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Dynamics-preserving compression for modal
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An efficient compression scheme for modal flow analysis is proposed and validated on
data sequences of compressible flow through a linear turbomachinery blade row. The key
feature of the compression scheme is a minimal, user-defined distortion of the mutual
distance of any snapshot pair in phase space. Through this imposed feature, the model
reduction process preserves the temporal dynamics contained in the data sequence, while
still decreasing the spatial complexity. The mathematical foundation of the scheme is the
fast Johnson—Lindenstrauss transformation (FJLT) which uses randomized projections and
a tree-based spectral transform to accomplish the embedding of a high-dimensional data
sequence into a lower-dimensional latent space. The compression scheme is coupled to
a proper orthogonal decomposition and dynamic mode decomposition analysis of flow
through a linear blade row. The application to a complex flow-field sequence demonstrates
the efficacy of the scheme, where compression rates of two orders of magnitude are
achieved, while incurring very small relative errors in the dominant temporal dynamics.
This FILT technique should be attractive to a wide range of modal analyses of large-scale
and multi-physics fluid motion.
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1. Introduction

As we tackle complex and large-scale fluid problems with numerical and experimental
methods, the proper analysis of these flows — while increasingly challenging — becomes
ever more essential for our understanding of the underlying flow physics. A key tool
in these analyses are decompositions of the flow fields (Taira et al. 2017), either purely
data-based or linked to a set of governing equations, that produce a hierarchy of coherent
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structures, key processes and persistent dynamics, and break down a complex flow
behaviour into its simpler constituent parts. This hierarchical approach is predicated
on the assumption that the observed flow fields, in their full complexity, can be well
approximated by a far lower-dimensional set of mechanisms. These decompositions can
thus be considered as model reduction techniques tailored to the specifics of the intrinsic
flow physics. Various linear and nonlinear methods are available, with each approach
aiming at a specific aspect of the flow and characterized by strengths and limitations.

Common to most techniques is a separation-of-variables approach that isolates
normalized spatial structures from their temporal dynamics and amplitudes. Constraints
on either the spatial or temporal elements of the chosen decomposition determine
the enforced coherence or structural independence (e.g. orthogonality, decorrelation) in the
reduced-order model. The amplitudes (or spectra) furnish a hierarchical ranking of the
identified subprocesses and, together with the temporal dynamics, drive the evolution
of the reduced state vector in latent space. Among commonly used decompositions, the
proper orthogonal decomposition (POD; Lumley 1970; Sirovich 1987; Berkooz, Holmes
& Lumley 1993; Holmes et al. 2012; Schmidt & Schmid 2019) plays a key role in extracting
spatially decorrelated coherent structures responsible for a maximum of variance in terms
of kinetic energy. Decompositions into pure-frequency mechanisms, such as resolvent
analysis (McKeon 2017; Ribeiro, Yeh & Taira 2020; Rigas, Sipp & Colonius 2021),
dynamic mode decomposition (DMD; Rowley et al. 2009; Schmid 2010; Kutz et al. 2016;
Schmid 2022) or spectral POD (sPOD; Towne, Schmidt & Colonius 2018; Schmidt &
Colonius 2020), have joined the spatially oriented factorizations of the flow fields and have
produced new insight into key flow processes. Other decompositions, such as independent
component analysis (Hyvérinen, Karhunen & Oja 2001) or linear stochastic estimation
(Adrian & Moin 1988), are perhaps less prevalent but have nonetheless advanced
our understanding of coherence in turbulent fluid motion. More recently, nonlinear
model reduction techniques have been devised that account for nearest-neighbour or
tangent-space measures in their algorithmic steps (see Lawrence (2012) for a review).

In these efforts, little attention is usually directed towards mapping dynamically
coherent features in full space onto equally coherent features in latent space, particularly
in the temporal part of the decompositions. As a result, the dynamical behaviour in
latent space is often compromised in its ability to properly and concisely represent
a particular motion in physical space. For example, it is commonly acknowledged
that higher-order POD modes are associated with multi-frequential mixtures that,
when interpreted in isolation, have little resemblance to observable mechanisms in the
original high-dimensional space. Rather, a superposition of multiple modes is required
to approximate temporally coherent (non-periodic) features in the full data sequence.
Similarly, the pure-frequency decompositions (resolvent, DMD, sPOD) capture periodic
flow features with distinct Strouhal numbers, but struggle with more complex and
broadband time behaviour.

