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ABSTRACT. For a glacier flowing over a bed of 
longitudinally varying slope, the influence of longitudinal 
stress gradients on the flow is analyzed by means of a 
longitudinal flow-coupling equation derived from the 
"vertically" (cross-sectionally) integrated longitudinal stress 
equilibrium equation, by an extension of an approach 
originally developed by Budd (1968). Linearization of the 
flow-coupling equation, by treating the flow velocity u 
("vertically" averaged), ice thickness h, and surface slope a 
in terms of small deviations Aii, M, and l1a from overall 
average (datum) values uo' ho' and ao ' results in a differ­
ential equation that can be solved by Green's function 
methods, giving Aii(x) as a function of M(x) and t.a(x) , x 
being the longitudinal coordinate. The result has the form of 
a longitudinal averaging integral of the influence of local 
h(x) and a(x) on the flow u(x): 

where the integration is over the length L of the glacier. 
The l1 operator specified deviations from the datum state, 
and the term on which it operates, which is a function of 
the integration variable x', represents the influence of local 
h(x' ), a(x' ), and channel-shape factor f(x' ), at 
longitudinal coordinate x', on the flow u at coordinate x, 
the influence being weighted by the "influence transfer 
function" exp(-Ix' - xl / A) in the integral. 

The quantity A that appears as the scale length in the 
exponential weighting function is called the longitudinal 
coupling length. It is determ~ned by rheological parameters 
via the relationship A = 2h nfTi/ 311, where n is the flow­
law exponent, Tj the effective longitudinal viscosity, and 7) 

the effective shear viscosity of the ice profile. Tj is an 
average of the local effective viscosity 7) over the ice cross­
section, and (l1f1 is an average of 7)-1 that gives strongly 
increased weight to values near the base. Theoretically, the 
coupling length A is generally in the range one to three 
times the ice thickness for valley glaciers and four to ten 
times for ice sheets; for a glacier in surge, it is even 
longer, J - 12h. It is distinctly longer for non-linear (n = 

3) than for linear rheology, so that the flow-coupling 
effects of longitudinal stress gradients are markedly greater 
for non-linear flow. 

The averaging integral indicates that the longitudinal 
var iations in flow that occur under the influence of sinus­
oidal longitudinal variations in h or a, with wavelength >., 
are attenuated by the factor I/O + (2nA / >.)2) relative to 
what they would be without longitudinal coupling. The 
short, intermediate, and long scales of glacier motion 
(Raymond, 1980), over which the longitudinal flow 
variations are strongly, partially, and little attenuated, are 
for>. S 2A ,2R S >. S 20R, and >. ~ 20R. 

For practical glacier-flow calculations, the exponential 
weighting function can be approximated by a symmetrical 
triangular averaging window of length 4A , called the longi­
tudinal averaging length . The traditional rectangular window 
is a poor approximation . Because of the exponential 
weighting, the local surface slope has an appreciable though 
muted effect on the local flow, which is clearly seen in 

field examples, contrary to what would result from a 
rectangular averaging window. 

Tested with field data for Variegated Glacier, Alaska, 
and Blue Glacier, Washington, the longitudinal averaging 
theory is able to account semi-quantitatively for the ob­
served longitudinal variations in flow of these glaciers and 
for the representation of flow in terms of "effective surface 
slope" values. Exceptions occur where the flow is augmented 
by large contributions from basal sliding in the ice fall and 
terminal zone of Blue Glacier and in the reach of surge 
initiation in Variegated Glacier. The averaging length 4A 
that gives the best agreement between calculated and 
observed flow pattern is 2.5 km for Variegated Glacier and 
1.8 km for Blue Glacier, corresponding to l/h ... 2 in both 
cases . 

If A varies with x, but not too rapidly, the exponential 
weighting function remains a fairly good approximation to 
the exact Green's function of the differential equation for 
longitudinal flow coupling; in this approximation, J in the 
averaging integral is A(x) but is not a function of x' . 
Effects of longitudinal variation of J are probably import­
ant near the glacier terminus and head, and near ice falls. 

The longitudinal averaging formulation can also be used 
to express the local basal shear stress in terms of longi­
tudinal variations in the local "slope stress" with the medi­
ation of longitudinal stress gradients. 

RESUME. Couplage du gradient de contrainte dans 
i'ecoulement des glaciers: I. Influence moyenne longitudinale 
des variations d'epaisseur et de pente de la surface. 
L'influence des gradients de contraintes longitudinaux sur 
I'ecoulement d'un glacier, dont le lit presente une variation 
longitudinale de pente, est analysee au moyen d'une 
equation de couplage longitudinal de I'ecoulement. Cette 
derniere est deduite de la forme integree "verticalement" (en 
fait dans la section transversale) de I'equation decrivant 
l'equilibre des contraintes dans le sens longitudinal, suivant 
une extension de l'approche originale de Budd (1968). 
L'equation de couplage longitudinal est linearisee en ecrivant 
la vitesse d'ecoulement u (moyenne dans la section 
transversale), I'epaisseur de glace h, et la pente de la 
surface ex, comme sommes de vaJeurs moyennes uo' ho' ao 
et de petites deviations l1i7, M, et t.ex. On obtient alors une 
equation differentielle qui peut etre resolue par la methode 
des fonctions de Green, donnant Aii(x) en fonction de M(x) 
et l1a(x) , x etant la coordonnee dans le sens longitudinal. Le 
resultat est obtenu sous la forme d'une integrale representant 
la moyenne se Ion x de l'influence des valeurs locales h(x) et 
a(x) sur la vitesse u(x): 

(l'integration est faite sur la longueur L du glacier). 
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L'operateur A indique la deviation de l'etat de reference, et 
le terme sur le que I it opere, fonction de la variable 
d'integration x', represente l'influence des epaisseurs et 
pentes locales h(x'), a(x') et du facteur de forme de la 
section f(x'), a l'abcisse x', sur la vitesse u au point x. 
eette influence est ponderee par la fonction de "transfert 
d'influence" exp(-Ix' - xl/I). 

La quantite 1 qui apparait comme longueur 
caracteristique dans la fonction de ponderation exponentielle 
est appelee "longueur de couplage longitudinal". 1 est 
deduite des parametres rheologiques selon: 1 = 2hJn/n/311 , 
Oll nest l'exposant de la loi de comportement, Ti est la 
viscosite longitudinale efficace, 11 est la viscosite de 
cisaillement efficace du profil. Ti est une moyenne de la 
viscosite efficace prise sur la section transversale, (Tlr1 est 
une moyenne de 1)-1 qui donne un poids fortement accru 
aux valeurs proches de la base du glacier. Theoriquement, la 
longueur de couplage I est generalement I a 3 fois 
l'epaisseur pour les glaciers de vallee, 4 a 10 fois l'epaisseur 
pour les calottes; pour un glacier en surge I - 12h. Ses 
valeurs sont nettement plus importantes dans le cas d'une 
puissance avec n = 3 que dans le cas d'une viscosite 
newtonienne, de sorte que les effets dus aux gradients de 
contrainte longitudinaux sur le couplage sont notablement 
plus marques dans le premier cas. 

L'integrale precedente indique que les variations 
longitudinales de la vitesse dues a des variations sinusoidales 
de h ou a de longueur d'onde ). (dans le sens longitudinal) 
sont amorties d'un facteur 1/ (\ + (2nl /).)2) par rapport a ce 
qu'elles seraient en I'absence de couplage longitudinal. Les 
echelles courte, intermediare, grande, relatives au mouvement 
du glacier (Raymond, 1980), auxquelles les variations 
longitudinales de I'ecoulement sont fortement, partiellement 
et peu attenuees, sont ). :;; 21, 21 ::;; ). ::;; 20 1, et ). ;::; 201. 

En pratique, l'exponentielle de ponderation peut etre 
approchee par une fonction fenetre triangulaire symetrique 
de longueur 41, appelee longueur de ponderation 
longitudinale. La fenetre rectangulaire traditionnelle constitue 
une mauvaise approximation. A cause de la ponderation 
exponentielle, la pente locale de la surface a un effet 
appreciable, bien qu'il soit masque, sur I'ecoulement local, 
clairement observe sur des exemples de terrain , 
contrairement a ce qui serait obtenu avec une fenetre 
rectangulaire. 

D'apres la comparaison avec des mesures faites sur le 
Variegated Glacier, Alaska, et le Blue Glacier, Washington, 
la theorie du couplage longitudinal est capable de rend re 
compte, de fa~on semi quantitative, des variations de 
l'ecoulement longitudinal de ces glaciers et de la 
representation de l'ecoulement en terme de valeurs de "pente 
de surface efficace". Des exceptions apparaissent quand 
l'ecoulement est accru, dO a une forte contribution du 
glissement basal dans la chute et dans la zone terminale du 
Blue Glacier, et a l'endroit oil approche un debut de surge 
pour le Variegated Glacier. La longueur de ponderation 41 
qui donne le meilleur ajustement entre les ecoulements 
calcules et observes, est de 2,5 km pour le Variegated 
Glacier, et 1,8 km pour le Dlue Glacier, correspondant a un 
J / h '" 2 dans les 2 cas. 

Si 1 varie avec x, mais pas trop vite, l'exponentielle de 
ponderation demeure une tres bonne approximation de la 
fonction de Green correspondant exactement a I'equation 
differentielle du couplage longitudinal; dans cette 
approximation, J est a rem placer par R(x) dans I'integrale 
de moyenne, mais ce n'est pas une fonction de x'. Les 
effets d'une variation longitudinale de I sont sans doute 
importants au voisillages des extremites du glacier et des 
chutes de seracs. 

La formulation en moyenne longitudinale peut 
egalement etre utilisee pour ex primer le frottement basal 
local en terme de variations longitudinales de la "contrainte 
de pente" locale par I'intermediaire des gradients de 
contrainte longitudinaux. 

ZUSAMMENFASSUNG . Kopplung von ,Spannungsgradienten 
im Gletscherfluss: I. Mittelung des Einflusses der Eisdicke 
und der Oberfliichelllleigung in . Liingsrichtung. Fur einen 
Gletscher, der uber ein Bett mit wechselnder Uingsneigung 
fliesst, wird der Einfluss der: Spannungsgradienten in 
Uingsrichtung auf das Fliessen mit Hilfe einer longitl!dinalen 
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Fluss-Kopplungsgleichung, analysiert, die aus der "senkrecht" 
(d.h. querschnittsweise) integrierten Gleichung fUr das 
longitudinale Spannungsgleichgewicht durch eine 
Erweiterung eines urspriinglich von Budd (1968) 
entwickelten Ansatzes abgeleitet wird. Die Linearisierung 
der Fluss-Kopplungsgleichung - dadurch bewirkt, dass die 
Fliessgeschwindigkeit u ("senkrecht" gemittelt), die Eisdicke h 
und die OberfUichenneigung a in Form von kleinen 
Abweichungen AIi, Ah und Aa gegenuber Gesamtmittelwerten 
uo' ho und ao eingefiihrt werden - liefert eine 
Differentialgleichung, die durch Green's Funktionsmethode 
gelOst werden kann; daraus ergibt sich AIi(x) als Funktion 
von Ah(x) und Aa(x), wobei x die Koordinate in 
Uingsrichtung bedeutet. Das Ergebnis hat die Form eines in 
U.ngsrichtung rnittelnden Integrals fur den Einfluss der 
lokalen Werte von h(x) und a(x) auf den Fluss u(x): 

wobei sich die Integration iiber die Unge L des Gletschers 
erstreckt. Der A-Operator spezifiziert Abweichungen gegen­
iiber dem Ausgangszustand; der Ausdruck, auf den er wirkt 
und der eine Funktion der Integrationsvariablen x· ist, 
reprasentiert den Einfluss der lokalen Werte h(x'), a(x') 
und des Kanalformfaktors f(x') beim Langskoordinatenwert 
x· auf den Fluss u bei x; dies er Einfluss wird durch die 
"Einfluss-Ubertragungsfunktion" exp(- Ix' - xl/I) im In­
tegral gewichtet. 

