COMPACT SEMIRINGS
-WHICH ARE MULTIPLICATIVELY 0-SIMPLE!

K. R. PEARSON
(Received 21 April 1967)

A topological semiring is a system (S, +, +) where (S, +) and (S, -) are
topological semigroups and the distributive laws

- (Y+z2) = (x-y)+(=-2),
(@+ty) 2= (x-2)+(y-2)

hold for all ,y,z in S; + and - are called addition and multiplication
respectively.

In this paper we suppose that (S, -) is a compact 0-simple semigroup
and examine those additions 4 for which (S, 4, ) is a topological semiring.
The special case where (S, -) is left O-simple is dealt with in detail and we
are able to give a satisfactory characterization of all possible additions.
The results given when (S, -) is left O-simple depend on [4] where the
author has identified all additions when (S, -) is a group with zero (an even
more special case).

Selden has found all commutative additions when (S, -) is left 0-simple
([6], Theorem 14 or [7], Theorem II). Although the proofs given here
do not depend at all on Selden’s results (which are in fact a corollary of the
results in this paper), there are one or two places where the two discussions
are similar in outline.

We begin by recalling some terminology. If S is a semigroup with zero
0 in which {0} and S are the only two-sided [left, right] ideals and
52 3£ {0}, then S is said to be 0-simple (left 0-simple, right 0-simple]. A special
case is a group with zero, which is a semigroup S in which 0 is a zero and
SN\{0} is a group. The structure of compact 0-simple semigroups is given
in § 2.3 of [3], which is an extension to topological semigroups of the Rees
Theorem ([1], Theorem 3.5) tfor algebraic semigroups.

The following lemma is implicit in the discussion of Rees matrix semi-
groups over a group with zero in [1], § 3.1. We sketch a proof for the sake
of completeness.
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LEMMA L. If (S, ) is a finite semigroup which is isomorphic with a
regular Rees matrixz semigroup M°(G; I, A; P) over a group with zero (see
[1], § 3.1) and if e is any non-zero idempotent in S then

i) (S =IGlII1A]+1;

(ii) eS| = |G| |4]+1;
(i) [Sel = |G[I|+1;
(iv) jeSe] = |G]+1.

ProorF. It is easily seen that the only non-zero idempotents in
M(G; I, A; P) are of the form (p,}; 14, u) where iel, pe A and p,, # 0.
Because the matrix P has a non-zero entry in each row and column ([1],
Lemma 3.1), it is clear that when p,;, # 0,

(p;}; i, u) - MG, I, A; P)={(a;7,A)|aeG, Aed} v {0}

Further, the right-hand set has |G||4]+1 members. Hence (i1}, and similarly
(iii). The fourth statement follows because

(Puist,p) - MG I, A; P - (P14, 1) = {(a; 4, p)la € G} L {0}

LeEMMA 2. Let (S, +, -) be a finite semiring in which (S, +) ts a group
and (S, +) is a group with zero. Then (S, +, *) s a field.

ProOF. Because S? = S it follows from [5], Theorem 7 that (S, +)
is abelian. Thus S is a finite division ring and therefore a field (Theorem 16,
Chapter 11, [10]).

We will use E{+] to denote the set of additive idempotents in any
semiring (S, +, +). If S is compact, E[+] is non-empty ([3], Lemma 1.1.10)
and is a multiplicative ideal. For if x €e E[+] and y € S,

vytay = x(y+y) = 2y
and so xy € E[+]; similarly yx € E[4].
THEOREM 1. Let (S, 4, *) be a compact semiring in which
(@) (S, ) has a zero 0 and is O-simple;
) (S, +) is a group.
Then (S, +, -) is a pinite field (with discrete topology).

