this study aimed to evaluate the behavioural
responses of D. suzukii to a range of MeJA doses. Specifically,
we investigated its effects on adult orientation and oviposition
behaviour using a two-choice bioassay system. By identifying dose-
dependent repellency or attractiveness, this research seeks to assess
the feasibility of MeJA as a natural and dual-function agent for
sustainable pest management.

Materials and methods

Reagents

Agar powder and yeast extract were purchased from VWR
Chemicals (Solon, OH, USA); benzoic acid from Carlo Erba
Reagents (Rodano, Italy); ethylparaben, hexane, and MeJA from
Sigma-Aldrich (St. Louis, MO, USA). Blueberry juice, fructose,
and mashed potato flakes are ingredients for human consumption.
The MeJA was purchased fromMerck, Italy, as a colourless to pale
yellow liquid with a purity greater than 98%.

Mass rearing of D. suzukii

The D. suzukii adults used in the bioassays originated from a labo-
ratory colony maintained at the Department of Agriculture, Food
and Environment of the University of Pisa. This colony was estab-
lished in 2019 fromwild-caught individuals and has been reared in
the laboratory since.Themass-rearing was maintained in Plexiglas
and mesh cylindrical cages (24 cm diameter, 40 cm length) under
controlled laboratory conditions (T 22–24 °C, RH 60–70%, natu-
ral photoperiod). Cages are provided with water ad libitum and
an artificial medium used by gravid females for the oviposition as
well as a solid diet for adults and larvae. This medium, based on
Yoon’s (1985) recipe, contained 100 mL water, 30 g mashed potato
flakes, 8 g fructose, 3.5 g yeast extract, 0.5 g ethylparaben, and 0.25 g
benzoic acid. The dishes with developing larvae and pupae inside
the medium were moved weekly into empty cages waiting for the
emergence of the new generation’s adults.

Behavioural assays in the presence of MeJA

Summer-morph D. suzukii adults, 5–7 days old, were starved for
8 h before being tested, although they were given a regular sup-
ply of water ad libitum. The bioassays were conducted under the
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Figure 2. Schematic representation of the two-choice cage used for oviposition
deterrence bioassays on Drosophila suzukii. A: 500 mL glass lateral chamber; B: PVC
connection tube; C: central release chamber; D: net-covered holes for air supply; and
E: insect entrance with the cap.

same temperature and humidity conditions as the mass rearing,
with illumination provided by a fluorescent tube (Philips 30W/33)
placed directly over the arena. Light intensity was approximately
1000 lx.

Oviposition deterrence bioassays

For oviposition deterrence bioassays, a two-choice test was used to
evaluate oviposition site selection. In fact, for the oviposition eval-
uation, positive controls are essential to validate negative responses
by showing that the specimen had the capacity for oviposition
(Van Driesche and Murray, 2004). This approach is the most com-
monly used to measure oviposition site selection (Cha et al., 2020;
Edwards, 1999; Otárola-Jiménez et al., 2024; Roh et al., 2023). The
oviposition deterrence tests using MeJA were conducted in a two-
choice cage, structured as described in Bedini et al. (2020) and
shown in fig. 2.

Filter paper discs (Ø 1 cm) were treated with 100 µL hexane
containing concentrations of 1, 1.25, 2, and 2.5% v/v correspond-
ing to 1030, 1287.5, 2060, and 2575 µg of MeJA/filter paper. After
solvent evaporation (∼2min), treated filter papers were suspended
1 cm above the artificial fruits within the corresponding lateral
chamber. Tomake the two parts of the olfactometer perfectly equal,
avoiding the variability associated with natural fruits, such as dif-
ferences in size, ripeness, and colour, a 2.5 cm Ø dish containing
10 g of an agarisedmedium (mimicking an artificial fruit) was used
as the oviposition substrate and was positioned into each of the
two 500 mL glass lateral chambers. This substrate was composed
of 100 mL blueberry juice, 6.5 g fructose, 2.5 g yeast extract, 1.2 g
agar powder, 0.5 g ethylparaben, and 0.5 g benzoic acid. The artifi-
cialmediumwas prepared bymixing the components on a hot plate
stirrer (VELP Scientifica, Usmate, Italy) at 125 °C and 500 rpm for
20min. A filter paper disc (Ø 1 cm) was treated with 100 µL of hex-
ane as a control (C). After the solvent evaporated, the filter paper
discs (C or T) were suspended 1 cm above the artificial fruit with
a paperclip in the corresponding lateral chamber of the cage (C or
T). Fivemales and five females were gently introduced into the cen-
tral release chamber using a small glass vial, and the number of eggs
laid in the two artificial fruits was recorded after 24 h under a stereo
microscope (Leica EZ4, Leica Biosystems Italia, Buccinasco, Italy).
For each dose, the experiment was conducted with three biological