Die GrOsse I, die als Normierungslange in der 
exponentiellen Gewichtsfunktion erscheint, wird die Longi­
tudinale Kopplungslange genannt; sie wird durch 
rheologische Parameter iiber die Beziehung 1 = 2hln/Ti/ 3T1 
bestimmt, worin 11 der Exponent des Fliessgesetzes, Ti die 
effektive Viskositat in Uingsrichtung und r; die effektive 
Scherviskositat des Eisprofiles bedeuten. Ti ist ein Mittelwert 
fUr die lokale effektive Viskositat 1) iiber den Eisquerschnitt 
und (Tir 1 ist ein Mittelwert fur 1)-1, der Werten nahe am 
Untergrund ein stark erhOhtes Gewicht zuteilt. Theoretisch 
liegt die KopplungsHinge 1 im allgemeinen im Bereich des 
Ein- bis Dreifachen der Eisdicke bei Talgletschern und des 
Vier- bis Zehnfachen fUr Eisdecken; fUr einen ausbrechen­
den Gletscher ist sie noch langer, n!1mlich I - 12h. Sie ist 
deutlich langer fUr nicht-lineare (n = 3) als fur lineare 
Rheologie, so dass Fluss-Kopplungseffekte von longitudalen 
Spannungsgradienten fur nicht-linearen Fluss erheblich 
grOsser sind. 
.. Das mittelnde Integral zeigt, dass die longitudinalen 
Anderungen des Fliessens mit WellenHingen )., die unter dem 
Einfluss sinusfOrmiger longitudinaler A.nderungen von h oder 
a auftreten, urn den Faktor 1/ (\ + )2nl/).)2) I gegenuber 
ihrem Wert ohne longitudinale Kopplung abgeschwacht 
werden. Die kurzen, mittleren und langen Masstlibe fur die 
Gletscherbewegung (Raymond, 1980), uber die die 
longitudinalen Fliessschwankungen stark, teilweise und gering 
abgeschw!1cht werden, geiten fiir ).::;; 21, 21 :;; ). ::;; 201, 
und ). ;::; 201 . 

Fur praktische Berechnungen des Gletscherflusses kann 
die exponentielle Gewichtsfunktion durch ein dreiecks­
symmetrisches rnittelndes Fenster der Llinge 41, die 
sogenannte longitudinale mittelnde L!1nge, angenlihert werden. 
Das iibliche Rechtecksfenster ist eine schlechte Annaherung. 
Infolge der exponentiellen Gewichtung hat die lokale Ober­
fHichenneigung einen erheblichen, wenn auch verdeckten 
Einfluss auf den lokalen Fluss. Dies ist aus Feldbeispielen 
deutlich zu sehen, im Gegensatz zu dem, was sich bei 
einem Rechtecksfenster ergeben wiirde. 

Der Test mit Felddaten vom Variegated Glacier, 
Alaska, und vom Blue Glacier, Washington, erweist die 
longitudinale Mittelungstheorie als geeignet zur 
semi-quantitativen Erkllirung fur die beobachteten 
longitudinalen Flussschwankungen dieser Gletscher und fur 
die des Fliessens in Abhlingigkeit von Werten der 
"effektiven OberfHichenneigung". Ausnahmen treten dort au(, 
wo der Fluss durch erhebliche Beitrage aus dem Gleiten am 
Untergrund im Eisbruch und in der Zungenzone des Blue 
Glacier sowie im Bereich des beginnenden Ausbruchs am 
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Variegated Glacier versUirkt wird. Die mittelnde Uinge 41, 
welche die beste Ubereinstimmung zwischen berechneten und 
beobachteten Fliessmustern liefert, ist 2,5 km fUr den 
Variegated Glacier und 1,8 km fUr den Blue Glacier, was in 
beiden FlHlen auf I/h - 2 fUhrt. 

Wenn J sich mit x !lndert, aber nicht zu schnell, so 
bleibt die exponentielle Gewichtsfunktion eine recht gute 
Nliherung fiir die exakte Green-Funktion der Differential­
gleichung fiir die longitudinale Fluss-Kopplung; in dieser 

I. INTRODUCTION 

In the flow of a glacier or ice sheet over a bed whose 
slope varies along the length of the ice mass, the longi­
tudinal coupling exerted by longitudinal stress gradients has 
a considerable effect in modifying the flow at each point 
from what it would be if the local ice thickness and 
surface slope determined the local flow directly according to 
the basic flow theory that applies in the absence of longi­
tudinal gradients (Nye, 1952, 1957). Observationally, this 
effect has been seen in actual glaciers by comparing the 
local slope, measured over a longitudinal interval of about 
one ice thickness, with the "effective slope" that would be 
needed to account for the observed flow with the basic 
no-stress-gradient theory. For example, in Blue Glacier, 
Washington, Meier and others (1974, p. 209) found that the 
effective slope needed to account for the observed ice flow 
was nearly constant, varying over the range 5-6.5·, along a 
1400 m reach of the glacier in which the local slope varied 
over the range 4.5-9·. In Variegated Glacier, Alaska, 
Bindschadler and others (1977, p. 188) found that the 
effective slope varied much less than the local slope and 
that a longitudinal averaging of local slope over an interval 
of 2--4 km was necessary to reduce the longitudinal fluctu­
ations in average slope to a smoothness comparable to that 
of the effective slope. 

Several theoretical treatments of glacier flow (Shumskiy, 
1961; Robin, 1967; Budd, 1968, 1970[a), 1971; Collins, 1968; 
Nye, 1969; Hutter, 1981; Hutter and others, 1981; Paterson, 
1981, p. 98 and 164; Whillans and Johnson, 1983) have 
included the role of longitudinal stress gradients and have 
demonstrated their importance in terms of their effects on 
the basal shear stress over various scales of longitudinal 
averaging and on flow over sinusoidal bedrock topography. 
We felt, however, the need for a simple general formulation 
that would describe, at least in approximate terms, how a 
particular longitudinal profile of ice thickness and bed slope 
in an ice mass translates itself via the intervention of longi­
tudinal stress gradients into the particular longitudinal 
pattern of flow that results. In the present paper we 
develop such a relation and apply it to field observations. 
This is done by extending the approach developed by Budd 
(1968), and summarized by Raymond (1980, p. 103) and 
Paterson (1981, p. lOO), in such a way as to obtain a 
longitudinal flow-coupling equation that yields a description 
of how the longitudinal coupling in effect performs a 
longitudinal averaging of the influence of local slope and 
thickness to give the local flow. The averaging calculation 
can, with choice of the averaging parameters, be carried out 
for actual field examples and the results compared with the 
observed flows. 

The treatment is developed at two levels: in Part I (the 
present paper) at a level of considerable simplification and 
approximation to bring out clearly and in the simplest terms 
the role of longitudinal stress-gradient coupling in the flow 
of glaciers and ice sheets, and in Part 11 (Echelmeyer and 
Kamb, 1986) at a higher level of rigor and complexity, for 
quantitative application to perturbations in glacier flow 
caused by perturbations in ice thickness and slope of the 
sort that may develop due to climatic change. The theory 
developed in Part I is applied to field data from two valley 
glaciers in Part I, and to field data from ice sheets in Part 
V (in preparation). 

2. LONGITUDINAL COUPLING OF FLOW BY LONGI­
TUDINAL STRESS GRADIENTS 

We consider the plane-strain flow of a wide glacier or 
ice sheet down a bed surface sloping in one direction. The 

Kamb and Echelmeyer: Stress-gradient coupling in glacier flow 

Nliherung ist J in dem mittelnden Integral J(x), aber keine 
Funktion von x' . Auswirkungen longitudinaler A.nderungen 
von I spielen vermutlich nahe dem Gletscherende und 
-anfang sowie in der Nlihe von EisbrUchen eine RoUe. 

Die longitudinale Mittelbildung kann auch fiir die 
Darstellung der lokalen Scherspannung am Untergrund in 
Abhlingigkeit von longitudinalen A.nderungen der lokalen 
"Hang-Spannung" vermittels longitudinaler Spannungs­
gradienten herangezogen werden. 

local ice thickness h(x) and surface slope a(x) are functions 
of the longitudinal coordinate x measured in a coordinate 
system with the x-axis pointing down-stream parallel to the 
mean slope of the ice surface. The geometry in the flow 
plane is shown in Figure I. The slope is assumed small 
enough to equate sin a'-" a. If there were no effects of 

Fig. 1. Glacier geometry in relation to coordinate system 
with x - axis in the flow plane and inclined at the mean 
slope of the ice surface. The surface and bed slopes a 
and .13, th~ surface and bed ~-coordinate~ Ys and YB' and 
the Ice thIckness h are functIons of x. u( x) is the mean 
flow velocity in the x direction. averaged over the ice 
thickness. 

longitudinal strain-rate and stress gradients, and if there 
were no basal sliding, the "vertically· averaged flow velocity 
u (x-component of velocity, u, averaged over the glacier 
thickness from YB to Ys at a given value of x; Figure I) 
would be expected to depend on the basal shear stress TB 

and ice thickness h according to the well-known relation 
(for power-law rheology) 

(1) 

where TB would depend on the surface slope via 

TB = pgha (2) 

and where the constant Cl depends on the flow-law para­
meters and n is the flow-law exponent (Nye, 1952). If, on 
the other hand, the flow were by basal sliding, Equation (I) 
would be replaced by 

(3) 

where cll will be constant if the bed-roughness spectrum 
and extent of basal cavitation are independent of x and 
where the exponent m may be (n + 1 )/2 or n, or possibly 
something between (Weertman, 1964; Kamb, 1970, p. 702). 

To find how the flow will be modified by the 
coupling effect of longitudinal stress gradients, we 
introduce, following Budd (1970[b), p. 23, equation (18», 
the "vertically" integrated longitudinal stress-equilibrium 
equation 

(4) 

. 
where T xx is the ·vertically" averaged longitudinal stress 
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deviator component. Except for omission of a term some­
times designated "1'", involving an integral of 82T x/ 8x2, 

this equation is the same as or similar to what has been 
used by several authors (Robin, 1967, equation (2); Collins, 
1968, equation (7); Nye, 1969; Budd, 1971, equation (5); 
Paterson, 1981, equation (46), p. 100; Hutter, [c19831, p. 
258) in discussing the effects of longitudinal stress gradients. 
In Part III (Kamb, 1986), we give some further 
development in the derivation of an exact longitudinal 
equilibrium equation, beyond the point reached by Budd 
(1970[bJ), and show how the equation reduces to Equation 
(4) for small angles a and 13, small longitudinal curvatures 
da/dx and dl3/dx, and with neglect of the T term. 

In Part IV (Kamb and Echelmeyer, 1986), the theory 
in sections 2 and 3 is extended in such a way as to take 
into account the T term. It is shown that, although T has 
some definite effects on the flow, in a first approximation 
they do not substantially alter the results of the simple 
theory based on Equation (4) with omission of T. 

The way in which longitudinal stress gradients couple 
the flow longitudinally is obtained from Equation (4) by 
introducing two relations between the flow and the local 
stresses: 

J. The stress deviator is linked to the longitudinal flow 
gradient by 

T~X 
8u 

2T/ 
8x 

(5) 

where the effective viscosity T/(y) is determined by the 
velocity gradients via the flow law. We introduce a depth­
averaged viscosity n(x) that is by definition related to the 
longitudinal flow gradient du/ dx by 

du 
71 

dx 
I JYs 8u h T/(y) 8x dy. (6) 

YB 

If the strain-rate 8u/8x were independent of depth and 
dominated other strain-rate contributions to the second 
strain-rate invariant at all depths, then T/ and 71 would be 
the same and would be given by 

(7) 

according to the standard formulation of the flow law, 
where N is the viscosity parameter. In fact, because of the 
e~ect of shear stress T Xl' at depth, 71 is a function both of 
du / dx and of TB . The mtroduction of an "effective longi­
tudinal viscosity" similar to 71 in Equations (6) or (7) has 
been proposed and discussed by several authors (Robin, 
1967; Budd, 1968, p. 63; Collins, 1968; Paterson, 1981, p. 
100 and 165; Hutter, [c19831, p. 266). The 71 introduced 
by Budd and Jensen (l975, p. 267) is the same as 71 
defined in Equation (6). While Equation (7) is definitely 
only an approximation, Equation (6) can be considered 
exact, with recognition that the depth-averaged viscosity 71 
is in fact a somewhat complicated function of TB and 
du/ dx and other strain-rates in the ice column. 