To compensate for this shortcoming, in particular in data-driven approaches, time-delay
or Ruelle-Takens embedding has been proposed (Takens 1981). This technique maintains
temporal coherence across multiple time steps by considering sequences of snapshots as
state vectors rather than individual flow fields. The key idea behind processing these short,
concatenated time traces is a better retention of time coherence and a better encapsulation
of history effects during the model reduction process. It is aligned with the general concept
of temporally coherent structures and improves on the more commonly applied mappings
over only a snapshot pair, thus moving from a Markovian to a non-Markovian description.
Time-delay embedding, which leads to data matrices of block Hankel type, has been
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applied with some success, such as in singular spectral analysis (Golyandina, Nekrutin &
Zhigljavsky 2001), Hankelized DMD (Arbabi & Mezi¢ 2017) or HAVOK (Brunton ef al.
2017), in the analysis of complex flows as well as the prediction of fluid processes as part of
active control efforts (Budisi¢, Mohr & Mezi¢ 2012; Kamb et al. 2020; Pan & Duraisamy
2020; Axas & Haller 2023). The technique, however, comes at significantly increased
computational costs, as each new snapshot now consists of a sizeable sequence of original
snapshots which, for complex flows, are already of formidable size. This escalation of input
dimensions puts a marked strain on standard (linear-algebra) algorithms used to analyse
the flow.

In this present paper, we propose and validate an efficient method that reduces the
degrees of freedom of the incoming snapshots, but enforces a crucial constraint on the
latent space dynamics. By doing so, it accomplishes two desired outcomes: a reduced
latent space and a high-fidelity correspondence between the physical and latent dynamics.
These seemingly opposing goals can be accomplished with a remarkable technique
that embeds a sequence of fields into a lower-dimensional space while preserving
(within user-specified tolerances) their mutual distances via randomized projections. In
combination, it thus acts as a constrained, dynamics-preserving model reduction strategy.

The rise of randomized methods, in particular in numerical linear algebra (Halko,
Martinsson & Tropp 2011; Martinsson & Tropp 2020), has also reached quantitative
flow analysis in the form of highly efficient algorithms that extract coherent structures
from the response of the fluid system to a random forcing (Ribeiro et al. 2020). These
techniques, which also go by the name of matrix sketching, play a key role in applying
standard analysis tools to large-scale and fully three-dimensional flows, and do so in a
computationally efficient manner. While the present method falls within the category of
randomized methods, it crucially distinguishes itself by its dynamics-preserving property.
None of the previous sketching techniques comes with the guarantees of minimal distance
distortion among any of the processed snapshots, and therefore maps the full dynamics
into latent space with a significant amount of distortion and a potentially suboptimal
representation.

We first sketch the theoretical background for the dynamics-preserving model reduction
technique based on randomized projections. This technique is then attached to the
procedural steps of a modal analysis, based on POD and DMD. An application to
flow fields from simulations of compressible flow through a linear blade cascade will
demonstrate the efficacy of the new compression technique, showing that the key
mechanisms contained in the snapshot sequence can be faithfully extracted directly from
the compressed sequence at significantly reduced computational cost. A discussion of
future research directions and open challenges concludes this study.

2. Theoretical background

We start with a data sequence Q = {q;,¢,,...,q,} consisting of n snapshots of
observables where each member g; € R? of the set represents a high-dimensional state
vector with d degrees of freedom and sampled from numerical simulations or physical
experiments. Our task then consists of designing a mapping @ that reduces each
high-dimensional ¢; in the data sequence to a lower-dimensional equivalenty; = @¢; € R¥
with k < d while observing a given constraint. This mapping @ will be linear and,
hence, can be represented as a k x d matrix. As the constraint in this mapping, we
aim at preserving the dynamics encoded in an N-member sample Qy C Q, extracted
from the original data sequence Q. As a measure of the dynamics, we take the mutual
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pairwise Euclidean distance between snapshots taken from Qu. This choice stems from
an interpretation of the data sequence as a path in d-dimensional phase space: by
preserving the Euclidean distance between any, and not necessarily consecutive, pair of
snapshots from any N-component subset Qy, we maintain the global relational structure
of the phase-space path — and thus the dynamics contained in the data sequence Q.
Unfortunately, this preservation cannot be enforced exactly. Instead, we have to allow a
slight distortion between the distance measure of the original and reduced data sequence.
By forcing the preservation of the Euclidean distance between any N snapshots, we are in
effect partitioning the d-dimensional space into k regions rather than enforcing a weaker
chaining-preservation property that would arise if we were to preserve just consecutive
pairs in the trajectory, and accordingly this compression scheme is agnostic to the temporal
dynamics. For this reason, the spatial compression will affect the temporal evolution only
through the removal of some information in the compressed fields, as the dynamics is itself
enforced through the ordering of the snapshots in the data sequence formed by the columns
of Q. The constraint on our dynamics-aware, rather than data-aware, model reduction can
thus be stated as