ProoF. Because E[-] is a single point and also a multiplicative ideal,
it follows that 0 is the identity of (S, +). As {0} is a maximal prcper ideal
of (S, ), we see from Theorem 1 of [2] that {0} is open. Hence each set
{r}(= x+{0}) is open and S is finite. It now follows from Corollary 2.56
and Theorem 3.5 of [1] that (S, -) is completely 0-simple and so is isomorphic

with a regular Rees matrix semigroup .#°(G; I, 4; P) over a group with
zero.
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If ¢ is any primitive multiplicative idempotent, then, since
eS+eS CeS and (S, +) is a finite group, (eS, +) is a group; similarly
(Se, +) and (eSe, +) are groups. But eSe is multiplicatively a group with
zero ([1], Lemma 2.47), which means that (eSe, +, ) is a finite field
(Lemma. 2). Thus there is a prime p (= 2) and an integer » = 1 such that
leSe| = p¥ ([10], page 104), and the order of ¢ in (S, +) is equal to p.
Note that p and » are independent of the idempotent e (Lemma 1).

Let = be any non-zero member of S. Because S is the union of its
multiplicative 0-minimal left ideals (Corollary 2.49 of [1]) and each such
ideal is of the form Se for some primitive idempotent ¢ (Lemmas 2.44 and
2.46 of [1]) it follows that there is a primitive idempotent ¢ such that
x = se for some s in S. Thus

px = p(se) = se4 - -+ +se = s(e+ -+ +e) = s(pe) =s0 =0,

and we see that « has order p in (S, +). Consequently there are integers
a, B, # = 1 with |S| = p%, |eS| = p# and |Se| = p# (Corollary to Theorem 1,
Chapter IV of [10]). Now from Lemma 1,

p* = IGlI[14]+1,

PP = |Gl1A]+1,
p* = |G|I]4-1,
P’ = |G|+ 1.

Hence |G| = $*—1 and so
Pl pE—1 (pP—1)(pr—1)

@1 = (p*—1 — .
# e R R P
If we multiply out and divide by p”, we see that
(1) Pr—pr—1 = pE—phr—pr,

Now if » < § and v < g, it follows that « > and so p divides the right
hand side of (1) but not the left hand side. Hence either v = 8 or » = pu.

Suppose firstly that » = g8; then [4] = 1. Let ¢ be any primitive idem-
potent of (S, -); then |[Se| = |S| (Lemma 1) and so Se = S. Because 4 has
only one member, the regularity of .#°(G; 1, A; P) ensures that p,, # 0
foralliel, 2e 4 ([1], Lemma 3.1). Hence if  and y are non-zero members
of S it follows from (1') of page 88 of [1] that xy % 0. Let f be any other
non-zero idempotent of (S, ). Because Se = S it is clear that f = se for
some s in S and thus

fe = (se)e = s(ee) = se = |.

Hence

fle+-(p—1)f] = fe+(p—1)PP = [+ (p—1)} = pf = 0,
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from which we see that e+ (p—1)f = 0. Consequently,
e = e+0 = et pf = et [(p—1)f+] = [e+ (p—1)f1+} = 0+f = /.

Thus ¢ is the only non-zero idempotent. But S is the union of its multi-
plicative 0-minimal right ideals ([1], Corollary 2.49) and each such ideal is
of the form /S for a non-zero idempotent f (Lemmas 2.44 and 2.46 of [1]).
Hence S = &S and so
eSe = (eSle=Se =S
from which it follows that (S, 4, -) is a field. The result follows similarly
if v = p.
THEOREM 2. Let (S, +,:) be a compact semiving in which (S,*) 1s
0-simple. Then S\{0} is compact and one of the following holds:
() e4+y=0forallx,y in S;
(i) (S, +, ) is a fimite field;
(ii1) addition s left trivial;
(iv) addition is right trivial,
(v) (SN\{0}, +) is an idempotent subsemigroup and x+0 = 0+ = x
for all x in S;
(vi) (S, +) ts idempotent and x40 = 0-+x = O for all x in S.

)
)
)
)

- PROOF. Because {0} is a maximal proper multiplicative ideal it follows
from Theorem 1 of [2] that {0} is open; hence S\ {0} is closed and compact.
As S4S, E[+], S40 and 0-4S are all multiplicative ideals, each is either
{0} or S.

If S+S = {0}, we have (i). Accordingly we assume that S+S = S.

If E[+] = {0}, it follows from Corollary 2 of [2] that (S, +) is a group.
Hence S is a finite field by Theorem 1. Assume now that E[+4] = S.