D. suzukii adults

Treated filter paper

(Treatment)

Untreated filter paper

(Control)

(male or female)

Figure 3. Schematic representation of the two-choice planar olfactometer used for
the adult behavioural bioassays on Drosophila suzukii. A single fly (male or female)
was released into the central chamber and allowed to choose between one of two
side chambers. One chamber contained a filter paper treated with hexane (Control),
while the other contained a filter paper treated with a methyl jasmonate solution
(Treatment).

replicates and the entire experiment was repeated twice, resulting
in a total of six replicates per treatment.

The protective effect of MeJA was expressed as the percentage
of effective repellency ER (%) using the formula:

ER (%) = [(NC − NT)/NC] × 100
where NT denotes the number of eggs in the treated artificial fruit
and NC the number of eggs in the control one.

Adult behaviour bioassays

The tests were conducted in a two-choice, planar olfactometer,
composed of a polymethylmethacrylate arena (15 × 15× 1 cm) cov-
ered by removable glass panels, according to Bedini et al. (2020).
Two linear paths,measuring 2 cm in length and 1 cm inwidth, con-
nect the circular chamber (4.0 cmØ) in the centre of the unit to the
other two identical chambers at a 90° angle. One of the two cham-
bers contained a disc of filter paper (0.8 mmØ) pipetted with 3 µL
of hexane as a control (C), and the other chamber contained the
same size disc of filter paper treated with 3 µL of hexane at concen-
trations of 0.125, 0.25, 0.5, 1, 2.5, 5, and 10% v/v corresponding to
3.86, 7.73, 15.45, 30.90, 77.25, 154.50, and 309.00 µg of MeJA/filter
paper. After the solvent evaporation (∼2 min), a single D. suzukii
was gently transferred into the central release chamber using a
glass vial, and the upper glass panel was closed (fig. 3). Following
the method reported in Bedini et al. (2020) each adult (male or
female) was observed for a maximum of 6 min. We evaluated the
latency time (at least 20 s) spent in the release chamber and the
permanence time (at least 30 s) in the selected chamber (C or T).
Individuals who did not choose within 5 min and 30 s, as well as
those who chose before 20 s or remained in the selected chamber
for less than 30 s, were discarded. These time criteria were estab-
lished based on preliminary observations to ensure that choices
were deliberate and not the result of random movement or inac-
tivity, and are consistent with previous studies (Bedini et al., 2020).
Overall, we tested 10 males and 10 females for each dose of MeJA
and repeated the full experiment three times.

All observations were conducted under a daylight fluorescent
tube (10,000 lx) placed exactly over the olfactometer. With each
new specimen, the arena was rotated 90° clockwise to prevent
positional bias, and the filter paper discs were renewed.
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Table 1. The ovideterrent activity of methyl jasmonate (MeJA) against Drosophila suzukii

Total no. of eggs laid (mean ± SE) Average no. of eggs

MeJA (µg/filter paper) Control Treated Control Treated ER (%)

1030 82 18 10.25 ± 2.99A,a 2.25 ± 0.55B,a 85.30 ± 5.55b

1287.5 68 7 8.50 ± 5.05A,a 0.88 ± 0.14B,b 99.63 ± 0.36a

2060 54 2 6.75 ± 1.45A,a 0.25 ± 0.16B,b 93.75 ± 4.09ab

2575 34 1 4.25 ± 1.00A,a 0.13 ± 0.13B,b 95.83 ± 4.16ab

Data are presented as mean ± standard error (n = 10).
A–BDifferent uppercase letters indicate significant differences in the mean number of eggs within the control and treatment groups (Student’s t-test, two-tailed, P < 0.05).
a–bDifferent lowercase letters indicate significant differences in the mean number of eggs within the same groups at varying MeJA doses (Duncan’s multiple range test, P < 0.05), as well
as significant differences in the percentage of effective repellence (ER) (Duncan’s multiple range test, P < 0.05).

