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DISTANCE MATRICES 
AND RIDGE FUNCTION INTERPOLATION 

LES REID AND XINGPING SUN 

ABSTRACT. A geometric characterization is given for a collection of points in Rd 

to produce a singular l\-distance matrix. Some quantitative results are established in 
terms of "characteristic matrices". The results in this paper generalize those of Dyn, 
Light and Cheney and have application to ridge function interpolation. 

1. Introduction. In a series of papers concerning the imbeddings of metric spaces 
in Hilbert space, Schoenberg ([SI], [S2], [S3]) systematically studied the properties of 
the matrices (||x/ — Xj\\p) where x\,...,xn G Rd and || • \\p is the /^-norm. These matrices 
are called lp-distance matrices. Among other things, he proved that for 1 < p < 2 the 
n x n matrix (||JC/ — Xj\\p) has at most 1 positive eigenvalue. Schoenberg also proved 
that the matrix (||JC/ — Jt/||oo) has at most 1 positive eigenvalue if the points are restricted 
to be in R2. Herz [H] showed that in IR3, the matrix (\\xi — x/||oo) no longer enjoys this 
property. On the other hand, Herz proved the following general result: if (X, || • ||) is a 
two-dimensional real normed linear space, and x\,...,xn G X, then the matrix (||JC/ —Xj\\) 
has at most 1 positive eigenvalue. 

Schoenberg's embedding argument implies that for 1 < p < 2 the matrix (||JC/ — Xj\\p) 
has exactly 1 positive eigenvalue and (n — 1) negative eigenvalues if the points x\ ,...,xn 

are distinct, which implies that the matrix is nonsingular. The case p = 1 is more in­
teresting: singular l\ -distance matrices exist and one wishes to give a geometric char­
acterization of those configurations of points that give rise to singular matrices. Let 
J\[ := {JCI, . . . ,xn} be a set of n distinct points in Rd, d > 2. Dyn, Light and Ch­
eney [DLC] showed that if !A£ C R2 then the matrix (||x/ — Jt/||i) is singular if and 
only if 9\[ contains a closed path; see [DLC] for the definition of closed path in IR2. The 
following pictures are examples of closed paths formed by four points, six points and ten 
points respectively. 

In the plane, there is an analogous "closed path" characterization for the /oo-distance 
matrices due to the similarity between the l\ and l^ norm in IR2; see [DLC]. 

The concept of "closed path" appeared in a different context in the influential paper by 
Diliberto and Straus [DS]. In that paper, they also introduced "multidimensional closed 
path" in Rd, d > 3. However, as pointed out by Light [L], there are a number of am­
biguities and faults in their formulation. Light [L] re-defined multidimensional closed 
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FIGURE 1 

path in Rd, d > 3, using the structure of a tree. He proved that if the set 9\C contains a 
multidimensional closed path under the new definition, then the matrix (||*,- — Xj\\\) is 
singular. The converse is however not true; see [SX]. 

In Section 2, we give a necessary and sufficient geometric condition for a configura­
tion of points in Rd, d > 2, to yield a singular l\-distance matrix. Inspired by the work 
of Braess and Pinkus [BP], we define what it means for a configuration of points to be a 
sum of rectangles and show that the associated l\ -distance matrix is singular if and only 
if there is a nonempty subset which is a sum of rectangles. This generalizes the results 
of Dyn, Light and Cheney, since in 1R2 a nonempty sum of rectangles is a closed path. 

In Section 3, we obtain some quantitative results. We associate to 9\£ two matrices: (i) 
the l\ -distance matrix, (ii) the characteristic matrix which is nonnegative definite and has 
nonnegative integer entries less than or equal to d. There exist interesting relationships 
between the matrix {\\xt — Xj\\ \) and the characteristic matrix. We show that the matrix 
(||JC/ — Xj\\\) is singular if and only if the characteristic matrix is singular. Furthermore, 
the characteristic matrix allows us to get an asymptotically best possible estimate for the 
lower bound of the eigenvalues of the matrix (||JC/ — Xj-\\ \ ) which is desired in application. 