If S4+0 = S and 0+4S = {0} then, for each « in S, there is a y with
y+0 = «; hence

z+0 = (y+0)+0 = y+ (0+0) = y+0 = z.
Thus, for all z, y in S,
54y = @+0)+y = 2+ (0+y) =240 ==z,

and we have (iii). Similarly we have (iv) if S40 = {0} and 0+S = S.
If S4+0 = 0+4S = S, then, as above, 24+0 = 0+z = x for all «. If
z, y € S\{0}, then 24y = 0, for otherwise

0=ty = (w+z)+y =z+(@+y) =2+4+0 ==
Finally, if S4+0 = 04S = {0}, we have (vi).
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We now turn our attention to compact semigroups which are left
0-simple. If (S, -) is any such semigroup we are looking for a characterization
of all additions - for which (S, 4, -) is a topological semiring (Problem A).
We give what seems to be a satisfactory solution by showing how this
problem can be reduced to the following more restricted problem.

Problem B. If (T, ®) is any compact left simple semigroup, give a
characterization of all additions @ for which (7, ®, ®) is a topological
semiring.

That Problem B is more restricted than Problem A may be seen by
considering a third problem, Problem C.

Problem C. If (S, ) is any compact left 0-simple semigroup, give a
characterization of all additions 4 for which (S, +, ) is a topological
semiring in which (S\{0}, 4, -} is a subsemiring and z+0 = 0+2z =z
for all x in S.

Clearly the class of semirings in Problem C is at least as restricted as
that in Problem A. (In fact we shall see below that it is more restricted in
the strict sense.) On the other hand, there is a 1—1 correspondence between
the semirings (S, 4, -) in C and those (T, ®, ®) in B. For given (S, +, )
in C, (S\{0}, +, -) is one of the semirings in B (we show below that S\{0}
is a compact left simple semigroup) and conversely, given (T, @, ®) in B,
if we adjoin an element 0 as an isolated point to 7" and extend @, ® to
S =Tu {0} by

r@R0=0@x==2x all 2S5,
ztR®0=0Rzxz=0all z€S5,

then (S, @, ®) is one of the semirings considered in C. Thus B and C are
essentially equivalent and each deals with a more restricted class of semi-
rings than does A.

Unfortunately the only known results about Problem B appear to be
in [5], Theorem 2, which gives but part of the information required.

Let (S, -) be a compact left 0-simple semigroup and let 7 = S\{0}.
Then {0} is topologically closed and open ([2], Theorem 1) and (T, ") is a
compact left simple semigroup ([1], Theorem 2.27). We will denote the
idempotents of (S, -) and (T, -) by E[-] and F[-] respectively. If G is one of
the maximal subgroups of T (say G = f'T where /' € F[-]), then T = F[-]G
and, in fact, T is topologically isomorphic with F[-]x G ([8], Theorem 1).
Also, forallzin T and f € F[-], T = T and zf = = ([8]).

ExaMmpLE 1. Suppose (S, +) is as above. Let H be any normal subgroup
of G which is topologically closed and open with respect to G and let +
be any addition of a semiring on (the compact left simple semigroup)
F[-]1H for which the normal subgroups '+ H and H-+{ of H are also normal
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in G. (If + is an addition of a semiring on F[-]H then is H a subsemiring
([6], Theorem 2) and it follows from [4], Theorem 1 that f'+H and H+f
are normal in H.) Then we can extend + to the whole of S by putting

[ (et+fpa Mo if BateH,
extfp = io it Bl ¢ H,
ea+0 = 0+4ex = 040 =0,
foralle, fe F[-]and «, § € G.

LemMA 3. If + s defined as in Example 12 then (S, +, -) is a semiring.

ProoF. Because H and G\H are closed and open in G and the function
¢ : TXT — G, given by ¢(ex, ff) = fa~1, is continuous ([9]), we see that
the sets ¢~1(H) and ¢~*(G\H) are both closed and open. It is clear that -+
is continuous on each of the sets (S X S)N(T'XT), ¢~ (H), ¢~ (G\H) and so,
since each is closed and open and their union is Sx S, + is continuous.