After four bioassays, the arena and glass lids were first wiped
with hexane for about 30 s, then cleaned in a water bath with mild
soap for about 5 min, rinsed with hot water for about 30 s, then
with distilled water at room temperature, and, finally, dried.

Statistical analysis

Prior to conducting parametric tests, all data were tested for nor-
mality using the Shapiro–Wilk test and for homogeneity of vari-
ances using Levene’s test. All datasetsmet the assumptions for para-
metric analysis (P > 0.05). The data on the protective oviposition
effect of MeJA on D. suzukii are expressed as the mean ± stan-
dard deviation (n = 10), with data collected in three experimental
replicates. The effect of MeJA doses on the number of eggs laid in
control and treatment chambers was assessed using one-way anal-
ysis of variance (ANOVA). The percentage of ER was analysed as
the dependent variable, with MeJA treatment as the main factor,
using ANOVA followed by Duncan’s multiple range test for mean
separation at P< 0.05.

For the two-choice behavioural assays, chi-squared tests
(Pearson’s and likelihood ratio) were used to assess whether the
number of insects choosing the MeJA-treated chamber differed
significantly from a 50:50 distribution under the null hypothe-
sis. Additionally, chi-squared analyses were performed to confirm
the homogeneity of responses across experimental replicates, with
results presented in Supplementary Table S1.

Probit analysis was used to estimate the median repellent dose
(RD50) for females, males, and the combined adult group. All sta-
tistical analyses were performed using SPSS software (version 22.0,
IBM SPSS Statistics, Armonk, North Castle, NY, USA).

Results

Effect of MeJA on the oviposition of D. suzukii

In our experiment, the doses of MeJA affected D. suzukii oviposi-
tion in Table 1. At 1030 µg/filter paper, MeJA inhibited egg-laying
by 85.30 ± 5.55%.When applied at doses greater than 1287.5 µg/fil-
ter paper, the deterrent effect increased further, ranging from
93.75% to 99.63%. However, no statistically significant differences
were observed among the three highest doses, as confirmed by
Duncan’s multiple range test (P > 0.05).

Behavioural response of D. suzukii adults to MeJA

The behavioural assays in the two-choice olfactometer revealed
dose-specific effects of MeJA on adult D. suzukii (fig. 4). At
309.0 µg/filter paper, MeJA exhibited a significant repellent effect

on total adults (χ2 = 4.27,P= 0.04), aswell as on females (χ2 = 4.80,
P= 0.03) andmales (χ2 = 6.53,P< 0.01)when analysed separately.

In contrast, significant attraction was observed at lower doses:
3.86 µg/filter paper (χ2 = 32.27, P < 0.00), 7.73 µg/filter paper
(χ2 = 13.07, P < 0.00), and 15.45 µg/filter paper (χ2 = 9.60,
P = 0.02) for total adults. In males, the attractive effect was signif-
icant at all three doses: 3.86 µg/filter paper (χ2 = 10.80, P < 0.00),
7.73 µg/filter paper (χ2 = 10.80, P< 0.00), and 15.45 µg/filter paper
(χ2 = 6.53, P < 0.01). In females, attraction was only significant at
3.86 µg/filter paper (χ2 = 22.53, P < 0.00).

Chi-squared tests confirmed consistency across replicates, with
no significant differences observed among trials within each treat-
ment group (P > 0.05; see Supplementary Table S1).

table 2 presents the median repellent dose (RD50) values of
MeJA, which were 55.24 µg/filter paper for females, 55.03 µg/filter
paper for males, and 55.14 µg/filter paper for total adults.The RD₅₀
values of males and females were comparable to those of adults
overall, and their 95% confidence intervals overlapped substan-
tially, indicating no pronounced sex-related differences in MeJA
sensitivity under the tested conditions.