2. The local flow u is related to the local basal shear 
stress TB by Equation (I) in the case of pure internal 
deformation and by Equation (3) in the case of pure basal 
sliding, or in general by a combination of the two. We thus 
introduce Equations (I) or (3) into Equation (4). Admittedly, 
Equations (l) and (3) are only approximations, the simplest 
relations between local stresses and local flow that can be 
written down within a framework in which the effects of 
longitudinal stress gradients on flow are represented as 
modifications that preserve the linear variation of T with 
y on which Equations (l) and (2) are based. The "c~stant" 
cl ~n Equation (J) is strictly a constant only if the longi­
tudmal stress does not significantly affect the effective vis­
cosity that controls the shear flow as a function of depth. 
In a more accurate approximation (Nye, 1957), cl should be 
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taken as a function of du/dx and TB' which will cause u 
to depart from the strict dependence on TB n indicated in 
Equation (I) for constant cl. In spite of these potential 
complications in theory, there is empirical evidence that a 
relation of the type in Equation (I) is valid in the descrip­
tion of glacier flow (Raymond, 1978, p. 812). We use 
Equations (I) and (3) here in the spirit of using the 
simplest reasonable relationships between flow and stress that 
exhibit the coupling effects of longitudinal stress gradients, 
so as to obtain a clear overview of how the longitudinal 
averaging of ice thickness and surface slope operates in 
determining the local flow. 

Introducing Equations (I), (5), and (6) into Equation 
(4) gives, after slight re-arrangement, 

- 4 pgha. (8) 

Given the ice thickness h(x) and slope a(x) as functions of 
the longitudinal coordinate x, and given that 71 depends on 
du/dx (as well as on TB and therefore on U), Equation (8) 
can be considered the differential equation that determines 
u(x) through the coupling effect of longitudinal stress 
gradients contained in the first term on the left. We call it 
the non-linear longitudinal flow-coupling equation. An 
equation essentially equivalent to Equation (8) was obtained 
by Budd (1968, equation (39» and Budd and Jensen (1975, 
equation (43», but its implications for longitudinal flow 
coupling were not developed along the lines followed here. 

For the case of basal sliding, an equation like Equation 
(8) applies, in which the second term on the left is 
replaced by Cii/cn)l/m. 

3. LONGITUDINAL AVERAGING OF THE INFLUENCE 
OF ICE THICKNESS AND SURFACE SLOPE ON FLOW 

The effects of the longitudinal coupling in Equation (8) 
can most clearly be seen by obtaining the solution of a 
linearized form of this equation. Suppose that the glacier 
geometry and flow are a perturbation from a datum state in 
which Equation (I) applies exactly, namely, in which a and 
~ are constant (ao and ho)' independent of x, so that u 
U o is also constant. We write the perturbations as lla = a -
~, M _= ~ - ho' and the resulting flow perturbation as v = 
(u - uo)/uo. When these are introduced into the second 
term of Equation (8), it becomes, to lowest order in the 
perturbations, 

+­
n 

Introducing into the first term of Equation (8) the 
ation relation for u but not for h or 71, and using 
that the unperturbed variables satisfy Equations (l) 
we obtain 

-4u - hT/ - + _ d [ _ dv ) pghQaQ~ 
°dx dx n 

(9) 

perturb­
the fact 
and (2), 

(lOa) 

where ll(ah) = ah - aoho. Note that hand 71 in the first 
~rm of Equation (lOa) are the perturbed values, not ho and 
T/o. An unusual and key feature of the perturbation 
treatment here is that we do not introduce the datum-state 
viscosity no' which would be infinite for the datum state 
and flow law used. For infinitesimal perturbations, h in the 
first term of Equation (lOa) could be replaced by ho' but it 
is not necessary to do so, and it is physically more appro­
priate to retain the h, since it represents the well -defined 
role of ice thickness in the transmission of longitudinal 
forces along the length of the glacier. Consistent with in­
finitesimal character of the perturbations, the terms on the 
right i~ Equation (lOa) can be combined into a single term 
pgll(ah n+l)/n)/ho

1/n, which can in turn be written in log­
arithmic form as pgaohollln(ah1+(1/n). Putting T = pga h 

d I · I . 0 0 0 an mu tIP ymg through by niT 0' we obtain 
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4nua d [_ dV) - - hn - + v 
TO dx dx 

If now we define 

and 

1 ,. / 4nuoh1'iIT 0 

dln( h1j) 
a = tJ --'---'­

dx 

nt.ln( ah1+(1/n) ). 

then Equation (lOb) can be rewritten in the form 

F(x) 

where 

(l Ob) 

(11) 

(12) 

(13) 

(14) 

F(x) is the logarithmic velocity perturbation that would re­
sult from a perturbation M in ice thickness and t.a in 
surface slope if the response were purely local according to 
Equations (I) and (2), without the effects of longitudinal 
coupling that are contained in the derivative terms in 
Equation (13). We call Equation (13) the linearized longitud­
inal flow-coupling equation. For the case of pure basal 
sliding, on the basis of Equation (3), n in Equations (11) 
and (14) is replaced by m, and the quantity +1 in the ex­
ponent in Equation (14) is omitted. 

The quantity I in Equation (11), which has the 
dimensions of length, will be called the longiludinal coup­
ling length. It provides the fundamental length scale in the 
longitudinal averaging of the effects of t.h and t.a on the 
local flow. 

The role of the coupling length 1 is brought out most 
clearly by finding the solution of Equation (13) in the 
simple case where I is constant, independent of x, and 
where the term with coefficient a can be neglected. The 
solution, obtained in the Appendix, is 

v(x) J
+O> 

F(x')exp (-Ix' -xi i i dx' 
21 -- ( 15) 

Equation (15) shows that the slope and thickness per­
turbations at each point influence the flow over a range of 
distances up- and down-glacier from the point, the 
influence dropping off exponentially with distance. The ex­
ponential decay has scale length J . 

The longitudinal variations of both ice thickness and 
surface slope enter into the longitudinal averaging by which 
the local flow is determined, according to Equation (15) . 
While this is mechanically reasonable, as was pointed out by 
Meier and others (1974, p. 210), it seems to be common 
practice to consider longitudinal averaging of surface slope 
only (Budd, 1958, p . 68; Bindschadler and others, 1977, p. 
18). 

The exponential weighting of the influence of ice 
thickness and surface slope on the flow, as indicated in 
Equation (15), is illustrated in Figure 2. It is intuitively 
more satisfying than the "box-car" weighting that has 
apparently been used up to now in taking running means of 
a(x) (Budd, 1968, fig . 3; Bindschadler and others, 1977, fig . 
6). ("Box-car" or rectangular weighting is uniform weighting 
over an averaging window of chosen length, with the 
weight dropping abruptly to zero outside the window; see 
Figure 2.) 

The exponential weighting has as a consequence that 
the local slope (on a longitudinal scale comparable to the 
ice thickness) will have an effect on the local flow that is 
appreciable, though muted by the longitudinal averaging. 
This effect is often seen qualitatively in glacier flow by the 
opening of transverse crevasses in reaches where there is a 
local down-stream increase in surface slope, and in the dis­
appearance of such crevasses where the slope decreases 
down-stream. A quantitative (as well as qualitative) 
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Fig. 2. Weighting functions for longitudinal averaging. The 
exponential fUllction indicated theoretically by Equation 
( J 5) is compared with triangular and rectangular 
weighting functions. All functions are scaled to have unit 
area over the interval -21 , x , 21, which is taken as 
the averaging window for practical approximation of 
exponential weighting. With this scaling. the triangular 
function deviates from the exponential by the same amount 
at x' - x = 0 and lx' - xl = 21. The length 41 is 
called the "averaging length: while I is called the 
"longitudinal coupling length." 

example is seen in Blue Glacier near longitudinal coordinate 
~ = 750 m (Meier nd others, 1974, fig. 8), where there is a 
small local peak in flow velocity just where the surface 
slope has a local peak and where a set of transverse 
crevasses appears; these localized effects occur even though 
the peak in slope is limited to a longitudinal interval of 
only about 300 m, little more than the ice thickness. If the 
weighting of the influence of surface slope on flow were 
uniform over an averaging window of length several times 
the ice thickness, as in the box-car averaging that has been 
used up to now, the effects of a short reach of steep slope 
would be spread out uniformly over the full length of the 
averaging window and there would be no localized flow 
peak and crevassing concentrated in the short steep reach as 
is actually observed. 

For an input perturbation that is sinusoidal in x, i.e. 

2n 
F(x) = Fo sin - x (16) 

~ 

the averaging integral in Equation (15) gives a flow 
response 

v(x) 
Fa 2n 

sin -x (17) 

r-:lf ~ 

I + 

which is attenuated by the factor 1/(1 + (2nl/~)2) over what 
it would be if longitudinal averaging did not operate. The 
attenuation factor is 1/2 for ~ = 2nl and drops to 0.09 for 
~ = 21. Thus the flow response to topographic waves of 
wavelength ::;; 21 is strongly attentuated. An essentially full 
response, attentuated less than 10% by effects of 
longitudinal coupling, will be seen only for waves with ). ;;;: 
201. In the intermediate range, 21 S ). S 201, there is 
partial attenuation, which means that the longitudinal 
fluctuations in the "slope stress" pgha are partially supported 
by longitudinal stress gradients and partially by basal shear­
stress fluctuations. The foregoing three wavelength ranges 
are what emerge from the longitudinal flow-coupling theory 
as the short, long, and intermediate length scales of glacier 
motion as defined by Raymond (1980, p . 106). The simple 
result of Equation (17) from longitudinal coupling theory 
for flow with sinusoidal longitudinal variations can be com­
pared with related calculations by other methods, specifically 
those by Budd (l970[a], 1971), Hutter {[cI983], p. 237, fig. 
4.17a), Langdon and Raymond (1978), and Whillans and 
Johnson (1983). A general comparison of this kind is 
beyond the scope of the present paper, but a comparison 
with results of Langdon and Raymond (1978) will be given 
in Part Y (in preparation). 
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With a rectangular weighting function (as in Fig. 2) in 
place of the exponential in Equation (15), the result of 
averaging Equation (16) would be a flow response 

v(x) 
~F 4nl 2n 
.:::.n. sin - sin - x. 
4nl ~ ~ 

Superimposed on the attenuation as a function of wave­
length in this case are oscillations between positive and 
negative response values, the negative values in the range 
21 < >. < 4. being particularly troublesome. This 
unsatisfactory behavior is another practical reason in favor 
of the exponential averaging indicated in Equation (15). 

The integration in Equation (15) is shown as extending 
from x' = - to +"', as formally given by the solution in 
the Appendix, but in practice, obviously, the integration can 
extend only over the actual length of the glacier. As long 
as the point x is farther than a distance 2. from the ends 
of the glacier, the effect of the finite length on the 
integral is negligible because of the exponential weighting 
function in Equation (15). 

Although Equation (15) is the exact solution of 
Equation (13) only for • constant and a = 0, in the 
Appendix it is shown that the longitudinal averaging integ­
ral in Equation (15) remains a good approximation to the 
solution of Equation (13) when there is a longitudinal 
gradient in " so that 0 'I- 0, and also when there is longi­
tudinal variatIOn in o. Under these conditions, • in 
Equation (15) is the "local" value l(x), dependent on x but 
not dependent on x' in the averaging integral. This robust­
ness of the form of the solution in Equation (15) against 
longitudinal variations of • may help to explain why 
Equation (15) with constant I is able to account fairly well 
for observed glacier flow (see sections 7 and 8), even 
though • probably varies in general with x in actual 
glaciers, as discussed in section 5. 

4. EFFECT OF FLOW IN CHANNEL OF FINITE WIDTH 

By an elaboration of the procedure used in deriving 
Equation (13), it can be shown that for a glacier flowing in 
a finite-width channel whose shape is constant but whose 
ice-filling depth h varies with position x, the longitudinal 
flow-coupling equation is modified by the appearance of 
the channel-shape factor f that enters the well-known 
modified form of Equation (2) 

TB = pghfa. (18) 

The modification of Equation (13) consists in the following 
modified forms of Equations (11) and (14): 

(19) 

(20) 

The parameter 0 in Equation (12) is affected by the 
appearance of a factor w: 

d 
a tR - (wlnh + Inn 

dx 
(21 ) 

w is h/ h, wh~re h is the maximum ice thickness in a cross­
section and h is the thickness laterally averaged across the 
cross-section. Because of the f in Equation (19), the size of 
J is affected by channel shape (see section 5). For a para­
bolic channel, w = 3/ 2, hence the finite channel width has 
an appreciable effect on the parameter o. For large 0 this 
will introduce appreciable asymmetry into the longitudinal 
average, as explained in the Appendix to Part. n. 

Longitudinal variations in ice cross-sectIOn other than 
those that can be approximated as due to variation of 
ice-filling depth in a channel of fixed cross-sectional shape 
result in further modifications of Equation (13), which are 
beyond the scope of the present paper. 
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5. LONGITUDINAL COUPLING LENGTH 

The longitudinal coupling length I, from Equation (19) , 
is typically on the order of one-half to a few kilometers. 
The chief uncertainty in its evaluation is the value of the 
vertically averaged effective viscosity n, which depends, as 
noted earlier, on TB and du/ dx. 