It follows from the lemma of [4] that G U {0} is a semiring. For any
e,feF[] and «,feG we can see that there exists ke F[-] with
ea+ff = h(a+p). This is trivial if B«~1 ¢ H for then

wtf = atlf =0
and any /4 will do. If fa—! € H then ¢ and ff« are members of F[-]1H which
is. a semiring. Thus there is ke F[-] with e+4ffat = A(f'+Bo71) ([5],
Theorem 2) and, since G v {0} is a semiring,
extfp = (e+fpat)a = [A(f'+poa)]a = A[(/'+pa )] = h(xt-p).
The first distributive law,
x(y+2) = vytaz,

is obviously satisfied if any of #, y, z is 0. Hence we can let x = ¢ea, ¥y = [B,
z =gy where ¢,f,ge F[-] and «, 8, ye G. Then if 2 e F[-] is such that

fB+gy = h(B-+v), we see that
w(y+2) = ex - h(B+y) = ex(B+y) = ea(f/'+7871)B,
xy+xz = eaff+eagy = eafi-t+eny.

If yp—'¢ H then, since H is normal in G, ayfal¢ H also and so
z(y+z) = xy4az = 0. If yf~' € H then, because ¢, f’, ayf—'a"1 are all in
F[-]H,

wytaz = (ef-eaypa) («f) = [e('+ayp~a)](xp)
= e[(f'+aypta) (af)] = e(aftay) = e[a(f+y)] = z(y+2).

The other distributive law can be checked similarly.
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The associative law

(@+y)+z =2+ (y+2)

is clearly satisfied if any of «, ¥, z is 0. Thus we can let z = ex, y = /8,
2z = gy wheree, f, g € F[-] and «, 8, ¥y € G. It is a consequence of the distribu-
tive laws that the associativity condition is equivalent to

[(e+fput) +gyat]a = [e+ (fBa+gyat) ]
Thus it is sufficient to show that

et-(f+ey) = (e+/8)+gv
for all ¢, f, g € F[-] and B, y € G. Now there exist Ay, k,, by, by € F[-] such
that
e+ (fB+gy) = ef +m(B+y) = hlf'+ (B+v)],
(e+71B)+8&v = hs(f'+B) gy = ha[(/'+B)+¥].

Hence the result if f/'+pf+y = 0. If f'4+S-Fy £ 0, then B, yf~* e H since
/48 # 0 and p+y = 0, and thus

e+ (fB+gy) = [eB7+(1-H-&vp) 1B
But e, f, gy~ e F[-]1H and so
e+ (1B+gy) = [(eB+/)+&vp~ 1B = (e+1B)+8y.

TueoREM 3. Let (S, ) be a compact left 0-simple semigroup and let +
be a binary operation on S. Then (S, +, *) 1s a topological semiring if and
only if one of the following holds:

(i) x—{—y =O0forallx,yinS,
(i) (S, +, ) s a finite field,;
(iii) addztzon 1s left trivial;
(iv) addmon is right trivial;
(v) T(= S\{0}) is a (compact) semiring (which is multiplicatively left
simple) ami 2+0 =04z =0 for all x in S;
(vi) + s as in Example 1.

ProoF. When one of (i)— (vi) holds it is clear that (S, +, ) is a semi-
ring.

Now suppose that (S, -, *) is a topological semiring. It follows from
Theorem 2 that either one of (i)—(v) holds or else (S, +) is idempotent
and x+0 = 04z = 0 for all x. In this latter case, if f' is any member of
F[-], it is clear that /'S is a compact semiring (which is multiplicatively a
group with zero) of the type (vi) of [4], Theorem 2. Thus if

= {aja e G = #'T and f'+a 7 0},
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it follows from 4], Theorem 2 that H is a subsemiring which is multiplica-
tively a normal subgroup of G, that H is topologically both open and closed
with respect to G and that the normal subgroups f'+H and H+f of H
are also normal in G. If ¢, f € I'[-] and y € G then

Fletty)=Fetffy=1F+1'v=1F+y
and so e+fy = 0 if and only if y ¢ H. Thus if «, € G and fu—1 ¢ H,

ea+ff = (e+fPat)a = Oa = O,
while if fale H,
eatff = (e+fpa1)a # 0.