(1= lq; —gjl2 < lIPq; — Pgjll2 < (1 + &) lig; — gl foralli,jell,...,N],

———
original compressed original
distance distance distance

(2.1)

where ¢ < 1 represents the distortion factor of the mapping @. The existence
of such a compressive linear mapping @ has been established via the seminal
Johnson—Lindenstrauss (JL) lemma (Johnson & Lindenstrauss 1984). Besides its impact
on many fields, this lemma has substantiated nearly orthogonal (approximate rotation)
matrices, when acting on sparse vectors, which have become a key concept of compressed
sensing and sparse signal recovery (Candes & Tao 2006). Also, the above bounds (2.1) are
not universally valid, but are implied statistically. They thus come with a failure probability
& which is bounded from above by one-third.

The JL lemma and the above bounds (2.1) are formulated in the Euclidean norm, and
it is a valid concern to call into question the physical nature of this choice for both the
original and reduced snapshot pairs. While weighted norms are certainly conceivable, we
will proceed with the native formulation (Johnson & Lindenstrauss 1984) and base our
phase-space embeddings on this generic measure.

The practical realization of the mapping @ invokes embeddings by random projections
(Achlioptas 2003), which is a path also followed by sketching techniques. The underlying
idea is that probing a matrix by random vectors can reveal its main features, if the matrix,
either from a data sequence or from discretized governing equations, is information-sparse
when expressed in a proper basis. The research that followed the establishment of
a JL-based, dimensionality-reducing mapping concentrated on two aspects: (1) the
transformation of an arbitrary input signal/vector into a vector that is amenable to random
projections and (2) the sparsification of the random projections themselves. While the first
advance decreases the failure probability for (2.1), the second push increases the efficiency
and compression rate of the embedding.

In our context, the parameter N quantifies the mutual linkage across snapshots. While
a minimum of N = 2 cross-connections are necessary, a larger value of N will lead to
more accurate mappings and a reduced failure probability, at the expense of a reduced
compression rate. This lower failure probability stems from the fact that for N connections,

we have (g ) pairings, any one of which will fail with a lower probability to cause an overall
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violation of the bound (2.1). We therefore establish a link between N and § of the form

= %(1;1 )71 ~ 1/N?. 1t is also important to recognize that the linkage parameter N in the
fast JL transformation (FJLT) plays the role of the embedding dimension for a time-delay
(Ruelle-Takens) embedding.

In the development of a practical algorithm to determine the mapping @, Ailon &
Chazelle (2009, 2010), and later Ailon & Liberty (2013), improve on an earlier attempt
by Achlioptas (2003) and propose a three-component transformation with a mapping of
the form

@ = PHD. (2.2)

In this formulation, the matrices P and D are random, while H is deterministic. Both H
and D are d x d matrices responsible for the preconditioning of the input signal; P is a
k x d sketching matrix responsible for the final compression. Following Ailon & Chazelle
(2009), we have (assuming, without loss of generality, that d is a power of two)

. 1 T1 1
D = diag{*1,..., %1}, H,=H ® H,_1, leﬁ[l _1] (2.3)

with ® representing the Kronecker product and m ranging from 2 to log, d. In the above
expression, D is a diagonal matrix with elements independently and randomly drawn from
{—1, 1}. The matrix H represents a discrete Walsh—Hadamard transform, a generalization
of a discrete Fourier transform over a modulo-2 number field. Both matrices are orthogonal
and their action on @ does not affect the mutual distance structure; they simply perform
rotations and reflections on the data sequence.

The action of H on a snapshot transforms the signal vector from physical to spectral
space. Based on the uncertainty relation of harmonic analysis, a signal and its spectrum
cannot both be concentrated: global signals have a narrow spectral content, while compact
signals have broad spectral support. As a consequence, the H matrix maps narrow signals
to dense vectors and produces sparse vectors from dense (e.g. single-scale) signals.
In view of the fact that P will extract a very small number of components from the
H-transformed signals, we are interested in producing dense vectors — even for single-scale
signals — to avoid a zero output vector from the FILT. To circumvent sparse output vectors
altogether, the random matrix D is added. More mathematically, it can be shown (Ailon
& Chazelle 2010) that the largest HD-transformed component of a unit-norm flow field ¢,
i.e. |HDq| -, is bounded by O(+/log N/«/z_i), with a failure probability of less than 1/20.
This procedure is referred to as a spectral densification, as it always yields a dense vector,
regardless of whether the input signal is single-scale or broadband in nature.