Finally in Section 4, we discuss the application of our results to the problem of inter-
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polating scattered data using ridge functions. 

2. Sum of rectangles. In what follows, the discussion depends in part on a semi-
norm defined in [SX] whose definition we now recall. We write a generic point in Rd in the 
formx = (£i> • • • > £</)• Using the coordinate functional/?„ : pu(x) = £u, v — 1, . . . , d, we 
define the semi-norm | • \yr on Rn associated with !A£ as follows. If c — {c\,..., cn) G Rn, 
then 

(1) k|^: = E E [Lfa: P"xJ = y} 
v=xyepu<yù 

In [SX], it was proved that | • \^r being a norm is equivalent to the nonsingularity of 
certain interpolation matrices. In particular, Theorem 10 in [SX] implies that the matrix 
(||x/ — Xj-\\ i) is nonsingular if and only if the semi-norm | • \^r is a norm. Note that this is 
still true if the semi-norm in (1) is replaced by some equivalent semi-norm, for example, 

E E iE{cJ:P^xj = y}) 1 <p < oo. 

We use our definition to simplify the calculations in Section 3. 
Recall that the free abelian group on a set X is the set of all functions/: X —• Z such 

that/(a) = 0 for all but finitely many a G X. The group operation is given by addition 
of functions. Let G denote the free abelian group on Rd. We have the following theorem. 

THEOREM 1. Let 9\C := {x\,... ,xn} be n points in Rd. In order that the matrix 
(\\xi — JC/||i) be singular it is necessary and sufficient that there exist an element f of 
G supported on a nonempty subset of fA£ such that for each v> 1 < v < d, and all 

yepAAÛ, 

(2) . E ^ ) : p , ( ^ ) = 3 ' } = 0. 

PROOF. TO prove the sufficiency, assume that / G G is supported on a nonempty 
subset of fA£ and satisfies Equation (2). Then the semi-norm | • | ^ is not a norm. Hence 
the matrix (\\xt — Xj\\\) is singular. To prove the necessity, assume that the matrix is 
singular. Then the semi-norm | • \$r is not a norm. Thus the following system of linear 
equations with unknowns c\,...,cn 

J2{cj : Puixj) = y} = 0, yepM, v = l,...,d. 

has nontrivial solutions. Let (ci , . . . , cn) be such a solution with integer components (this 
is possible because the entries of the coefficient matrix of the linear system are either 1 
or 0). Define an element/ of G by letting 

f(x) = {-i* = XJ 
10, otherwise. 
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It is then easy to see that/ satisfies Equation (2). • 
We need to introduce some notations and definition. The function g £ G which is 

supported on four points xi,X2,^3,X4 and satisfies g(x\ ) = g(x4) = 1 andgfe) = gfe) = 
— 1 will be denoted by g(x\, X2, X3, X4). If xt are of the form 

x\ = ( £ i , . . . , 6 ) , 

*2 = (£i, . . . ,&-i,0,&+i,. . . ,&/), 

x 4 = (Ci, • • •, £ / - i , C-» C/+i » . . . » O - i ' 0 ' O+i ' • • • ' &/)> 

where / < j , £/ ^ Q, £/ ¥" 0' m e n w e say m a t £ *s a signed rectangle which we will 
denote by r{x\, X2, X3, X4 ). 

DEFINITION 1. A nonempty finite set in Rd, d > 2, is said to be a ram of rectangles 
if it is the support of a function of the form E «/̂ - in which each n is a signed rectangle, 
the coefficients nt are integers, and the sum is finite. 