Discussion

The behavioural effects of MeJA on D. suzukii observed in this
study provide new insights into the potential application of this
plant-derived compound in pest management. Specifically, the
dual activity of MeJA as both a repellent and an attractant
depending on the dose reflects a biphasic dose-response pat-
tern, a phenomenon often observed in studies on semiochemi-
cals and plant volatiles. The significant reduction in oviposition
at higher MeJA doses indicates a strong deterrent effect, likely
mediated by the insect’s chemosensory system. These findings
are consistent with previous research showing that MeJA and
other jasmonates can act as semiochemicals influencing insect
behaviour.

Indeed, besides its role inmodulating plant defence responses to
herbivore feeding (Reyes-Díaz et al., 2016), MeJA has also demon-
strated significant direct repellent activity against some insect and
arthropod pests. For instance, in laboratory tests using Ixodes rici-
nus nymphs, MeJA-treated cloths showed increasing repellency,
with up to 99% of nymphs avoiding the treated surfaces (Garboui
et al., 2007). Similar results were observed in field trials, where
MeJA significantly reduced the number of ticks on treated cloths
in awoodland environment. Additionally,MeJA has been shown to
deter feeding in Frankliniella occidentalis (ThysanopteraThripidae)
larvae (more than 90%), suggesting a broader application for pest
control strategies (Egger and Koschier, 2013).
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Figure 4. Behaviour of (A) female, (B) male, and (C) total adults of
Drosophila suzukii in the presence of MeJA at the various doses.
Notes: bars represent the percentage of insects that chose the
treated or control chamber. Control represents the percentage of
insects that chose the non-treated chamber; Treated represents
the percentage of insects that chose the MeJA-treated chamber.
Asterisks indicate significant differences in the number of choosing
insects (χ2 test; *P < 0.05, **P < 0.01; ***P < 0.001). A total of
28% of the initially tested insects were discarded as they did not
meet the choice criteria and were excluded from the analysis.

Table 2. Repellency of methyl jasmonate (MeJA) against Drosophila suzukii adults

Sex RD50 95% CI Slopea Intercepta χ2 (df) P

Females 55.24 27.54−138.62 0.86 ± 0.21 −1.50 ± 0.36 2.207 (5) 0.820

Males 55.03 27.26−140.19 0.85 ± 0.21 −1.49 ± 0.35 0.641 (5) 0.986

Adults 55.14 33.99−98.79 0.86 ± 0.15 −1.49 ± 0.25 0.531 (5) 0.991

RD50, dose of MeJA that repels 50% of the exposed insects; CI, confidence interval; χ2, chi-square; df, degrees of freedom.
Data are expressed as µg/filter paper. P refers to the Pearson goodness-of-fit test; a non-significant result (P > 0.05) indicates that the model is a good fit for the data.
aValues ± standard error.

The observed behavioural responses suggest that D. suzukii
adults are capable of detecting MeJA via olfactory cues, consistent
with evidence that D. suzukii can detect and respond to host-
and non-host plant volatiles (Bolton et al., 2021), which may acti-
vate avoidance behaviour at higher doses. This is consistent with
prior studies showing that insects can respond behaviourally to
plant-derived jasmonate volatiles, which may act as signals asso-
ciated with plant stress or defence activation (Egger and Koschier,
2013; Xu et al., 2014). Given that MeJA is involved in systemic
defence signalling in plants, its detection by herbivorous insects

like D. suzukii may serve as an ecological cue to avoid damaged
or unsuitable hosts.