The simplest evaluation of n is for a shear stress T xy 
that increases linearly from 0 at the surface to TB at the 
bed, and a longitudinal strain-rate au/ ax that is constant 
with depth. This is the model of Nye (1957). The viscosity 
n(y) is given, for n = 3, as the solution of 

- nS + ~ T 27) - NS = 0 [
dU] 2 [y _ Y] 2 

dx 2h B 
(22) 

where N is the viscosity parameter in Equation (7) . 
Equation (22) can be obtained from Nye (1957, equation 
(26» . For a wide channel, n is a uniformly weighted aver­
age of n(y) over YB ' Y ~ Ys' as in Equation (6). Values 
of n are shown in Figure 3, for N = 1.0 bar ails, n = 3, 
and for a typical range of longitudinal strain-rates. Values 
are also shown for a semi-circular channel. In this case, the 
viscosity distribution in Equation (22) applies approximately 
if 8u/8x is constant over the cross-section, and to calculate 
the cross-section-averaged n the 7)(y) values are weighted 
not by a constant as in Equation (6) but by 2(ys - y)/ h2, 
where Ys - y is the radial distance from the center of the 
semi-circle. The approximation in using Equation (22) in 
this case is that it does not include the effect of strain-rate 
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Fig . 3. Plot of cross-sectionally averaged effective viscosity 
n as a function of longitudinal strain-rate dui dx. from 
Equation (22). For an infinitely wide channel (curves 
designated f = 1). the averaging is done by Equation 
( 6), with aul ax assumed constant in Equation (22) . For a 
semi-circular channel ( f = 11 2) , the averaging is 
weighted by the radial distance from the channel center 
line. as explained in the text. For each channel type, 
curves are given for basal shear stress TB = 1.0 bar 
(solid curves) and 1.5 bar (dashed curves). The viscosity 
parameter N in Equation (22) is taken as 1.0 bar ai/So 

and n is 3 . 
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components e yz and (to a lesser extent) e zz (z is the trans­
verse coordinate) which, because of the particular constraint 
on lateral strain imposed by the semi-circular boundary, will 
be non-zero in this case even though e xx = Bu/ Bx is uni­
form over the cross-section; however, e yz and e zz are 
probably appreciable relative to e xx only in the marginal 
zones, where I) is dominated by the basal-marginal shear 
stress, hence their effect is probably small. 

A useful approximation to Tj for a wide channel, from 
Equation (22), is 

The approximation is good to ±I % for I du/ dx I < 0.1 a-I 
when N = I bar aIls and TB = I to 1.5 bar, as can be 
checked from the values in Figure 3. For a semi- circular 
channel, the corresponding approximation is 

N3 [T 2 du -'2/3 ) 
Tj = (4.8) -In .:lL I-I + I . 

TB' 4N2 dx 
(24) 

It is good to ±5% for Idu/dxl :S 0.1 a-I, when N = I bar 
aIls and TB is in the range 1.0 to 1.5 bar, as can again be 
checked from Figure 3. Equations (23) and (24) for Tj are 
in general much more appropriate in normal glacier-flow 
situations than is Equation (7), because the longitudinal 
strain-rate rarely dominates the internal shear flow to the 
extent required for validity of Equation (7). 

Figure 4 gives values of R, from Equation (19) , based 
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f = , 
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Fig . 4. Dependence of longitudinal couPlinr length R on 
average longitudinal strain-rate < I dui dx > for average 
flow velocity Uo = 50 m a-I and ice tlz!..ckness h = 250 m. 
from Equation (19) with n = 3 and TI as calculated in 
Figure 3. Curves for a very wide channel are labeled 
f = 1. and those for a semi-circular channel are labeled 
f = 1/ 2. Curves for basal shear stress TB = 1.0 bar are 
solid. those for 1.5 bar are dashed. The meaning of the 
angular brackets around < I dui dx I >, representing a 
longitudinal average, is explained in the text and will be 
more fully discussed in Part V. section 2. 
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on the Tj values plotted in Figure 3 and on mean flow 
velocity Uo = 50 m a-I and ice thickness ho = 250 m, for 
wide (f = 1) and semi-circular (f = 1/2) channels. 

If the flow relation in Equation (1) is introduced into 
Equation (19), we find that for a given TB the ratio l/h 
will be independent of h: 

(25) 

Within the range of the parameters considered in Figure 4, 
R/ h ranges from about 1.5 to over 10. (In obtaining 
Equation (25) from Equations (I) and (19), the distinction 
between ho and h is dropped, these quantities being 
approximately the same for a small perturbation .) 

Evaluated for the standard flow law that underlies 
Equations (I) , (7), and (22), the coefficient Cl in Equation 
(25) is 

(26) 

where the factor q is n + 2 for a very wide channel and n 
+ 3 for a semi-circular channel. If Tj in Equation (25) is 
taken from Equation (23) for a wide channel, n being 3, 
then, with Equation (26), 

(27) 

where 

T = ~ ( I du I )-1/3 
2N dx 

(28) 

The angular brackets represent an appropriate longitudinal 
average, as explained below. If, similarly, for a semi­
circular channel (f = 1/ 2), Tj is taken from Equation (24), 
then 

R/ h = 1.1 /In(T' + 1). (29) 

Values of l / h from Equations (27) and (29), over a range 
of longitudinal strain- rates , are shown in Figure 5 for TB = 
I and 1.5 bar and for N = 0.7 and 1.3 bar a l / 3 , which 
approximately bracket the range of N values that have been 
determined from bore-hole measurements in temperate 
glaciers. 

The parameter T that controls R/ h in Equations (27) 
and (29) is , from Equation (28), the ratio of basal shear 
stress to a measure of the average longitudinal deviatoric 
stress. In order to control correctly the effect of 
longitudinal stress gradient on flow , R/ h as obtained from 
Equations ( 19) and/ or (25)-(29) should be based on an Tj 
value that is appropriately averaged longitudinally, and 
therefore on a correspondingly averaged value <du/dx >, 
which is represented by the angular brackets in Equation 
(28) and in Figures 4 and 5. In Part V, section 2, it will 
be shown that for longitudinal flow variations that are 
approximately sinusoidal

r 
< I dU(dX I ) is about one-third of 

the maximum value of du/ dx that occurs . 
The values of R/ h and their varIatIOns with channel 

shape and longitudinal strain-rate are generally similar in 
Figures 4 and 5, but the dependence on basal shear stress 
is markedly different. The difference reflects the fact that 
the curves in Figure 5 are for given ice-viscosity 
parameters, whereas the curves in Figure 4 are for a given 
glacier- flow velocity (50 m a-I) and thickness (250 m). As 
explained below, the latter curves are more nearly appropri­
ate if a substantial part of the flow velocity U o is 
contributed by basal sliding. 

Figures 4 and 5 suggest that for temperate valley 
glaciers, with f near 0.5 and with longitudinal strain-rates 
typically of order 0.01-0.05 a-I, R/ h should be in the range 
from about I to 3, whereas for ice sheets, with f near I 
and with du/ dx - 10-4 to lO-s a-I, the expected R/ h is in 
the range from about 4 to 10, distinctly higher than for 
valley glaciers. 

The foregoing results provide a basis for considering 
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Fig . 5. Dependence of J/ h on <Idu/ dxl) as given by 
Equation ( 27) for a wide channel ( f= I, upper curves) 
and by Equation (29) for a semi-circular channel 
(f = 1/ 2, lower curves). For each basal shear-stress value, 
a pair of curves is given , the upper curve for 
N = 0.7 bar a1/ 3 , the lower for N = 1.3 bar a 1

/
3

. For 
T = J.O bar (solid curves), the pair of curves is joined 
b~ diagonal cross-hatching to indicate the range of N 
values that occur for temperate glaciers. For TB = J.5 bar 
(dashed curves), the curves are joined similarly by vertical 
hatching. 

possible vanatlOns in coupling length R along the length of 
a given glacier. Longitudinal variation of R arises from 
variation of the product h'fi in Equations (11) or (19), 
because the hand 7'/ there are variables of the actual, 
longitudinally varying flow state, rather than fixed values of 
the datum state, as explained in section 3. If the product 
h'fi is longitudinally variable, a will necessarily be non-zero 
according to Equation (12). Figures 4 and 5 give an 
indication of the variations in R that can be expected as a 
result of variations in longitudinal strain- rate along the 
length of a glacier. Under a given strain-rate variation, the 
expected percentage variation in R for a valley glacier is 
only about half as great as for a wide ice sheet. Substantial 
variations in R on this account are particularly to be 
expected in and adjacent to ice falls, where high 
longitudinal strain-rates occur locally. 

Longitudinal variations in h probably result in little 
variation in R except near the terminus and head of the 
glacier, where h goes to zero, and, again, in ice falls , 
where h is small. According to Equations (1 I) or (19), R 
would go to zero or become small in these places. This 
effect stems physically from the well-defined role of the ice 
thickness in transmitting longitudinal forces along the length 
of the glacier, expressed in the first term of Equation (4) . 
In the approximation represented by the perturbation 
treatment here, R varies as Iii, from Equations (11) or (19). 
However, this approximation is not good in the places 
where h becomes small, because there the perturbation from 
a datum state appropriate to the glacier as a whole is not 
small. Nevertheless, to the extent that the perturbation 
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treatment remains valid iil a rough way, an effect of the 
kind stated in which R goes to zero as h does, is 
intuitively r~asonable and can be expected. There is perhaps 
room for the intuitive conjecture that in these places the 
effective R might go to zero more nearly as h than as ./h. 
If so it would be behaving more as indicated in Equations 
(25), , (27), (29), and (32), rather than as in Equations (~I) 
or (19) by the strict requirements of the perturbatIOn 
treatment. 

The last two paragraphs indicate that the assumption 
that R does not vary longitudinally, which underlies the 
strict derivation of the longitudinal averaging integral in 
Equation (A-15) in the Appendix, is only an approximati?n. 
The effects of longitudinal variations in R on EquatIOn 
(A-I5) are considered in the Appendix and in section 9, 
and further in the Appendix to Part H. 

In the case of flow by internal deformation of 
isotropic ice, the velocity Uo in Equation (19) arises try 
flow under the same viscosity field Tl(y) that determines 7'/, 
from Equation (22) or the approximate Equations (23) or 
(24). This is, of course, the basis for Equation (26) and the 
consequent relations for J/h in Equations (27) and (29). To 
bring out this point in a more general way, we can de­
fine an average viscosity t1 via a double average of the 
reciprocal effective viscosity Tl(y), linearly weighted, as 
follows: 

r} JYs l.h2 dy 

YB 
J

y Y - Y' ]-1 
~d' 
h7J(y' ) y 

YB 
(30) 

To the approximation that T xyCy) is a I~near fu~ction of. y , 
as in the treatment of Nye (1957), the IDtegral ID EquatIOn 
(30) is what arises in the calculation of the average velocity 
u from the shear flow.· In fact, 

(31 ) 

Equations (22), (30), and (31) constitute a restatement of 
the flow Equation (1) , incorporating Equation (1) as a 
special case when Cl is strictly constant, and also allowing 
for the more general flow equation that can arise within 
the framework in which T xy is a linear function of y and 
Bu/ ax is independent of y; these features characterize the 
theory of glacier flow without longitudinal stress gradients 
(Nye, 1957) and will also apply rigorously to flow with a 
longitudinal stress gradient when that gradient is 
independent of y . The factor 3 in Equation (30) is 
introduced so that when 7'/ is a constant, t1 = Tl. Equations 
(30) and (31) allow us to recast R from Equation (19) in the 
simple and fundamental form 

R/ h = 2/nfTi/ 3t1 (32) 

where t1 is given by Equation (30) and where, if the longi­
tudinal strain-rate auj ax is independent of depth, 'fi is the 
simple average of Tl(Y) over the thickness h as in Equation 
(6) or over the channel cross-section as discussed above for 
a semi-circular channel.t n may be called the "effective 
longitudinal viscosity" and t1 the "effective shear viscosity" 
for the flow. 