This is similar to the definition of a sum of "bricks" given in [BP]. This formalism may 
seem somewhat daunting, but the geometric picture is quite simple. One may consider 
a signed rectangle to be a rectangle in Rd whose edges are parallel to the coordinate 
axes and which has opposite signs associated to adjacent vertices. Given a collection of 
signed rectangles with integers associated to each, a point is in the corresponding sum 
of rectangles if and only if the sum of associated (signed) integers is nonzero. 

EXAMPLE 1. In [R3, consider the points JCI = (0,0,0), x2 = (0,0,1 ), x3 = (0,1,0), 
X4 = (0,1,1), xs = (1,0,0), JC6 = (1,0,1), x-j — (1,1,1). Let r\ be the signed rectangle 
r(xi,X2,X3,-*4), ri be r(x\,X2,xs,xe), and r^ be r(x2,X4,X(),xj). In this case supp(n + r2 + 
r3) = {x\,X2,X3,X6,x^. Thus {x\,X2,xi,X69xj} is a sum of rectangles. (See Figure 2 for 
the geometric picture.) 

This is also an example of a collection of points whose l\ -distance matrix is singular, 
but which is not a multidimensional closed path under Light's definition [L]; see [SX, 
Example 4]. This is no coincidence as we have the following theorem. 

THEOREM 2. The l\ -distance matrix of a finite set of distinct points C\C= {x\,..., xn } 
C Rd, d > 2, is singular if and only if it contains a sum of rectangles. 

PROOF. TO prove the sufficiency, let / = E n^i be the associated sum of signed 
rectangles. It is easy to see that for any fixed y e R d and 1 < v < d, we have 

Tl{ri(x):pAx)=y}=0. 

Since/ is supported on a subset of fA£, we can write 

£{/•(*,•) : Pv(x}) = y} = £ { / • « : pv{x) = y} 

= X!n'XXr<i*) :P,'(x) = v} = 0. 
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FIGURE 2 

Hence/ satisfies Equation (2) and by Theorem 1, the associated l\-distance matrix is 
singular. 

To prove the necessity, we borrow the techniques used in the proof of [BP, Theo­
rem 4.2]. We define/ E G as in Theorem 1. It suffices to show that/ is a sum of signed 
rectangles. We will induct on M if) := E"=1 [/X*/)|. In order for Equation (2) to hold for 
all v and y, supp(/) must contain at least four points, thus, M > 4. We break the proof 
into four cases: 

CASE (i). 

done. 
d — 2, M = 4. In this case/ itself must be a signed rectangles and we are 

CASE (ii). d = 2, M > 4. By renumbering the points of 9\C if necessary, we may 
assume that/(xj) > 0, x\ = (£i, £2)- In order for Equation (2) to hold for v — l,y = £1 
and v ~ 2,y = £2> there must be X(9Xj G fA£ such that x, = (£1,(2). -*/ = (Ci»^2) 
and/(x/) < 0,f(xj) < 0. Let z = ((1,(2), >* be the signed rectangle r(x\,Xi,Xj,z) and 
le t / = / - r. Now [fa,)! = [/X*i)| - 1, \f(xt)\ = \f{xt)\ - 1, l/fy)| = [A*y)| - 1 
[f(z)\ < l/fe)| + 1 and |/(JC)| = [/(JC)| for the other x G fA£. Since (as was seen in the first 
part of the proof) signed rectangles contribute nothing to the left hand side of Equation 
(2),/ also satisfies Equation (2) and M(f) < M(f), so by the inductive hypothesis,/ is a 
sum of signed rectangles and consequently, so i s / . 

CASE (iii). d > 3, M = 4. As above, supp(/) must consist of four points. Here, 
however, the situation is more complicated. Without loss of generality, we may renumber 
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the coordinates so t ha t / = g(x\,X2,xi,X4) where 

x\ = ( £ 1 , . . . , ik, ak+l,...,«/, (3l+i,..., (3d), 

*2 = (^ 1, - - - , Cik» «ik+1,--.,«/, /̂+l ^ ) , 

x3 = (Ci,. . . ,6,7ife+i , . . . ,7z,/3/+i , . . . , /3rf), 

where a/ ^ 7/, ft ^ 5/. Note that in order for the points to be distinct, there must be at 

least one " a coordinate" and one "/? coordinate". Unlike the case d = 2, t h i s / will not, in 

general, be a signed rectangles. However, it can be written as a sum of signed rectangles. 