Once a proper densification has been established by HD, a random projection via P can
then accomplish the model reduction in a reliable and efficient manner. The final matrix P
is given by

N(©, g™ with prob. ¢

with prob. 1 — 24

P = Bernoulli(g)N(0,q~ = {

with Bernoulli(g) as a Bernoulli distribution, taking on the value of one with
probability ¢ and zero with probability 1 — g. The normal distribution with zero mean and
variance o is denoted by N (0, o). The parameter g measures the approximate sparsity
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of P. Detailed analysis requires g to be

2
¢ = min ((9 <1°gd N) , 1) . (2.5)

The compression that can be achieved with this parameter set-up can be estimated as
(Dasgupta & Gupta 1999, 2003)

82 83 !
k>4(———=] logN, 2.6
> (2 3> og (2.6)

which, for small values of the distortion factor &, reduces to k ~ &2 log N. Commonly,
this reduction to a latent-space dimension of k is driven by a bound on the failure
probability § which, in turn, produces the above estimate. It is noteworthy that the reduced
latent-space dimension k is independent of the input dimension d, but rather only scales
with the enforced distortion factor and the imposed linkage parameter.

Most algorithms used in the processing of data sequences scale geometrically with
the input dimension d and the snapshot number n; for example, the singular value
decomposition (SVD) of a tall-and-skinny data matrix has a 0(dn®) operation count.
This scaling quickly brings these algorithms to the breaking point of applicability, a
phenomenon often referred to as the curse of dimensionality. The above compression
counteracts this tendency and ultimately yields a more favourable scaling which is
amenable to large-scale applications. For this reason, data-compression and hashing
algorithms (like the FJLT) have entered iterative linear-algebra algorithms as data
preconditioners (Nelson & Nguyén 2013). In these applications, the dynamics preservation
translates to the maintenance of relational connections between subsequent members of a
Krylov sequence, and maintenance of spectral information. In this study, we apply the
FILT technique to dynamic flow-field sequences.

The implementation of the FILT procedure does not involve the explicit formation of the
three matrix components P, H, D, nor does the entire data sequence Q have to be stored.
Rather, (1) the multiplication of a snapshot by the diagonal matrix D amounts to randomly
flipping the signs on the components of the input vector, (2) the multiplication by H, the
only dense matrix, can be accomplished in O(d log d) operations, similar to a fast Fourier
transform, and (3) the multiplication by P is very efficient due to its substantial sparsity; it
practically amounts to a small random sampling/multiplication of the output from HDg;.
The FILT can even be applied in a streaming fashion to the data sequence, which also
permits the application of an incremental version of the SVD (see e.g. Brand 2002) for the
subsequent POD or DMD analysis.

3. Problem set-up

To demonstrate the functionality and utility of data compression and model reduction by
FILTs, we make use of a model flow through a turbomachinery compressor blade row.
This flow has previously been analysed in Glazkov (2021) and Glazkov et al. (2023a,b)
as to its global stability and receptivity characteristics. The flow configuration consists
of a single, two-dimensional blade passage, formed by controlled-diffusion airfoils, with
periodic boundary conditions forming a linear blade row. The purely two-dimensional flow
field is simulated for a chord-based Reynolds number of Re = 100 000, with an exit Mach
number of M = 0.3, and an inflow angle of 37.5°, which, downstream of the blade, is
turned into a streamwise flow.
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Figure 1. The dilatation field of a nonlinear flow snapshot for this flow case, upon which are superimposed
contours of vorticity.

In this configuration the main features of the flow field can be summarized as comprising
a laminar separation bubble on the suction side of the airfoils which periodically sheds
vortices that subsequently interact with the trailing edge. These interactions of scattering
and shedding processes at the trailing edge generate upstream-propagating acoustic waves
that impinge upon the unstable boundary layers on the suction and pressure surfaces of the
airfoil, as shown in the nonlinear flow snapshot in figure 1. Through a detailed wavemaker
analysis in Glazkov (2021) and Glazkov et al. (2023a), it was shown that these interactions
lead to feedback loops that sustain and drive the instabilities, and an ensemble of 14
dominant modes were identified and analysed through a direct-adjoint mean-flow global
stability analysis. With such richness of dynamics, this case provides us with a sound
foundation upon which to evaluate the performance of the FILT when applied to modal
flow analysis techniques explored in this paper.

The data set considered here consists of time-resolved snapshots of the four flow
variables p, s, u and v (pressure, entropy, streamwise and spanwise velocity), extracted
from the simulation once the system reaches a limit cycle. A total of n = 2001
snapshots are recorded over the time period t = 0 — 40, and each flattened snapshot has
d = 1804400 degrees of freedom. As is standard for POD and DMD, a d x n data matrix
Q is then formed by consecutively stacking each snapshot into the columns of the matrix.