• The relation auj ay = T X / 7'/(y) is integrated with respect 
to y to get u(y) and then 1ntegrated a second time to get 
the "vertical" average U. The second form of Equation (30) 
is obtained by an integration by parts . 

t In obtaining Equation (32) from Equations (19), (30), and 
(31), as in obtaining Equation (25) from Equations (19) and 
(1), the distinction between hand ho is dropped, these 
quantitIes being approximately the same for a small 
perturbation. 
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Note that the distinction between the effective longi­
tudinal and shear viscosities, from Equations (6) and (30), is 
not based on any assumptions about viscous anisotropy, al­
though such anisotropy probably contributes to lowering " 
because of the strong ice-crystal fabric of basal ice. A 
shear-viscosity quantity essentially equivalent to " was intro­
duced by Budd (1968, equation (37)), who considered that 
the shear flow governed by " could be strongly non-linear 
(n - 3), while the longitudinal flow governed by Ti was 
approximately linear (Budd, 1968, p. 67). Because Ti in 
Equations (23) and (24) is dependent on du/ dx, however, 
the contemplated linearity is questionable. 

In the case of flow by basal sliding only, n is replaced 
by m in Equation (19), according to Equation (3). On this 
account, the coupling length might be shortened slightly 
(20% or so). On the other hand, sliding increases Uo over 
what it would be for internal deformation only, and this 
augments R, according to Equation (19). This augmentation 
helps to explain why J/h for actual temperate valley 
glaciers (sections 7-9) is somewhat larger than the values 
shown in Figure 5 for the relevant du/dx range of about 
0.01 to 0.05 a-I . An extreme instance of this augmentation 
is in a surging glacier. For the lower part of Variegated 
Glacier under surge in June 1983, when the flow velocity 
was Uo ~ 50 m d-I, with h .. 330 m, TB ~ 1.5 bar, and Ti 
- 0.65 bar a (estimated from Equation (24) with du/dx -
2 a-I), the value of • indicated by Equation (19) is - 4 
km, or R/ h - 12. This long coupling length, which is about 
one-quarter the length of the glacier, helps to explain 
why time variations in velocity were similar at widely 
spaced points up- and down-stream (Kamb and others, 
1985, fig . 5). A surging or rapidly sliding glacier has an 
abnormally low value of the effective shear viscosity n, 
which in this case is not given by Equation (30) but 
instead by Equation (31) with u being determined by the 
mechanics of basal sliding. 

6. DEPENDENCE OF COUPLING LENGTH ON FLOW­
LA W EXPONENT 

The ratio Ti/" in Equation (32) increases with 11 , 

because the weighted average of 71(y) in Equation (30) gives 
enhanced weight to the low values of 71 that occur near the 
bed when the flow law is non-linear. For this reason, as 
well as the factor n in Equation (32), the longitudinal 
coupling length for non-linear flow is longer than for linear 
flow . This was in effect pointed out, though not in terms 
of the coupling length 1 explicitly, by Raymond (1980, p . 
108) in interpreting the results of calculations of the effects 
of longitudinal stress gradients on flow in an idealized ice 
sheet. For n = I, and consequently Ti = ", Equation (32) 
(with f = I) indicates that the ratio 1/ h has the fixed value 
1.15. For n = 3, Figure 5 indicates that at typical 
longitudinal strain-rates in ice sheets, R/ h - 7. This large 
value of I / h is confirmed by a more detailed theoretical 
treatment and by evaluation of field data for ice sheets in 
Part V. 

7. EFFECTIVE SLOPE FROM LONGITUDINAL AVERAG­
ING: COMPARISON OF THEORY WITH FIELD 
EXAMPLES 

The applicability of the theory in sections 3-5 can be 
tested by comparing the effective surface-slope values a* 
that have been obtained from the observed flow in so~~ 
glaciers with values calculated from Equation (15). For this 
purpose Equation (15) is recast as follows . The theoretical 
effective slope c:I' is the value of 0( that, when used in 
Equations (I) or (3) in conjunction with the local thickness 
h, reproduces the local velocity required theoretically by 
Equation (15). Thus, in the case of Equation (I), for a 
small perturbation 

u - Uo = uov = uon(c:I' - 0(0) / 0(0 

where v is given by Equation (15) and where we take 0(0 to 
be the local value of 0(. If we also take ho to be the local 
value of h, and take 
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consistent with small perturbations, then we can convert 
Equation (15) to the form 

where ho = h(x) and f 0 = f(x) in accordance with the 
datum-state specification above. In the case of basal sliding 
only, from Equation (3), the I / n in the exponents in 
Equation (33) is to be dropped. 

In carrying out numerically the longitudinal averaging 
in Equation (33) we can replace the exponential weighting 
function to a good approximation by a triangular function 
of length 41, shown in Figure 2. We will call the length 41 
of the triangular averaging window the longitudinal 
averaging length, as distinct from the "longitudinal coupling 
length" • defined in section 3. 

In Figure 6 are given the results of applying Equation 
(33) (with the exponential replaced by triangular weighting) 
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Fig. 6. Comparison between effective surface slope oc* 
calculated by longitudinal averaging (solid curve, from 
Equation (33), with averaging length 1.4 km) and values 
derived from the measured flow of Blue Glacier (data 
poillts). The dashed curve shows the local slope sin cc(x) 
on the same scale. The solid circles are oc*b values 
obtained from the measured velocities and ice °d~pths by 
Equation (44). The open circles and the data for cc( x) and 
h( x) are from Meier and others (1974 , p. 206-09) and 
are plolled on the 10llgitudinal coordinate scale x of these 
authors' figures 8 and 9 (called t by them) . The open 
circles were obtained from the observed flow on the basis 
of a longitudinal contilluity calculation in such a way that 
the resulting ~b. values are decreased by increasing 
amounts of basal sliding , whereas increased basal sliding 
tends to increase the ~b. values obtained from Equation 
(34) . For x < 0.25 km the two types of data poillts 
coillcide. The flow constant Cl in Equation (1) is 
arbitrarily chosen so that the effective slope oc* at 
x = 0.0 km equals the local slope a there . 

to data from Blue Glacier, Washington (Meier and others, 
1974, fig. 8). The dashed curve is a(x), and the heavy 
curve is a*(x) obtained from Equation (33) with the I/n in 
the exponents omitted and with longitudinal variation of f 
ignored . Omitting the l / n is equivalent to assuming that the 
flow is mainly by basal sliding, but it is done here not for 
this reason but just for simplicity in calculation and because 
for n = 3 it makes little difference anyway. The averaging 
length used is 41 = 1.4 km, which is about 6-7 times the 
ice thickness. 
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The open circles in Figure 6 are CX:bs values calculated 
from flux continuity by Meier and others (1974, table V). 
The solid circles are CX:bs values that reproduce the observed 
velocities uobs when used in Equation (2) together with the 
equation for the surface velocity corresponding to Equation 
(I); thus 

a* obs 
= ~ [(n + 1)(n + 2) ]l/n 

h1+(1/n) pgc1 
(34) 

The effective slope CX:bB defined by Equation (34) in con­
junction with Equation (1) is the same quantity as the 
"basal friction coefficient" introduced by Budd (1968, 
equation (I 1». The representation of the flow in terms of 
the effective slope in effect subsumes under a* the effects 
of longitudinal variations in ice thickness and cross-sectional 
shape factor as well as in surface slope. To obtain from 
Equation (34) the CX:bs values plotted in Figure 6, the 
constant cl is evaluated at x = 0 by taking CX:bs = a there; 
n is taken to be 3. 

The calculated a*(x) curve in Figure 6 follows the 
solid circles rather well, except near the terminus, where 
difficulty would be expected anyway (see section 9). The 
open circles follow a pattern similar to the a*(x) curve but 
drifting away from it down-glacier. This drift reflects in­
creasing contributions from basal sliding, which are implied 
by the flux-continuity calculation (Meier and others, 1974, 
p. 206-10). The peak in flow velocity mentioned in section 
3, at x = 0.7 km, is matched by a peak in a* there, both 
as obtained from Equation (33) and as calculated from the 
observed flow velocity by Equation (34) . 

In Figure 7 is the result of similarly applying Equation 
(33) to data from Variegated Glacier, Alaska (Bindschadler 
and others, 1977). The averaging length used is 4R = 2.0 
km. The CX:bs points in Figure 8 are obtained from the f v 
sin ay values of Bindschadler and others (I 977 , fig. 6) by 
dividing by the shape factor f, which is obtained from a 
smooth curve drawn through the squares and triangles given 
in these authors' figure 7. The longitudinal averaging by 
Equation (33), with variation of f again ignored, gives an 
a*(x ) curve that accounts for the details (local peaks and 
troughs) in the pattern of observed CX:bs points better than 
do the rectangular averages calculated by Bindschadler and 
others (1977, fig. 6). In particular, the peak in the a*(x) 
curve at x = 10.7 km falls where there is a marked local 
maximum in flow velocity and an 0.5 km reach of promin­
ent transverse crevassing. The rectangular averages of 

.. 
Cl 
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0.05 

sin a: 
sin a ~ 
si n a 

15 10 
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Fig. 7. Effective surface slopes for Variegated Glacier . 

o 

Observed values . obtained as explained in the text, are 
shown by poillls connected by a heavy curve. The local 
surface slope , sin et(x) , is shown with a dashed curve. The 
data are from Bindschadler and others (1974 , figs 6 and 
7) and are plotted on the longitudinal coordinate scale of 
these authors . The thin solid curve shows a'* values 
calculated by longitudinal averaging of et( x) via Equation 
(33) with the exponential approximated by triangular 
weighting (Fig. 2), and with averaging length 2.0 km. 
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Fig. 8. Input data for longitudinal averaging calculation of 
flow in Variegated Glacier. The ice thickness h(x) and 
surface slope et(x) in 1978, and' the channel-shape factor 
f( x) , are plotted on a longitudinal coordinate scale x 
where the head of the glacier is at x = 0 and the 
terminus is at approximately x = 20 km. Sources of the 
data are given in the text. Where there is a conflict 
between data sources for h( x), as explained in the text , we 
here use the solid rather than the dotted h( x) curve as 
input to the longitudinal averaging calculation. 

Bindschadler and others (1977) do not show a peak at this 
location. 

The above example reveals an unsatisfactory feature of 
the effective surface-slope values CX:bs as indicators of the 
effects of longitudinal coupling on flow: the CX:bs data of 
Figure 8 give only a weak indication of the flow-velocity 
peak at x = 10.5 km, whereas this is one of the most 
prominent and distinctive features of the observed flow 
curve (Fig. 9b). This shortcoming is rooted in the fact that 
the a:bs values are much more sensitive to the lo~al thick­
ness h than they are to the local flow velocIty u, as 
Equation (34) indicates. Variations in h, real or imagined 
(from observational error), that are not closely linked to 
variations in ii in the way that Equations (I) and (2) re­
quire will show up much more strongly in the a:bs(x) 
values than the variations in u(x) that we are actually 
interested in. 

8. COMPARISON OF OBSERVED FLOW WITH FLOW 
PREDICTED BY LONGITUDINAL COUPLING THEORY 
FOR VARIEGATED GLACIER, ALASKA 

In examining the effects of longitudinal averaging on 
flow , it is therefore more informative to look at the flow 
velocity directly rather than its representation in terms of 
an effective slope a*(x) from Equations (33) or (34). We 
here compare the observed surface-velocity curve uobs(x) for 
Variegated Glacier with theoretical curves u(x) calculated 
from Equation (IS) with use of observational data for a(x) 

and h(x). 
The calculated curves are obtained in the following 

way. The logarithmic slope and thickness values are 
averaged to give a quantity A as follows: 

x+2R 

A(x) = J (nlnaf + (n + 1 )lnh)W .(x· - x)dx' . (35a) 

x-:z R 

For the Variegated Glacier data we use as the weighting 
function W R(x) in Equation (35a) the triangular function in 
Figure 2. The integral in Equation (35a) is carried out as a 
discrete sum over data points at a spacing of tu' = 0.25 
km. By comparing Equation (15) with Equation (35a), in 
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which the I!. operator does not appear, and noting that 
I!.lnr:ll f nhn+1 = Inr:ll f nhn+1 - In~fnh n+1, we see that A(x) 
given by Equation (35a) is v / I~ao nfo nho n+l, calculated 
with a practical limit of :l:2J on the range of integration. 
Therefore, for small perturbations, for which In(u(x)/ uo) 
In(1 + v) ;:: v, from Equation (35a) we obtain 

A(x) - A( xo) = v(x) - v(xo) = In[u(x)/ uol - In[u(xo)/ uo 

= In[u(x)/ u(xo)l 

where Xo is an arbitrary reference point along the length of 
the glacier. Hence we calculate u(x) from 

(35b) 

u(x) is thus matched to the observed velocity at the refer­
ence point x = x o' which in effect evaluates c, in Equation 
(I) there. Since Equation (15) as it stands gIves U rather 
than the surface velocity us' we assume, consistent with the 
basis for Equations (I) and (2), that us/ u is a fixed ratio 
(n + 2) / (n + I) and thus simply scale up ii from Equation 
(15) to calculate the surface velocity by Equation (35b). The 
exponential form of Equation (35b) in a sense restores the 
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Fig . 9. Comparison of observed flow of Variegated Glacier 
in 1977-78 with flow calculated by the longitudinal 
coupling theory from the data in Figure 8. (a) Flow 
velocity ud x) from Equations (J) and (2) based on local 
a( x) and h( x) without longitudinal averaging. (b) Flow 
velocities u( x) calculated by longitudinal averaging from 
Equations (35) with the triangular weighting function of 
Figure 2. for averaging lengths 4l = 2.0 km (dashed 
curve) . 2.5 km (fine solid curve). and 4.0 km (dotted 
curve) . The observed flow uobl x) is shown by the heavy 
solid curve with data points. and is from Raymond alld 
others (unpublished). The calculated u(x) curves are 
matched to uob• at x = 9.5 km. (c) Flow velocities 
calculated by rectangular averaging of surface slope only. 
from Equations (36) . for averaging lellgths of 2.5 km 
(solid curve) alld 4.0km (dotted curve) . The curves are 
matched to uob• at x = 9.5 km. 
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flow non-linearity from the linearizing approximation made 
in Equation (9). In what follows, we use n = 3 throughout. 