We need the following lemma to verify this claim. 

SUBLEMMA. If 

Qx =(au. 

Qi = ( « i , . 

C3 = (fl l , . 

Qi = Oi, . 

. . , <2 m , um+], . 

. . , W m , # m + l , . 

. . , < Z m , V m + i , . 

. . , w m , v m + i , . 

. . , * < / ) , 

...w, 

. . , v d ) , 

. . , v r f ) , 

are four distinct points, then g(Q\, 02, (?3> Ô4) ^ # 5 w m of signed rectangles. 

PROOF OF SUBLEMMA. Let 

Zo = (au...,am,bm+u...,bd), 

zr = (u\,..., wr, ar+i ,...,am, bm+\,..., ^ ) , 

W0 = ( û l , . . . , f l m , V m + l , . . . , V j ) , 

wr = (u\,..., wr, a r + i , . . . , am, vm+\,..., vd). 

Note that zo = Q\,zm — Ô2, wo — 03, wm — QA and we have 

m-\ 

(3) g(ôl,Ô2,Ô3,Ô4) - E gfc^/+l ,W^W / + 1). 
i=0 

Let 

hr,0 = Zr, 

ho,s = (a\,..., am, vm+\,..., vm+s, bm+s+\,..., bd), 

hr,s — (wi , . . . , ur, ar+\,..., am, vm+\,..., vm+s, bm+s+\,..., bd). 

We now have 

d-m-1 
g(Zi, Zi+\, W/, W/+i ) = E K^ij» '̂+1 J> ^J+l ' ^Z+lJ+l ) 

7=0 

which combined with Equation (3) shows that g(Q\,Qi, Q3, Q4) is a sum of signed rect­

angles. • 
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Returning to the proof of Theorem 2, we apply the sublemma with m — I and 

(ai,...,am) = (£ i , . . . , ^ , a* + 1 , . . . , a , ) , 

(bm+\,...,bd) = (/?m+i,...,Â/), 

(wi,...,wm) = (£i,...,£*,7*+i,...,7/), 

(vm+u...,vd) = (6m+u...,6d) 

to see that g te , JC2,*3, x*) is a sum of signed rectangles. 

CASE (iv). d > 3, M > 4. We write JCI = (£1, . . . , £d) and assume, without loss of 
generality, that/(xi ) > 0. In order for Equation (2) to hold for v — 1, . . . , d, y = £u, there 

must be zv = (Cf C, • €i/-C+i Cf) w i t h / t e ) < 0,1/ = 1, . . . , d. We now proceed 
by a series of steps. If <* ± ^i, let J2 = (Éi.&.Cf- • • .<*) and f2 = (Cf.C2.C3 <rf)-
We see from the sublemma above that g(z\, s2, ^2^2) is a sum of signed rectangles and 
let/2 = / + g(zi,£2, ̂ ,£2). I f / fe) > 0, then Af(^) < M(f) and the inductive step is 
complete. If not, we still have M(f2) < M(f) and/2te) < 0. If C? = £1 let s2 = Z2 and 
let/2 = / . 

In the second step if (C?,C2
3) ^ (£i,&), let*3 = ( £ i , 6 , 6 , & - • -Cj) and f3 = 

(Cf'd'Cl» • • • >(j)- The sublemma shows that g t e , ^ , ^ , ^ ) is a s u m °f signed rectan­
gles. Let/3 = f2 +g te , 53, r3, Z3). If/2te) > 0, then M(/3) < M(^) and the inductive step 
is complete. If not, we still have M(f3) < M(f2) and/3 te) < 0. If (Cj%3) = (£1,6) let 
s3 = z 3 andlet/3 = / 2 . 