The dual behavioural effect observed – repellency at higher
doses and attraction at lower ones – suggests a biphasic dose-
response pattern, as also described in studies on essential oils
(Bayram, 2018; Bedini et al., 2024).This phenomenon could be due
to dose-dependent activation or inhibition of chemosensory path-
ways, potentially reflecting compensatory mechanisms triggered
by low-level stimuli as previously described in biphasic response
models (Calabrese and Baldwin, 2002), potentially involving dif-
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ferent classes of odorant-binding proteins (Zhan et al., 2021). In
this regard, MeJA behaves similarly to compounds like eugenol
and methyl anthranilate, which have also been reported to exhibit
both attractant and deterrent effects depending on dose and tar-
get species (Bedini et al., 2024; Conroy et al., 2024). These find-
ings emphasise the importance of defining application thresholds
when considering MeJA for practical use in pest management.
Volatile-based repellents have previously been evaluated in field
settings for D. suzukii. For instance, Wallingford et al. (2016)
demonstrated that a spatial repellent formulation of 1-octen-3-
ol significantly reduced D. suzukii oviposition in raspberry fields
without adverse effects on beneficial insects. Field applications
of jasmonates have previously demonstrated reduced oviposi-
tion and fruit damage in crops such as wine grapes (Hussain
et al., 2023), and repellent effects on lepidopteran pests in cab-
bage and tobacco (Avdiushko et al., 1997). These findings support
our results and reinforce MeJA’s practical potential in pest man-
agement. The RD₅₀ values for total adults, females, and males
(55.14, 55.24, and 55.03 µg/filter paper, respectively) were broadly
similar, with overlapping confidence intervals. This suggests that
both sexes exhibited similar sensitivity to MeJA under the tested
conditions.

Tait et al. (2020) investigated the chemical and behavioural
aspects of short-range ovipositional site selection to better under-
stand D. suzukii reproduction. They discovered that only six
volatile organic compounds (VOCs) found on the skin of egg-
infested berries, namelymethylmyristate,methyl palmitate,myris-
tic acid, lauric acid, palmitic acid, and palmitoleic acid, increased
the rate at which conspecific females laid their eggs. Hence, using
MeJA as a VOC to disturb the insect’s olfactory system may help
deter D. suzukii from laying eggs on soft- and thin-skinned fruit
crops (Amo et al., 2022).

The ability ofD. suzukii to respond differentially to MeJA doses
suggests that this species can adapt its oviposition and foraging
behaviour based on volatile chemical cues (Bolton et al., 2021; Tait
et al., 2020). Drosophila suzukii prefers to lay eggs in healthy and
whole fruit rather than damaged or overripe ones (Lee et al., 2011).
Thanks to its comparatively large, sclerotised, and serrated ovipos-
itor, it can provide a protected environment for its eggs and larval
stages by penetrating the fruit’s skin (Atallah et al., 2014). In a nat-
ural setting, such a response may function to avoid laying eggs
on damaged or stressed fruit, which typically emit higher levels
of jasmonate-related volatiles as part of plant defence responses
(Peña-Cortés et al., 2004; Tait et al., 2020).This behavioural flexibil-
ity in response to volatile chemical cues may play a significant role
in the ecological adaptability of D. suzukii, contributing directly to
its invasive success.The broad ecological plasticity, rapid reproduc-
tive capacity, and ability to exploit diverse host fruits (Asplen et al.,
2015; Lee et al., 2011) highlight the importance of understanding
and manipulating its chemosensory behaviours, such as responses
to MeJA, for effective pest management.

Even though several studies have confirmed that utilisingMeJA
on agricultural fields can repel female pests’ oviposition, exoge-
nous application of MeJA to plants also induces the release of
VOCs similar to those produced during herbivore attacks. These
VOCs can influence ecological interactions between plants, herbi-
vores, and natural enemies (Amo et al., 2022). For example, Zhang
et al. (2009) demonstrated thatMeJA treatment of persimmon trees
infested with scale insects induced VOC emissions that attracted
the predatory lady beetle Chilocorus kuwanae, highlighting MeJA’s
potential role in recruiting natural enemies through indirect plant
signalling. Although the direct attraction of pests by low-dose

MeJA applications remains unclear, such VOC profiles might still
affect pest behaviour or their natural enemies indirectly.

Furthermore, Concha et al. (2013) confirmed the role of exoge-
nous MeJA during fruit ripening. Indeed, the administration of
10 µMMeJA to unripe fruits increased the activity of anthocyanin,
ethylene, jasmonate, and lignin biosynthesis genes, making the
fruits redder with a significant accumulation of anthocyanins and
lignin. According toWei et al. (2017),MeJA promotes peach ripen-
ing by modulating anthocyanin accumulation. Also, Peña-Cortés
et al. (2004) reported that both climacteric and non-climacteric
fruits naturally produce jasmonates, which induce the production
of ethylene, known to boost fruit ripening. Given that D. suzukii is
especially attracted (but not only) to red, ripe fruits (Cahenzli et al.,
2018), all the previous statements (Concha et al., 2013; Peña-Cortés
et al., 2004; Wei et al., 2017) support the results of our experiment,
which indicate that the application of low doses of MeJA has an
attractive effect onD. suzukii, probably because it is involved in the
pathway of fruit ripening.