The results of the above procedure applied to data for 
Variegated Glacier (Fig . 8) are given in Figure 9. The data 
set a(x) is derived from the profile of surface elevations 
along the glacier center line at 0.25 km intervals measured 
in September 1978 by Raymond and others (unpublished) . 
The data set h(x) is obtained from the ice thickness as 
measured in 1973-74 by Bindschadler and others (1977, fig. 
2), adjusted by the change in surface elevation between 
1973 and 1978 measured by Raymond and others 
(unpublished), and modified in the x intervals O~ km and 
16-20 km as shown by the difference between the solid 
curve and dotted curve in Figure 9. The modifications are 
based on our knowledge of ice thickness at x = 3.0, 6.5, 
8.8, 9 .5, and 11.8 km from bore holes drilled to the bottom 
in 1978-80 and 1982, and on radio echo-sounding at x = 
3.2 and 3.5 km in 1981 and over 16-18 km in 1983. For 
x < 3.0 km, we make a reasonable extrapolation of h(x) 
toward the head of the glacier at x = ° km. The data set 
uob.(x) (Fig. 9b) consists of the annual velocities measured 
from July 1977 to July 1978 by Raymond and others (un­
published). The match point is taken at Xo = 9.5 km. The 
curve of values for the shape factor f (Fig. 8) is obtained 
from Bindschadler and others (J 977 , fig. 6) as explained in 
section 7 above, and extrapolated up-glacier from km 6 . 

Figure 9a shows the flow uL(x) that would occur if 
longitudinal averaging did not operate and if the flow were 
governed by the local a and h via Equations (I) and (2). 
The curves labeled 2, 2.5, and 4 in Figure 9b show the 
calculated u(x ) that results from longitudinal averaging , via 
Equation (35) with averaging length 4J = 2.0, 2.5, and 4.0 
km, respectively. The effect of longitudinal averaging in 
suppressing the wild oscillations in the uL(x) curve of 
Figure 9a is dramatic, and confirms the large attenuation 
expected for the flow response to short-wavelength 
variations in a( x) as discussed in section 3. The best choice 
of the averaging length 4. is about 2 .5 km, based on the 
observationally required smoothness of u(x) and on the way 
the velocity peak centered at x = 10.5 km is accounted for 
in Figure 9b. 

The calculated u(x) curves account fairly well for the 
observed uob.(x) (Fig. 9b) from about Km 14 up-glacier to 
about Km 5. The detail in the uob.(x) curve between Km 
5.5 and 6.5 is probably the result of the entrance of a 
main tributary over this interval (see Bindschadler and 
others, 1977, p. 187). Since this causes violations of the 
simple assumptions on which Equation (15) is based, it is 
not surprising that the theoretical u(x) curve does not 
reproduce the detail in the uob.(x) curve there. 

But up-stream from Km 5.5 a major discrepancy 
between u(x) and u b.(x) develops. There is no way to 
account theoretically for the high peak at Km 4.5 with any 
choice of the averaging length 4J. It appears to us that 
over the interval Km 5.5 to 3.0, and perhaps up to about 
2.0, a major component of flow velocity, amounting to 
-10-20 cm d-1, is added over and above what would be 
expected on the basis of the flow characteristics of the 
glacier below Km 7. This added component is probably an 
extra contribution from basal sliding. It is very significant, 
we think, that this large extra contribution occurred in just 
the reach where in 1982 the surge of the glacier began 
(Kamb and others, 1985), and where in previous years the 
flow events called "mini-surges" developed (Kamb and 
Engelhardt, in press). 

The calculated u(x) curves in Figure 9b include the 
effect of longitudinally varying shape factor f. There is a 
large effect only below Km 16, where f increases markedly 
down-stream (Fig. 8) as the valley widens. Without the 
effect of f, the u(x) curves diverge below u b (x) from Km 
12 onward . Even with the effect of f, th·ere is some 
divergence beyond Km 14. 

To compare the results of our approach with the type 
of longitudinal averaging that has been considered 
previously, in Figure 9c we show velocity curves calculated 
on the basis of longitudinal averaging of surface slope only, 
using a rectangular ("box-car") averaging window. The 
calculation is done in a manner analogous to Equations (35a) 
and (35b) as follows . The slope is averaged logarithmically 
to give 
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B(x) I
X+2R 

nln ex· W~(x' - x)dx' (36a) 
X-:l. 

with W~ (x' - x) being the rectangular weighting function 
shown in Figure 2, and the velocity is calculated from 

u(x) (36b) 

The factor involving h(x) in Equation (36b) arises because 
of the dependence of u on local h required by Equation (I) 
when only longitudinal averaging of ex is considered. The 
velocity curves labelled 2.5 and 4 in Figure 9c are cal­
culated in this way for averaging lengths of 2.5 and 4.0 km. 
These curves give a much poorer representation of uob.(x) 
than do the curves calculated by our method (Fig. 9b). 

9. CALCULATED AND OBSERVED FLOW OF BLUE 
GLACIER, WASHINGTON, INCLUDING THE ROLE OF 
BASAL SLIDING 

Figure II shows the results of applying the longitudinal 
averaging procedure of Equation (35) to the data in Figure 
10 for Blue Glacier, Olympic Mountains, Washington 
(Echelmeyer, unpublished). The match point is taken at x = 
0.06 km on the longitudinal coordinate scale of Figures 6, 
10, and II (which corresponds to t = 1180 m on the 
longitudinal coordinate scale used by Echelmeyer 
(unpublished». The curve uL(x) (Fig. Ila) is the flow 
velocity that the local thickness h(x) and slope cx(x) would 
generate, if they controled the flow locally according to 
Equations (I) and (2). The actual velocity curve u b (x) is 
shown in Figure II b, and is compared there with c~l~ulated 
curves u(x) from longitudinal averaging with lengths 4. of 
1.2, 1.8, and 2.4 km. The weighting function W .(x' - x) 
used in calculating these curves by Equation (35) is the 
exponential shown in Figure 2, truncated at the limits x' -
x = ±2R. From Figure 9b it is clear than an averaging 
length of 1.2 km is in general too short, and 2.4 km is too 
long. The peak in uob.(x) around x = -{).3 km can be fitted 
reasonably well by 4. = 1.8 km. To reproduce the peak 
near x = 0.7 km requires a shorter 4., about 1.5 km, as 
would be expected from Equation (25) because the ice is 
thinner there (see Fig. 10). To calculate in a rough, simple 
way the effect of a possible decrease in • toward the term­
inus, we suppose that 4. decreases from 1.8 km at 
x = 0.2 km to 0.6 km at x = 1.7 km, and represent it over 
this interval by its average, 1.2 km. In addition, we bring 
into consideration the asymmetry in the longitudinal 
averaging that enters when there is a longitudinal gradient 
in R, as noted in section 4. Following Part 11, section 3, 
this is done by using two separate averaging lengths in 
Equation (35), 2L = 0.75 km for x' < x, and 
2R+ = 0.45 km for x' > x, corresponding to VjJ. ~ 0.25 in 
equation (17) of Part n. The averaging interval runs from 

300 

film) 

200 

100 

sin a 

ICE l 
FALL----j 

'11 

I 
/ 

---_/ 

//-/; .......... _ ........ , 
I '\ I' 

I './ \ 
I \ 

I \ 
/1 \ 

\ 

OLL~~~-_~,~.0~~~~~0~~L-L-~1.70-L-L~~~ 

x km 

.6 

.4 

sin a 

.2 

Fig. 10 . Ice thickness h(x) and surface slope a(x) for the 
lower part of Blue Glacier, in 1977-78, from Echelmeyer 
(unpublished). The longitudinal coordinate x is the same 
as in Figure 6. The ice fall in the upper part of the 
glacier extends down to about x = -1.2 km. From about 
x = 1.5 to 2.0 km is the steep terminal front . 
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x' = x - 2._ to x' = x + 2.1+, with total length 
2._ + 2.+ = 1.2 km. Similarly, where the ice thins 
up-stream toward the ice fall, asymmetric averaging is again 
used, with 21_ = 0.7 km, 2.+ = 1.1 km. This modification 
in the longitudinal averaging calculation, the result of which 
is shown in Figure Ilc, gives a velocity peak at 
x = 0.7 km in rough agreement with the observed peak. 
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Fig. 11 . Comparison of observed flow of Blue Glacier in 
1977-78 with flow calculated by the longitudinal coupling 
theory from the data in Figure 10. (a) Flow velocity 
ud x) calculated by Equations (1) and (2) from the local 
slope cx(x) and thickness h(x) without longitudinal 
averaging. (b) Flow-velocity curves u(x) calculated by 
symmetrical longitudinal averaging from Equations (35) 
(with the truncated exponential weighting of Figure 2) for 
averaging lengths 4R = 1.2 km (dashed curve), I .B km 
(fine solid curve), and 2.4 km (dotted curve). The observed 
velocities uob/ x) are shown by the heavy solid curve with 
data points . The calculated velocities are matched to uob• 
at x = 0.06 km. (c) Flow velocity u( x) calculated by 
longitudinal averaging with longitudinally variable and 
asymmetric coupling lengths , as follows: x < -0 .5 km, 
2e = 0.7 km, 2.+ = 1.1 km; -0.5 < x < 0.2 km , 
4R = 1.Bkm; 0.2 < x < 1.7 km, 2R_ = 0.75 km , 
2R+ = 0.45 km. (d) u(x) modified from (c) by 
illlroduction of large sliding-velocity contributions in the 
ice fall (x < -1.1 km) and near the terminus 
(x > 1.2 km) as described in the text . The observed 
uob,( x) is again shown for comparison. 
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Beyond about x = 0.9 km, the calculated curve u(x) 
drops greatly below the observed velocity. This is due to 
the influence of the terminal region of the glacier; in the 
calculation, the rapid thinning of the ice down-stream from 
x = 1.1 km dominates over the increase in cx(x) there, 
resulting in a calculated velocity that decreases rapidly 
down-stream. The discrepancy here probably reflects 
increasing contributions from basal sliding as the terminus is 
approached. It is known that the sliding component is less 
than about 10% of the total annual motion in the middle 
part of the glacier, x - -{l.8 to +0.8 km (Engelhardt and 
others, 1978; Echelmeyer, unpublished), whereas it increases 
both in absolute and relative amount near the terminus as 
indicated by measurements of marginal sliding there (Meier 
and others, 1974, p. 198). 

Up-stream from x = -{l.9 km the observed velocity 
shows a strong up-swing, which is not followed by the 
calculated u(x) curves in Figure lib. This reach is the 
lower part of a large ice fall that heads the glacier; it is 
evident in Figure 10 in terms of the high slopes and low 
ice thicknesses for x SO -1.2 km. The high velocities there 
are due to rapid basal sliding, amounting to as much as 
130 m a-I, which was observed at the head of a tunnel 
driven to bedrock (Kamb and LaChapelle, 1968; Kamb, 
1970, p. 706, example 4). 