This process must eventually terminate with M (/}) < M(/_i) completing the induc­
tive step, since if we do not terminate at an earlier stage, we must end with sd_\ = 
(£1, . . . , €d-ud\f(sd-\) < 0 andzd = (Cf. • • • »Ç/_P &/) yielding^ = (£ N . . . , &/_i, &/) 
= xi. In this case, we have / / t e ) = / / t e ) = • • • = f2(x\) = /(*i) > 0 (since x\ is not in 
the support of any of the gt) and thus M(fd) < M(fd_\) < • • • < M (/"). • 

REMARK. Although Theorem 2 gives a geometric criterion for the singularity of the 
h -distance matrices, for d > 3 we still do not have an effective geometric algorithm for 
ascertaining whether a given collection of points satisfies that criterion. 

3. Characteristic matrices. Given the set 9\[ = {x\,...,xn}, we define the matrix 
A = (ay) by letting 

atj = #{pu : pv{xt) = p„(xj)}. 

It is clear from the definition that A is symmetric and that an = d. If the points x\,..., xn 

are distinct, then we also have a^ < d — 1 when / ^ j . We call A the characteristic matrix 

offAC-

EXAMPLE 2. The characteristic matrices of the three closed paths in IR2 discussed in 
Section 1 (Figure 1) are the circulant matrices with top rows being (2,1,0,1), 
(2,1,0,0,0,1) and (2,1,0,0,0,0,0,0,0,1) respectively. 
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EXAMPLE 3. The characteristic matrix of the five points in Example 4 of [SX] is 

/3 2 1 1 1\ 
' 2 3 2 0 2 * 

1 2 3 1 1 
1 0 1 3 1 

\ 1 2 1 1 3 / 

THEOREM 3. The characteristic matrix A of fA£ is nonnegative definite. And A is 
positive definite if and only if the matrix (\\xt — Xj\\ \) is nonsingular. 

PROOF. Let c = (c\,..., cn) e Rn. We have 

\ 2 n d , x2 

c^cT = Y, aacici = E E (Efe : A A ) = y}) = klw ^ °-

This shows that A is nonnegative definite. To see the second result of the theorem, we 
notice that cAcT > 0 for all c ^ 0 if and only if \c\^r is a norm, which is equivalent to 
the nonsingularity of the matrix ( | |x; — x}\ \ \ ). • 

The characteristic matrix is in general much simpler than the original l\- distance 
matrix. Thus Theorem 3 provides another practical way to determine the singularity of 
the matrix (||JC; — Xj\\ \). The following theorem shows that the characteristic matrix can 
also be used to estimate the lower bound of the eigenvalues of the matrix (\\x[ — Xj\\\). 

THEOREM 4. Let Ai,...,An be the eigenvalues of the matrix (\\xi — Xj\\\). Let 
fi\,..., \in be the eigenvalues of the characteristic matrix A in ascending order Assume 
A is positive definite. Then the following estimate holds: 

min |Ay| > -/xi«, 
\<j<n 2 

where 
6 = min {\pv{xi - xf)\ : /?„(*/) ^ pv(xf)}. 

\<v<d 

Some elementary Fourier transform techniques will be used in the proof of Theorem 4. 
Here we define the Fourier transform B of the function BGL1 (R) using the formula 

ê(t) = (27rr1/2 f ° e-istB{s)ds. 
J — OO 

It is well-known that if both B and B belong to L1^)» then the following Fourier 
inversion formula holds: 

B(s) = (2TT)-1/2 f°° eitsÈ(t)dt. 

Let B be the function defined by 

0, if ^ < —1 

B(S)=< - ,+ 1, i f 0 < * < l 
0, i f s > l . 
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It is elementary to see that 

B(t) = (2TT)" 
_]/2sin2(t/2) 

(t/2)2 ' 

and that both B and B are elements of Lx (R). We are now ready to prove Theorem 4. 