The significant reduction in egg-laying behaviour at high MeJA
doses may reflect either deterrence due to olfactory repulsion or
physiological disruption linked to the perception of stress-related
volatiles (Hussain et al., 2023). However, further physiological
studies are needed to confirm these mechanisms. Additional stud-
ies are needed to investigate whetherMeJA influences reproductive
physiology ormodulates egg-laying behaviour through chemosen-
sory pathways in D. suzukii females.

A limitation of our oviposition assay was the absence of a
control-versus-control treatment, which would have helped quan-
tify any inherent directional bias in the apparatus. Future studies
should include such a control to provide a baseline for oviposition
behaviour in the absence of any added volatiles. Additionally, the
variation in the total number of eggs laid across different doses sug-
gests that the presence of MeJA, even at a distance, might have had
a systemic effect on the overall oviposition rate, a phenomenon that
warrants further investigation.

An important aspect to consider is the ecological relevance of
the doses tested in our laboratory bioassays. While it is difficult
to directly compare these values with the doses that D. suzukii
might encounter from naturally stressed plants in the field – given
the variability among plant species, environmental factors, and
distance from the source – our findings nonetheless provide a valu-
able starting point for field applications. Notably, the lower doses
identified as attractive (0.125–0.5%) are likely feasible for use in
lure-based trapping systems. Conversely, the higher dose required
for repellency (10%), though seemingly elevated, could be effec-
tively deployed via localised slow-release dispensers that establish
a protective ‘push’ zone around fruit clusters. Moving forward, it is
essential that future research bridges the gap between laboratory-
derived dose-response relationships and real-world application
strategies. Optimising field-ready formulations and delivery meth-
ods will be a key step towards integrating MeJA into IPM pro-
grammes.

Altogether, our findings demonstrate that the dose-dependent
effect ofMeJA onD. suzukii positions it as a uniquely versatile can-
didate for advanced IPMprogrammes. Specifically, this dual action
– repellency at high doses and attraction at low doses – is ideal for
a ‘push–pull’ strategy. High doses of MeJA could be formulated to
‘push’D. suzukii away from valuable fruit, while low doses could be
used to ‘pull’ the insects into traps formonitoring ormass-trapping
purposes. To make this strategy viable, further research is needed
to evaluate field efficacy and to develop optimised formulations,
such as slow-release devices or microencapsulation technologies
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(Riseh et al., 2024), that can maintain stable and effective dose
ranges in an orchard setting. Such advancements, combined with
cost–effectiveness analysis, would be critical for integrating MeJA-
based push–pull systems into sustainable pest management pro-
grammes for soft fruit crops.

Conclusion

This study demonstrates that MeJA can significantly influence the
oviposition behaviour and adult orientation of D. suzukii, with
clear dose-dependent effects. Application of MeJA at doses above
1287.5 µg/filter paper effectively inhibited egg laying by females,
while lower doses (3.86–15.45 µg/filter paper) elicited an attractive
response in both males and females. MeJA’s volatility and the dose-
sensitive nature of its effects highlight the importance of selecting
appropriate doses for specific pest control objectives. The dose-
dependent dual effect, observed in this study, which aligns with
previous findings on other natural compounds, suggests thatMeJA
could be exploited as either a repellent or an attractant, depending
on the strategy. Therefore, MeJA holds strong potential for dual-
function use in IPM programmes, particularly within a ‘push–pull’
strategy. It could be developed as a spatial repellent to ‘push’ pests
from ripening fruit or, alternatively, be integrated as a lure com-
ponent in traps to ‘pull’ them away, offering a promising natural
alternative to existing chemical or commercial lures.The outcomes
of this study will provide insights into the potential integration
of MeJA into environmentally friendly pest control programmes
targeting D. suzukii in soft fruit production systems.
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