The amount of internal deformation flow observed in 
the tunnel, 30 m a-I, is approximately what is calculated at 
x :;; --1.2 km in Figure lla and b, indicating that the 
theory based on Equation (I) accounts roughly for the flow 
due to internal deformation even under the extreme con­
ditions in the ice fall. The reduction in the amount of 
internal deformation flow in the ice fall stems from the 
fact that the somewhat increased TB there (increase of 
15-25%) is more than offset by the effect of the greatly 
reduced ice thickness via the factor h in Equation (I). 

For the longitudinal coupling theory to take into 
account the large flow contribution from basal sliding in the 
ice fall and near the terminus, a source term that represents 
this contribution needs to be added to the right-hand side 
of Equation (13). To do this by including a contribution to 
u from Equation (3) would necessitate making the factor cll 
in Equation (3) be a function of x that expresses the 
change in sliding contribution from a large amount in the 
ice fall to a small or negligible amount below the ice fall, 
with little change in TB' A simple approximate way of 
doing this is to add to F(x) as given by Equation (14) the 
x-dependent quantity In(1 + uB/ uO) where uB/ uO represents 
the ratio of basal sliding to internal deformation flow . The 
same quantity then appears as an addition to the existing 
source term in the longitudinal averaging integral in 
Equations (15) and (35). Just as in the case of the localized 
extra sliding contribution to Variegated Glacier noted in 
section 7, the x-dependent variation of uB/u

O 
must occur 

for reasons beyond the scope of longitudinal coupling theory 
as formulated here, hence the theory provides no a priori 
way of prescribing it. An a posteriori, ad hoc, and 
therefore "not-to-be-recommended-for-general-use" way of 
doing it simply for illustrative purposes is to treat uB/uo as 
an x-dependent "fudge factor" and to adjust it to improve 
the match between calculated and observed u(x) . Figure lId 
shows the result of doing this in the following simple way. 
For the utmost simplicity (doubtless an oversimplification), 
we take uB/uO to be a step function with constant value 5.5 
in the ice fall, dropping abruptly to zero at x = -1.1. To 
represent similarly the sliding contribution near the 
terminus, we add a second-step function, for which uB/uO 
jumps from 0 to 4.5 at x = +1.2 and is constant from 
there to the terminus. The parameters 1, 1+, and 1_ are 
the same as for the curve in Figure lIe. As expected, this 
ad hoc procedure for including a sliding contribution in the 
longitudinal averaging calculation makes a distinct improve­
ment in the agreement in Figure lId between u(x) and 
uob.(x) in and adjacent to the reaches where sliding is 
known to be important. 

The quasi-exponential tail of decreasing velocity u(x) 
from x = -1.1 km, where the assumed input contribution 
from sliding terminates , to about x = -0.8 km is the direct 
effect of a large longitudinal stress gradient in the lower 
part of the ice fall, by which the high velocities in the ice 
fall extend their influence down-stream over a distance of 
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the order of the coupling length. We would expect J to be 
relatively short here because Ti should be relatively small in 
the reach of large longitudinal compression near the base of 
the ice fall. (In the calculation for Figure lid the value 1_ 
that controls the down-glacier influence of the ice fall is 
0.35 km.) 

The large increase in basal sliding toward the terminus 
makes it difficult to judge exactly how important the 
effects of decreasing 1 and the associated asymmetry in 
longitudinal averaging are in bringing forth the peak in 
flow velocity near x = 0.7 km, which is where the surface 
slope has a pronounced local maximum as discussed in 
sections 3 and 7. The velocity peak, in terms of effective 
slope values a, was obtained in section 7 by longitudinal 
averaging with 4J = 1.4 km, only slightly different from the 
average value 2J_ + 2J+ = 1.2 km used in calculating u(x) 
in Figure llc; thus there is a general consistency between 
the two approaches. On the other hand, a gentler, more 
distributed decrease in I toward the terminus, as specified 
below,· one that seems reasonable in relation to u(x) there, 
generates a u(x) curve little different from the one for 
41 = 1.8 km in Figure llb, with no peak at x = 0.7 km. 
We could say that the observed velocity peak at x = 0.7 km 
definitely requires the more rapid decrease in J around x = 
0.2 km, were it not for the fact that the large increase in 
sliding velocity toward the terminus might also somehow be 
involved in producing the peak. 

10. EFFECT OF LONGITUDINAL COUPLING ON BASAL 
SHEAR STRESS 

Because many previous discussions of the subject have 
concentrated on how the basal shear stress is modified from 
the "slope-stress" value (given in Equations (2) or (18» by 
the effects of longitudinal stress gradients, as summarized 
by Raymond (1978, p. 808, 1980, p. 104) and Paterson 
(1981, p. lOO), and also because in ice-sheet-flow modeling 
it is a common practice to formulate ice-flow velocity in 
terms of a direct relation to basal shear stress (e.g. Lingle, 
1984, equation (6)), we indicate here how the results of the 
longitudinal flow-coupling theory developed in the present 
paper are expressible in terms of the effect of longitudinal 
coupling on basal shear stress. This is obtained simply by 
combining the result of Equation (15) with Equation (I), or, 
in the case of basal sliding only, with Equation (3). The 
most attractive form of the combination is obtained if we 
choose for the datum state ho, a o the local h(x) and cx(x) 
at a point x where the basal shear stress is to be 
calculated. From Equations (I) and (2), Uo is then related to 
the local "slope stress" T L for simple shear ("laminar flow") 
by 

(37) 

In this case, the introduction of Equations (15) and (I) into 
Equation (9), in which now M = 0 at x (but not in 
general at x' f. x) because of the chosen datum state ho 
h(x), gives 

+'" 

TB(X) T L(X){ I + 211 I......, t.ln(ah1+(1 /n»e- I x' -x I /1 dx' } 

(38) 

Introducing T L(x') = pgcx(x' )h(x'), based on Equation (37), 
into the integrand in Equation (38), we can express the 
result as 

• Averaging parameters as follows: x < 0.55 km, 41 = 

1.8 km; 0.55 < x < 0 .8 km, 2C = 1.05 km, 21+ = 0.75 km; 
0.8 < x < 1.1 km, 21_ = 0.9 km, 21+ = 0.6 km; 1.1 < x < 
1.4 km, 2C = 0.9 km, 2J+ = 0.3 km; 1.4 < x < 1.7 km, 
21_ = 0.75 km, 21+ = 0.1 5 km. 
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The first term on the right can be included within the 
integral, and the I!. operation expanded to first order, 
giving 

T (x) = ~ J+"'T (X)[I + l!.(h1
/
n
T!.(X'» }-lx'-xl/ldX' 

B 2 J L h1/ n(X)T (x) . 
-<D L 

Since by definition of the I!. operation 

the above relation simplifies to 

T (x) = -- T (x')h 1/ n(x')e- 1x -xl/'dx' I J+'" , 
B 21h1/n L 

(39) -
where the quantity h outside the integral is h(x). 

The form of Equation (39), which is closely related to 
Equation (33), shows that the effect of longitudinal stress 
gradients on the basal shear stress can be obtained by an 
exponentially weighted longitudinal averaging of the local 
slope stress T L' the exponential scale length being the longi­
tudinal coupling length I . The local thickness h(x') also 
enters the weighting factor in the averaging, but weakly, 
because of the exponent I/n. If basal sliding dominates, 
then the factors h1/ n in Equation (39) are to be omitted. 

The effect of the T term on the relationship in 
Equation (39) is discussed in Part IV. 

11 . CONCLUSIONS 

Because the longitudinal coupling theory in sections 2 
and 3 is developed on the basis of the linearization in 
Equation (9), which approximates longitudinal variations in 
the flow of an ice mass as small perturbations upon an 
overall average flow, the theory should work best under 
conditions where the longitudinal variations in ice thickness 
and surface slope are small. Part V will provide an 
idealized test of this situation, and shows that the theory 
tests out rather well. In actual glacier-flow situations for 
which longitudinal variations in ice thickness and slope are 
not small perturbations, one might not expect the theory to 
give more than a rough approximation to the observed flow. 
Nevertheless, the foregoing comparisons between observations 
and calculations show that in the parts of Blue Glacier and 
Variegated Glacier where the flow is dominated by internal 
deformation, the theory is able to account reasonably well 
for the longitudinal variations in flow (sections 8 and 9) or 
for their representation in terms of effective slopes (section 
7). This is accomplished with a coupling length 1 that is 
for the most part longitudinally constant in each glacier. In 
Blue Glacier, we seem to have an example of a situation in 
which a decrease in • toward the terminus has a noticeable 
effect. In handling such a situation for a valley glacier, the 
longitudinal averaging becomes asymmetric, according to the 
theory developed in Part lI. 

The averaging lengths (41) that achieve the best match 
between calculated and observed velocities (or effective 
slopes) for Blue Glacier and Variegated Glacier lie in the 
range 1.2-2.5 km, corresponding to ' / h '" 1.5-2.5, h being 
the ice thickness. This falls within the range of theoretical 
./h values for semi-circular channels in Figures 4 and 5, 
for longitudinal strain-rates in the range 0 .0 1-{).05 a-I, 
which are typical for these glaciers. In Figure 5, the 
predicted range of '/h values for semi-circular channels at 
strain-rates of 0.01-{).05 a-I is somewhat low, but three 
factors tend to increase J/h toward the value c. 2 that is 
actually observed: (I) the effective longitudinal strain-rate 
<du/dx> to be used in Figure 5 is reduced from the 
maximum center-line values by a factor of about 0.2, 
because of averaging over the cross-section (factor 
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'" (n + I)/(n + 3» and longitudinally (factor 0.3, see section 
5 and Part V); (2) the actual channel shapes are 
intermediate between semi-circular and very wide; (3) a 
significant fraction of the flow may be by basal sliding, 
which, as explained in section 5, raises J/h over the values 
calculated in Figure 5. 

A large flow contribution from basal sliding in the 
Blue Glacier ice fall and near the terminus makes itself 
evident as a large excess of the observed velocity over what 
is given by the longitudinal averaging calculation in these 
reaches. When the calculation is modified in an ad hoc way 
to include a sliding contribution, the results show how the 
high sliding velocities in the ice fall are felt in attenuated 
form below the ice fall to distances of orde~ J through the 
action of a large longitudinal stress gradient there. 

In Variegated Glacier before surge, a major excess of 
observed over calculated velocity in 1977-78 is found in the 
very reach of the glacier where the 1982 surge later started, 
implying that an abnormally large amount of basal sliding 
was occurring in this reach prior to the surge. 
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APPENDIX 

SOLUTION OF DIFFERENTIAL EQUATION FOR LONGI­
TUDINALL Y COUPLED FLOW 

Equation (13) is of the form 

(A-I) 

where 1Ix; is the second-order linear differential operator 

d2 d 
IIx = -.2- - 20' - + 

dx2 dx 
-~ [.2 ~l + I.(A-2) 

dx dxJ 

The second form of IIx in Equation (A-2) follows from 
Equations (11) and (12) if n, uo' and To are constant, as 
they are in the perturbation treatment here, in which case 0 

is given simply by 

o = jJ. = dl / dx (A-3) 

The reason for replacing 0 by the symbol jJ. at this point 
will be explained in Part n. 

Equation (A-2) shows that the operator fix is self­
adjoint (Courant and Hilbert, 1931, p. 298; some authors 
call this "formally self - adjoint"), and from the theory of 
differential equations (Courant and Hilbert, 1931, p. 302; 
Stakgold, 1979, p. 194) it is known that for homogeneous 
boundary conditions on v(x) the solution of Equation (A-I) 
can then be written 

x 2 

v(x ) = J FmG(xl~)d~. (A-4) 

Xl 

Here G(x I 0 is the Green's function for the problem, which 
is the function that satisfies the differential equation 

(A-5) 

over the given interval Xl ' X , x~ and also satisfies the 
same homogeneous boundary conditIons placed on v(x) at 
the boundaries X = Xl and x2. In Equation (A-5), 6(x) is 
the Dirac delta function . Equation (A-5) implies that G 
satisfies the homogeneous equation 

(A-6) 

everywhere in Xl ' X , x 2 except at X = t, and also that 
the function G(x I 0, which must be continuous at X = t , 
satisfies the f irst- derivative "jump condition" there: 

(A-7) 

If R is constant and therefore 0 = 0 in Equation 
(A-2), then Equation (A-6) can be solved at once, giving 
solutions of the form 

G(x) '" e±x/' (A-8) 

or linear combinations thereof. Different linear combinations 
are required for x , t and for X ~ t, in order that G 
satisfy the jump condition in Equation (A-7). If the 
boundaries are allowed to recede to large distances (±co), the 
required homogeneous boundary conditions become G .... 0 as 
x .... ±"', and in this case the positive and negative exponen­
tials, without combination, are the proper forms of G for 
X , t and x ~ C respectively: 

x , 
(A-9) 
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If we now choose a+ and a_ so that G is continuous at 
x = t and satisfies Equation (A-7), we find 

Go(xlO = ~ e-lx-tI/J . 
21 

(A-IQ) 

When Equation (A-IQ) is put into Equation (A-4), and t 
replaced by x', we get the solution quoted in Equation 
(15). The subscript 0 on Go in Equation (A-IQ) is a 
reminder that this is the Green's function for /l = a = O. 