For a POD analysis, Q is decomposed using the SVD according to

Q=UuUxvi, 3.1

where we emphasize that U encodes spatial information in the form of POD modes, while
X and V are purely temporal, encoding the singular values (spectrum) and evolution
behaviour, respectively. Since the FJLT only acts on the spatial dimension of Q, it follows
that, in the latent (reduced) space, we have

B=Fx. VI (3.2)
where
B =FJLT(Q) = PHDQ, (3.3)

and B is a k x n matrix with k < d, while F describes the POD modes in latent space.
Although the inversion back to U is not possible directly from F, the JL-guaranteed
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Linkage Latent-space dimensions Compression (direct) Compression (delay-embedded)  Failure probability

N k dfk Nd/k 8
2 55448 32.5 65.1 <1/3

4 110896 16.3 65.1 <1/18
6 143336 126 75.5 < 1/45

8 166352 10.8 86.6 <1/84
12 198792 9.1 108.9 <1/198
16 221 800 8.1 130.2 < 1/360
24 254240 71 170.3 < 1/828
32 277256 6.5 208.3 < 1/1488

Table 1. Compression ratios and failure probabilities for different FJLT embedding dimensions (linkage
parameters).

closeness of X,V to X v/ means that the inversion can be performed directly, though
approximately, from (3.1) at a markedly reduced computational cost when compared with
a direct SVD of Q.

In a similar way, choosing DMD as our method of choice for a decomposition of Q, we
have

Q=VAV,.q, (3.4)

with ¥ signifying the spatial dynamic modes, A containing the amplitudes and Vang
carrying the temporal dynamics (in pure frequencies). Again, the FILT approximately
preserves the temporal dynamics contained in AV,nq. For the recovery of the spatial
dynamic modes, the inversion of the Vandermonde matrix Vnq, however, proves more
challenging. Instead, in this paper, the physical modes ¥ are recovered using a discrete
Fourier transform evaluated at the identified DMD frequencies and scaled by the DMD
amplitudes. All spectral information about the retained dominant modes has been obtained
using the sparsity-promoting variant of DMD (Jovanovié, Schmid & Nichols 2014) with a
penalization parameter selected to yield between 20 and 30 prevailing modes.

A related approach has been taken by Brunton et al. (2015) who used
compressed-sensing techniques to preprocess the data stream that was subsequently
analysed by DMD. In their study, Fourier sparsity is assumed and the temporal dynamics
or spectral properties between the physical and latent space are not necessarily preserved.

4. Results

In all presented cases, the error tolerance has been set to a 1 % maximal distortion of
the intrinsic dynamics, with the embedding dimension & determined by the number of
snapshots N (Larson & Nelson 2017) over which this error tolerance is to be preserved
(following the bounds given in Dasgupta & Gupta (1999, 2003)). In table 1, the values
of N, considered in this study, are illustrated alongside the corresponding embedding
dimension k, the compression ratio relative to a single snapshot, d/k, and the compression
ratio relative to a column of the equivalently Hankelized system, Nd/k. We also list the
failure probabilities as a function of the linkage parameter N. We note that increasing the
linkage number N, and therefore k, increases the dimension of the column vectors in latent
space, but relative to the Hankelized system, formed by a time-delay embedding over the
same N state vectors, the compression ratio steadily increases, progressively favouring the
FILT compression technique over the equivalent Ruelle-Takens embedding.
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Figure 2. Relative errors in the singular values o for a range of linkage parameter N. The first 20 POD modes
have been computed, and a maximum distortion rate of 1 % has been chosen.

4.1. Proper orthogonal decomposition (SVD/POD)

To demonstrate the POD mode preservation, n = 500 temporal snapshots of the flow are
considered in the Q matrix. From here on, the term ‘direct’ refers to quantities obtained
directly from Q, while the label ‘FJLT’ refers to those generated from B, as defined in
(3.3). Furthermore, we apply an economy-type SVD on the entire original or FILT-reduced
snapshot sequences. This choice isolates the influence of the compression algorithm on the
full analysis. Alternative iterative SVD schemes, applied to each sequence, are left for a
future effort.

Figure 2 displays the relative errors of the singular values, corresponding to the principal
20 POD modes for a range of linkage parameters N. For the lowest linkage of N = 2
we observe that the relative error occasionally exceeds the user-defined distortion error
of 1%. This behaviour is particularly prevalent for the higher modal indices, beyond
the first four singular values. However, even with this crude approximation and sizeable
compression, the relative error does not exceed a value of about 1.3 %. As we increase
the linkage parameter N, the relative-error curve decreases markedly and remains (within
our numerical experiments) below the threshold of 1%. While there is no observable
monotonic convergence towards lower errors, an overall tendency to smaller distortions,
across the computed 20 POD modes, is clearly discernible.