If o' € H, suppose that e4ffa—' = gd for g € F[-] and d € G; then
=8 =Fgd=f(e-+pat) = f'+Bu € H.
In particular, if «, § € H then
ext+/f = (e+fpat)u = gou € F[-]H

and we see that I[-]H is a subsemiring. Thus + is as in Example 1.

Recall that a semigroup (S, +4) is said to be normal if x+S = S+«
for all x in S. The following lemma (which is almost certainly not original)
is a consequence of this definition.

Lemma 4. If (S, +) is a normal idempotent semigroup then it is com-
mutative.

ProOF. Let z, y € S. Because 24y e x+S = S+, there exists zin S
with 24y = z-+z so that
r+y+z = (z+y)+z = (z4+x)tx = 24+ @+x) = 242 = z+y.
Similarly, because y-+xzeS+x =x+S, there exists w in S with
y—+x = x+w so that
zt+y+zr =zt (y+z) =+ @+w) = (@+z)+w = y+o.
We can now identify all normal additions of compact semirings which

are multiplicatively left 0-simple. We need two further examples.

ExamprE 2. Let (S, +) be any compact commutative idempotent
semigroup with an isolated unit 0. If we define multiplication on S by
putting -0 =0-2 =0 for all x in S and z+y = « for all z, ¥ in S\{0}
then it is clear that (S, +,-) is an additively commutative semiring in
which (S, -) is left 0-simple.

ExampLE 3. Let (F[-], 4) be a compact commutative idempotent
semigroup and let (G, -) be any finite group. Then put T = F[-]XG and
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adjoin 0 as an isolated point to 7 so that S = T u {0}. If we extend +
and - to the whole of S by putting
(e+f o) if a=p,

(e,a)+(f,ﬁ>={0 s

(e, 2)+0 = 0+ (¢, «) = 040 = 0,

(e, a) (1, B) = (e, a" B),
(6,2)  0=0-(¢, ) =0-0=0,

toralle, fe F[-] and «, § € G, then (S, +, *) can be seen to be an additively
commutative semiring in which (S, -) is left 0-simple.

THEOREM 4. Let (S, -) be a compact semigroup which is left O-simple and
let + be a binary operation on S. Then (S, +, ) is an additively normal
topological semiring if and only if one of the following holds:

(i) x+y =0 for all x, y in S,
(i) (S, +,") is a finite field;
(i) (S, +, *) #s as in Example 2;
(iv) (S, +.-) ts as in Example 3.

Proor. When one of (i)—(iv) holds it is clear that (S, +,-) is an
additively normal (in fact, additively commutative) semiring.

Now suppose that (S, +, ‘) is an additively normal semiring; then
one of (i)— (vi) of Theorem 3 holds. Cases (i) and (ii) of Theorem 3 give
(i) and (ii) of this theorem while cases (iii) and (iv) of Theorem 3 are not
additively normal. In cases (v) and (vi) of Theorem 3, E[4] = S and so
it follows from Lemma 4 that - is commutative.

In case (v) of Theorem 3, S\{0} is a compact semiring which is multi-
plicatively left simple. Thus if G is any maximal multiplicative subgroup
of S\\{0}, then G, being an additively commutative semiring ([5], Theorem
2), is a single point (Corollary 1 to [4], Theorem 1) and so (S, +, ) is as
in Example 2.

In case (vi) of Theorem 3, (S, +, -) is given by Example 1. The set H
in Example 1 is a semiring which is multiplicatively a group. But because
addition is commutative here, H must be a single point (Corollary 1 to [4],
Theorem 1). Now H is an open subset of G so that each set {«} in G is open
and G must be finite. This gives us Example 3.

The above theorem is a slight generalization of Selden’s identification
of all commutative additions of a compact semiring which is multiplica-
tively left 0-simple (see [6], Theorem 14 or [7], Theorem II). As we have
seen, all normal additions of such a semiring are commutative, which is not
surprising in view of Lemma 4, so that the additions in Theorem 4 are the
same as those Selden found.
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