Although the application of homogeneous boundary 
conditions at infinitely remote boundaries (xl .. --:"" 
x 2 .. +"') seems somewhat arbitrary and unrealistic 10 

relation to actual glacier-flow problems, it is the natural 
condition to apply in the perturbation treatment under 
consideration, since this is based on a datum state with 
constant uo' ho' and ao extending indefinitely in x. 
However, it is readily possible to give a solution on a finite 
interval xl' x 2 with boundary values vl and v2 prescribed 
at xl and x 2• This is done by the methods given by 
Courant and Hilbert (1931, p . 305) or Stakgold (1979, p. 
197, equation (2.16)). The Green's function in this case has 
four exponential terms, one of which, the lead term, has 
the form of Equation (A-IO) with a multiplicative factor 
near I. As long as x is farther from xl and x 2 than a 
distance 21, all of the other terms are reduced by a factor 
smaller than e-2, regardless of the value of t, so that the 
Green's function reduces to Equation (A-IO) to a good 
approximation. To the solution in Equation (A-4) there are 
added eight exponential functions of x, whose coefficients 
depend on the boundary values vl and v2; of these 
functions, the lead terms have the form 

and, as expected, die off exponentially from the boundaries 
with scale length 1. Thus, as long as the "point of observ­
ation", x, is farther from the boundaries than 21, the 
finite-interval boundary-value solution reduces for practical 
purposes to Equation (A-4) with Equation (A-IO). In the 
present treatment we content ourselves with this simple 
practical result, recognizing that near the terminus or head 
of a glacier, within a distance of -21 , a more complicated 
boundary-value problem must in principle be dealt with, 
and that in these regions the perturbation treatment will 
probably apply poorly, because the longitudinal variations in 
flow are probably not small. These same or similar 
considerations apply equally to the more complicated 
situation where J varies with x, as discussed below. 

The effect of longitudinal variation in 1 on the 
Green's function can be evaluated to a first approximation 
by considering a linear variation, corresponding to a 
constant gradient /l from Equation (A-3): 

(A-II) 

Since J is a non-negative quantity, the form in Equation 
(A-II) restricts the solution space to x jI -Jol /l if /l > 0 
or x , -.ol/l if /l < O. If we make the variable change 

• Z = .::!l. + x (A-12) 
/l 

(where Z is restricted to have the sign of /l) then = jlZ 

and, from Equations (A-6) and (A-2), G must satisfy 

This has solutions of ,the form 

G(Z) = azP (A-l3) 

where a is a constant and p satisfies 

(A-14) 
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so that 

P = Pt = t [- I ± j + :2). (A-15) 

If we take the boundary conditions G = 0 at Z = 0, and G 
.. 0 as jlZ .. +'" (valid for either sign of jl), * then since 
p+ > 0 and p_ < 0, the form of G(xl t) that, analogously 
to Equation (A-9), follow~ from Equation (A-l3) can be 
written 

(A-16) 

where the subscripts + apply for /lZ , jl~, the subscripts -
for jlZ > /l~. (Including /l in these inequalities makes them 
correct for either sign of /l . ) Following Equation (A-12) we 
write ~ = t + .ol/l. Applying Equation (A-7) and the 
continuity condition to evaluate a± in Equation (A-16), we 
obtain 

(A-17) 

where the upper subscripts apply for /lZ , jl~, the lower 
for /lZ > /l~ . This form exhibits the (z, ~) symmetry of 
the Green's function, G(z I~) = G(~ I z), which is a 
consequence of the self-adjoint character of !Ix' Such 
symmetry is also shown by Equation (A-IO). 

Since P+ + p_ = -I, we can rewrite Equation (A-17) 
in the form 

(A-IS) 

where the subscript + applies for jl~ , /lZ, the subscript -
for /l~ > /lZ, This shows that, as a function of ~, G 
depends only on the ratio ~/z. For a given value of jl, the 
function G(~/z) has a fixed form, and is scaled with Z in 
accordance with the Z on the left side of Equation (A-IS), 
A complete picture of the range of Green's functions for 
various values of /l and all possible values of Z is therefore 
obtained by evaluating Equation (A-IS) as a function of 
~/z, The result is shown in Figure 12. It is given in terms 

2.0'~----,-----'-------'----'----"----------' 

~=---=~~~--,J.---=~----,l2.0;;------+'25:----iJ.O 

Vz-
Fig. 12. Exact Green's functions G( Z I~) of the longitudinal 

flow-couplilZg Equation ( 13), for • a linear function of x 
with longitudinal gradient dR / dx = /l = a. The curves 
G( ~) , for five different values of /l , are calculated as 
functions of ~/z from Equation (A-I8), and are scaled 
relative to G( z/~) by the condition in Equation (A-I9) for 
convenience in plaiting. The longitudinal coordinate ~ or Z 

is taken relative to an origin at the point where J = 0, as 
indicated by Equations (A-ll) and (A-I2). 

*These boundary conditions are the natural adaptation of 
the boundary conditions for the infinite domain, discussed 
above, to the semi-infinite domain jlZ > 0 involved here, 
with /l ~ O. For G and 8GI8x to be finite at the 
singularity Z = 0, the differential equation for G requires 
G = O. 
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of the quantity C(Vz) = KG(Z I ~), which has for 
convenience in plotting been scaled by a factor K so that 

Z(1+21L) 

JG(ZI~)d;=21L. (A-19) 
o 

In Figure 13 we compare G(Vz) from Equation (A-18) 
with the exponential Green's function Go in Equation 
(A-10), calculated with J chosen to be the value at t = x 
(or ~ = z.2, namely, J = ILZ . The comparison is made in 
terms of G values, scaled by Equation (A-19) in both cases. 
(This scaling corresponds to putting a reasonable limit on 
the range of x or z over which the Green's function is 
used in a practical calculation, beyond which the function is 
small; it is analogous to scaling to unity the integral of the 
weighting function in Equation (IS) over the averaging 
length indicated in Figure 2. Scaling the inte~al in Equation 
(A-19) to 21L makes the peak heights of G sub-equal in 
such a way that the peaks nest nicely in Fillure 12.) 

The agrezment in Figure 13 between G from Equation 
(A-18) and Go from Equation (A-10) is reasonably good, 
even for IL as large as I, which is large compared to a 
maximum practical value of IL, about 0.3 (see Part 11, 
section 3). The agreement increases as IL decreases. By using 
the form of G given in Equation (A-20), it is readily 
shown. that as IL .. 0, G(x I 0 .. Go(x I O. 

FIgures 12 and 13 may be taken to show the behavior 
of the Green's function in the neighborhood of the 
terminus (at z = 0) or of a deep minimum in J (which 
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Fig. 13. Comparison between the exact Green's function fir~ ) 
from Equation (A-18) (dolted curve) and the symmetric 
exponential Gor~) from Equation (A-JO) (solid curve), for 
three values of IL, both functions being scaled by the same 
integral condition in Equation (A-19). The value of I used 
in Equation (A-JO) for each curve Go(~) is IJ.Z, which is 
the value of I at the point z. Note that the abscissa scale 
for IL = 1/ 4 is different from that for IL = 1/ 2 and 1. 
Also shown is Gl~) (dashed curve) , the asymmetric 
exponential discussed in Part ll, scaled also by Equation 
( A-19). 
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could be taken at some small value of z; see below). A 
more general situation in the longitudinal stress equilibration 
of glaciers would be where I has the local value 10 at 
some arbitrary point, say x = 0, and varies linearly with 
slope IL about that point, as expressed in Equation (A-H). 
To describe this typical situation, it is useful to transform 
from z back to x, by Equation (A-12). G then becomes 

(A-20) 

where the upper subscripts apply for ILt ~he low~ 
for ILt ~ /LX . Designating the quantity 10,/4 + IL"G by G, 
Figure 14 gives Green's functions G(x I 0 from Equation 
(A-20), for IL = 0.25. They are shown as functions of tllo 

1.6.---,-------,------,-----,------,-----,-----,----,----,----, 

'it '-2.6 
o -1.0 

1.2 

C(l /t ) 
0.8 

OA 

....... 

Fig. 14. Exact Green's function [or IL = 1/ 4, represented by 
the dolted curves, which give G(xl t) as a f!:nction of t 
for ~alues of x / la. The quantity G plaited is 
Ro /1 + 1L2G( x I t). calculated from EI/!Jation (A-20); for 
x/ Io = -2.6, the quantity plaited is tG, scaled down for 
graphical convenience. Also shown , by the solid-line curves, 
are symmetric exponentials from Equation (A-lO ), scaled 
so as to have the same peak heights as the exact Green's 
function , and with I for each curve taken to be 
l ( x) = la + /LX for the corresponding value of x/ la as 
indicated. 

for the particular choices xllo = -2.6, -1.0, +1.0, and 
+2.5. Also shown for comparison are symmetrical exponential 
functions Go(x I ~), from Equation (A-10), with 1 for each 
function taken to be the constant value lex) as given by 
Equation (A-I I ) for the particular value of x for that 
curve. 

Figure 14 shows the expected broadening and flatten­
ing of the Green's function in response to the increase in I 
with increasing x. Moreover, it indicates again that the 
symmetric exponential function Go gives a reasonably good 
representation of the actual Green's function G. 

It thus appears that the Green's function for longi­
tudinal averaging in glacier flow is affected in only a 
simple way by longitudinal gradients in the coupling length 
I . The weighting function G(x I ~), viewed as a function of 
t for any particular value of x, is to a good approximation 
of a symmetric exponential with scale length equal to the 
local value, at x, of the coupling length, lex) . 

The effect of non-constant IL (non-zero d 2 R /dx2) on 
the Green's function can be assessed in a rough way by 
obtaining the Green's function in the neighborhood of an 
"angular minimum" in I, represented by lex) = 10 + ILlxl, 
with IL > 0, the minimum being at x = 0. This can readily 
be treated by the methods used above, with the result 

[ lliJP-I + IL 
10 

(A-2I) 
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When G from Equation (A-21) is evaluated and compared 
with the symmetric exponential Go = eXP(-1 t 1/ '0)' the 
agreement is fairly good for IL :;; 0.5. Better agreement is 
obtained with a symmetric exponential of increased scale 
length 'I' where approximately '/'0" I + 0.5IL. The 
increase in '1 is due to the effect of the increase in ,(x) 
away from the minimum. Since over the interval 
-21 0 < x < +210 the gross curvature is roughly d2 ' / dx2 

- IL/2Io' we can conclude that the effect of d2./dx2 is to 
modify the exponential scale length to 

(A-22) 

While this is a definite effect, for IL :;; 0.5 it seems small 
in relation to the roughness of the underlying 
approximations of the theory. 

Our conclusion from the above discussion is that in 
most situations where I varies with x an adequate 
approximation to the Green's function in Equation (A-4) is 
a symmetric exponential, as in Equation (15), with , being 
the "local" value of the coupling length, .(x), treated as 
constant in the integral over x' in Equation (IS). The con­
clusion is reasonably robust against non-zero d2 R/ dx2 , but if 
d2'/dx2 is large, a "curvature correction" in Equation (A-22) 

to the local R can be applied as indicated in the previous 
paragraph. 

The only situation where the above conclusion is likely 
to break down is for points x near a deep minimum in 
J(x). Figure 12 gives an idea of how the Green's function 
will behave in such a place; it will be distinctly suppressed 
relative to the symmetric exponential as it approaches the 
minimum, particularly if the effective IL is I or larger 
(which is unlikely). In this situation the weighting function 
given by Equation (A-20) can be used as a better 
approximation than the symmetric exponential in Equation 
(14). For this practical purpose Equation (A-20) is more 
conveniently written 

J(x)A~G(x It) = rl + IL t - x]P± 
~ '(x) J (A-23) 

where IL = dR/dx and where the subscript + applies for 
ILt , /LX, the subscript - for ILt ~ /LX, p± being given by 
Equation (A-IS). 

For valley glaciers, as noted in section 4, the Green's 
function is in principle somewhat asymmetric if IL "# O. This 
is explained in the Appendix to Part H. 
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