For our second test, we concentrate on the temporal dynamics contained in the rows
of the matrix V. For a proper comparison, the dynamics of the direct case and the
FILT case have been Fourier-transformed and the difference between the respective two
power spectra has been evaluated. Figure 3 depicts the £; error of the difference vector in
frequency space. Again, we observe a trend towards smaller relative errors as the linkage
parameter N increases. More important, however, is the observation that the first four rows
of VI are well represented by the FILT-compressed matrix B — even for very low values
of N. Higher modes (beyond a modal index of four) require a higher linkage parameter N
to achieve comparable relative £ errors.

As a final test, we determine the six most dominant POD structures U ¢ associated
with the identified principal singular values. We choose a linkage number of N = 6 which
has demonstrated in our previous test a sufficiently small relative error in the singular
values as well as the temporal dynamics. As mentioned above, the spatial modes U cannot
be directly recovered from the latent equivalents F. However, since X Vf is minimally

distorted relative to the base case, we use the relation U = QVCEC*I, where both V.

1001 A48-9


https://doi.org/10.1017/jfm.2024.1097

—~~
S
N

80

A. Glazkov and P.J. Schmid

0
(=]

D
(=

Relative V col PSD
[, error (%)
5

[, error (%)
& 3

N}
S

0 2 4 6 8 10 12

Mode index

Relative ¥ col inst. freq. =

14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Mode index

Figure 3. Relative £ errors in the frequency domain of the column vectors of V obtained from the
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Figure 4. Proper orthogonal modes, corresponding to the six largest singular values, obtained from the direct
POD (left column) and reconstructed from the FJLT-compressed snapshot sequence (right column). A linkage
parameter of N = 6 and a maximum distortion factor ¢ = 0.01 have been chosen.

and ¥, are from the FJLT case, to approximate the original spatial POD modes. The
first six POD modes are displayed in figure 4, showing the baseline modes in the left
column and the corresponding FJLT-based, reconstructed modes in the right column. We
confirm a remarkable semblance between the two columns, which manifests itself even in
the smaller details (see e.g. the complex wake structure of the fifth mode). We notice a
distortion neither in amplitude nor in phase. The FLJT-based analysis, however, has been
accomplished at a highly reduced computational cost (see the data in table 2).
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Linkage Speed-up (POD) Speed-up (DMD) Speed-up (H-POD) Speed-up (H-DMD)

N S1 So ~ NS ~ NS,
2 33.18 26.26 66.38 52.53
4 19.84 15.36 79.37 61.44
6 15.98 11.50 95.89 69.01
8 14.26 10.55 114.04 84.42
12 12.15 9.66 145.76 115.92
16 10.78 8.79 172.40 140.59
24 9.38 7.04 225.07 168.92
32 8.73 6.55 279.36 209.44

Table 2. Timing comparison of direct and FILT-driven analysis.
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=@= Direct =@~ Direct
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0 5 10 15 20 0 5 10 15 20
09} (h)
=@- Direct =@= Direct
|a| 25 FILT N=24 25 FILTN=32
0 5 10 15 20 0 5 10 5 20
Mode index Mode index
sorted by descending mode amplitude sorted by descending mode amplitude
Yy g p Yy g p

Figure 5. The spDMD amplitudes for (a—h) varying N.

4.2. Sparsity-promoting DMD (spDMD)

Using the same data sequence and performing a flow analysis based on the spDMD,
coupled to our FJLT compression, also shows encouraging results at a highly reduced
computational effort. The amplitudes, identified by the sparsity-promoting optimization,
are displayed for the dominant 24 dynamic modes in figure 5 for the same range of
parameter values for N. Excellent representation for the highest pair of structures can be
observed, even for the minimal linkage of N = 2. Lower-amplitude, subdominant modes
are well represented as the linkage parameter N is increased, and even modest values of N
accurately capture the amplitudes of the majority of the top 24 dynamic modes.

The same tendency can be observed in spectral space. Figure 6 displays the eigenvalues
of the recovered Koopman operator in the complex plane, again for our range of linkage
parameters N. A part of the unit disk is displayed for each case, showing the direct
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Figure 6. Direct and reconstructed DMD eigenvalues. Blue filled circles indicate the direct eigenvalues,
with darker circles representing higher amplitudes, and red circles indicating the corresponding FJLT-derived
eigenvalues for varying N.

eigenvalues in blue and the FJLT-based eigenvalues in red. In addition, the colouring
encodes the associated amplitude of each eigenvalue, with darker shades corresponding
to larger amplitudes. We see that the eigenvalues close to the dominant structure (darkest
symbol) are well represented by the FJLT equivalent, even for a coarse linkage of N = 2.
The lower-frequency structures, near the spectral point A = (1, 0), require a higher linkage
parameter N, before they can be extracted reliably from the FJLT-compressed data set, but
are nonetheless well represented when compared with their direct equivalents.

A more quantitative analysis of the eigenvalue errors is presented in figure 7. We stress
that the user-specified distortion of 1 % in phase-space distance does not translate in a
straightforward manner into an estimate for the DMD eigenvalue deviation. Nevertheless,
we notice a pleasing tendency of the eigenvalue error to reduce for increasing values
of N. The eigenvalues associated with the largest two amplitudes (representing the
dominant dynamic structures in the processed data sequence) show very low relative
errors with values below 0.15 %, even for the crudest of approximations (N = 2). Less
dominant structures, i.e. higher modes, representing mostly lower-frequency structures are
represented with a maximum eigenvalue error of about 1 % once the linkage parameter
exceeds N = 6. Even at this point, the computational savings, compared with the direct
case, are substantial.

The reconstruction of the spatial structures corresponding to the identified
eigenvalues/frequencies is less straightforward than for the POD analysis. A technique
similar to the POD case would require the inversion of a Vandermonde matrix and
compound the FILT approximation error with additional numerical errors stemming from
the inversion. For this reason, we chose a different reconstruction method, using the fact
that for statistically equilibrated data sequences the eigenvalues are located on the unit
disk and represent single-frequency structures. We thus identify the FILT-compressed
frequency and inverse-Fourier-transform the data sequence for this frequency. The results
are shown in figure 8, juxtaposing the six direct DMD modes with the largest amplitudes,
the equivalent six modes from a direct reconstruction and the corresponding modes
from an FJLT-based recovery. While the recovered modes (direct and FILT-based) match
closely, corroborating the efficacy of the compression algorithm to capture significant flow
characteristics from the latent data sequence, there are noticeable differences, mostly in
phase, between the direct and reconstructed coherent structures. Nevertheless, the key
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Figure 7. The relative errors in the FILT-reconstructed modes given by err = |Agir — Agjir!/|Adirl-
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Figure 8. A DMD reconstruction from an FJLT sequence. Shown are the six most dominant dynamic modes,
with the reference case on the left, and the reconstructed modal structures in the middle and on the right.
Contours of pressure are used to visualize the flow fields.

features in each of the six modes are represented in a very satisfactory manner. It is
important to mention that the differences can be attributed to the reconstruction, not
the compression procedure, and should be taken as an encouragement to direct further
attention to a better extraction method for the spatial structure from the latent dynamics.

4.3. Computational cost, timings and failure rates

The logarithmic scaling of the latent-space dimensionality translates to an equivalent
logarithmic scaling in execution time, since the SVD of a rectangular matrix scales linearly
with the larger of the two dimensions. With the execution time of the base case established
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Figure 9. Timing of the FJLT-based POD (a) and spDMD (b) versus the linkage number N. We note that the
embedding dimension k scales logarithmically with the linkage number N; consequently, the horizontal axis
can be interpreted as the embedding dimension.

and fixed, we determine the speed-up factor of the FJLT-based modal decomposition
as the linkage parameter N is varied from N =2 to N = 32. For cases of both POD
and spDMD analyses, we corroborate an inverse logarithmic decrease in the speed-up
factor (see table 2). When multiplying by the embedding dimension for the processing of
a delay-embedded (Hankelized) data sequence, the speed-up factors become even more
impressive, asymptotically displaying an N/log N tendency (see the columns in table 2
labelled H-POD and H-DMD). Figure 9 depicts the raw execution speeds (executed on a
32 GB-RAM, Apple M1 Max laptop) versus the linkage parameter graphically, and with
the colour code of earlier figures. Both cases (POD and spDMD analyses) are presented,
and a clear logarithmic scaling is confirmed.

In a final analysis, we address the failure rate of the FILT bound. As mentioned earlier,
the bounds on the distortion (2.1), on which our accelerated modal analysis rests, have to
be understood stochastically. In other words, the bounds are satisfied up to a failure rate
8, when the actual distortion exceeds the specified values of (1 & ). The rate at which
this outlier occurs gives a measure of reliability of our compression algorithm. For this
reason, we present a statistical experiment where we compute the distortion in the pairwise
distance between randomly sampled snapshots from our data sequence, i.e. we compute

[@Aql2

|
S 1, (4.1)
e l 1Agll2

with Aq = ¢; — q;.1,j € [0, n] and process the data into a histogram. Again, we select
a desired value of ¢ = 1 % and perform the experiment for a linkage parameter of N =
2,4, 6. We sampled our data sequence 60 000 times (without repetition) to obtain properly
converged statistics. The results are shown in figure 10. For N = 2 we observe a failure
rate of 22.37 %; in other words, nearly a quarter of our samples exceeded the desired
distortion of ¢ = 1 %. This value confirms the upper bound of § = 1/3. The distribution
in figure 10, however, also shows that distortions larger than 2 % occur rarely, even for
this minimal value of N = 2. Increasing N improves the failure rate dramatically. Already
for N =4, only 1.48 % of our samples exceed the user-specified 1 % distortion value,
and at N = 6, the failure rate has reduced to 0.0156 %. This experiment also shows that
the theoretical bounds on the failure rate, given in the rightmost column of table 1, are
rather conservative, as they predict a maximum failure rate of 1/18 = 5.55% for N = 4
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Figure 10. Error (failure rate) histograms from a statistical analysis of the FILT-based POD for a linkage
number of (a) N =2, (b)) N =4 and (c) N = 6. The respective upper bounds for the failure probability are
33.339% for N =2, 5.55% for N = 4 and 2.22 % for N = 6.

and 1/45 = 2.22 % for N = 6. Our statistical analysis produced substantially lower failure
rates in both cases.

5. Summary and outlook

High spatial resolution, and hence many degrees of freedom, is a computational necessity
for capturing all relevant spatio-temporal scales and physical processes when simulating
complex fluid flows, but acts as an impediment to algorithmic efficacy when the resulting
flow fields are subsequently analysed. Common efforts in reducing flow mechanisms
to their relevant subprocesses via spectral or modal decompositions yield distortions or
misrepresentations of the temporal dynamics and result in a latent-space dynamics that is
difficult to interpret or relate to full-scale observations.

In this study, we propose a spatial reduction scheme that achieves up to two orders
of magnitude compression ratios while maintaining the temporal dynamics within a
predetermined distortion tolerance. This nearly isometric (distance-preserving) reduction
takes advantage of the JL lemma and its fast implementation via the FILT. Randomized
sketching techniques of preprocessed flow fields provide a low-dimensional embedding
and produce substantially reduced latent-space sequences that are further subjected to
modal analyses at diminished computational costs.

Applications to compressible flow through a linear blade cascade demonstrated the
efficacy of the algorithm, where the dominant POD and DMD modes have been accurately,
but far more efficiently, captured. Singular values, frequencies, amplitudes and modal
shapes could be extracted from reduced data sets without significant degradation in quality
despite a data compression factor of up to O(10?).

The algorithm is governed by a linkage parameter that enforces the distortion
bounds across a set of snapshots. For the special case of successive linkage, this
parameter can be interpreted as a time horizon over which temporal coherence is
enforced during the compression. Our proposed algorithm can thus be considered as
an alternative to time-delay (Ruelle-Takens) embedding. However, while time-delay
embedding substantially inflates the spatial dimensionality of an already high-dimensional
state vector, we venture in the opposite direction by reducing the spatial dimensionality
while preserving temporal structures over the same time horizon. Our proposed algorithm
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exploits the compressibility (in a data-information sense) of the flow field, rather than
introducing excessive and unnecessary redundancy by Hankelizing the data matrix.

While the FJLT-based flow analysis produced encouraging results, there still remain
opportunities for improvements and extensions. Parallelization efforts come to mind to
further increase the efficiency of the data compression. While the Walsh—Hadamard
transform can be parallelized in itself, a more direct gain in execution speed may arise
from a partitioning of the snapshot sequence and the parallel processing of each subset.
Throughout this paper we have made use of the original approach of Ailon & Chazelle
(2009), Ailon & Chazelle (2010) and Ailon & Liberty (2013), but recent work on FJLTs
(see e.g. Fandina, Hggsgaard & Larsen 2022) has sought to improve the computational
complexity associated with the application of the transform. This would be of particular
relevance when, for example, applying the transform in the contexts of long time series
where the transform must be applied many times. The measure-densifying effect of the
HD matrix (in our case, a Hadamard—Walsh transform of a sign-randomized signal) can
be replaced by other options that accomplish the same densification. In particular, in-place
transforms could be applied to alleviate the memory footprint of the compression. Most
importantly, recovery techniques to reconstruct modal structures from their latent-space
analogues are a target of future research, with an eye on machine-learning techniques, such
as superresolution, to tackle this challenge. However, even in its original form presented
here, the FILT-based modal flow analysis represents an efficient and appealing way of
gaining physical insight into high-dimensional, large-scale and complex flow processes,
without the accompanying computational effort.

Supplementary material. Codes and data sets to reproduce the results in this paper are provided as
supplementary material, available at https://github.com/antongla/fjlt-modal-compression.
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