PROOF OF THEOREM 4. Without loss of generality, we may assume that 8 = 1. A 

basic calculation shows that 

1 foo 1 — cos(te) I co 
• ds. 

Let c = (c\,..., cn) G Rn satisfying £? = 1 Cj = 0. We have 

n 

J2 acjlpuixi) - pu(xj)\ 

- s 22 cicjcos u^ta) - A/(^/))^ ^ 

1 TOO I n " 

7T ^—oo | • _ , 

< 

>A> 

2V27T •>-«> 

1 

7=1 

B(s)ds 

2V2TT J - ° ° 

1 

E E t e ^ A ) - ^ K s 

yepAAÛ 

B(s) ds. 

, f ° E E E{cJ^pAxJ) = y}J2{cJ--PAxJ) = z}el^sB(s)ds. 
2v27TJ-°° - - A _ ^ 3>eM!AÔze/v(flÔ 

Using the Fourier inversion formula and the facts that B is supported on [—1,1] and that 

B(0)= 1, we have 

n 

J2 CiCj\pu(Xi) - pu(Xj)\ 
v=i 

<-\ E E E{9^^) = y}E{0-:P^) = z}fi(y-2) 

= - 9 E (Ete : M*;) = y}) • 

Here we use the assumption that S = 1 which implies that B(y — z) = 0 for y, z G pv(^Ù 

with } ^ z . 
Hence, we have 

E ci-c/iî  -Xj\\x < - - E E ( E t e : P M ) = y}) • 
v = i ' "=h£Pv(!*b 

cAcT <-^V\J2cj-
7=1 

https://doi.org/10.4153/CJM-1993-074-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-074-9


1322 L. REID AND X. SUN 

By the Courant-Fischer min-max Theorem (see Bellman [B, p. 113]), we know that the 
matrix (\\xi — Xj\\\) has at least (n — 1) negative eigenvalues which are in absolute value 
no less that \\i\. Since the trace of the matrix (\\xt — Xj\\ \) is 0, we have A i + • • - + Xn = 0. 
Therefore the matrix (||JCJ•— Xj\\ \) has exactly (n — 1) negative eigenvalues and 1 positive 
eigenvalue, and it follows that all the eigenvalues of the matrix (\\xt —Xj\\ \ ) have absolute 
value no less than | / / i . • 

It is worthwhile to point out that the estimate given by Theorem 4 is independent of 
n, the number of points, and it is asymptotically (with respect to n) best possible. To 
see this, let n be even and consider the n points Xj = (/>••• J) £ Rd, j — 1, . . . , n. 
We have | | JC/- jt;||i = d\i - j \ . Let c = ^ = = ( - 1 , 2 , - 2 , . . . ,2 , -2 ,1) and Xj = 
(\\XJ —x\\\\,..., \\XJ —xn\\\). We calculate that 

XjCr = -^EL. 
\/4n-6 

Let L denote the matrix (||JC/ — x}-\\ \). We have 

r T ~2dn d 

The characteristic matrix A of these points is simply dl, where / denotes the unit matrix. 
Thus ii\ — d. It is obvious that 6 = 1, so our claim is verified. 

4. Application to ridge function interpolation. A function/: R̂  —> [R is said to 
be a ridge function, if there is a function 0: R —» R and a fixed vector a E Rd \ {0} such 
that/Cx) = 4>(ax) for all x G Rd, where ax denotes the usual inner product of a and x. The 
vector a is called the direction off. Let %a denote the group of all ridge functions with 
direction a. Let a\,...9ak G Rd be pairwise linearly independent, and let %i[ + • • • + %ik 

denote the sum of %^x,..., %ak. The terminology "ridge function interpolation" in this 
paper refers to the following problem: 

Given n distinct points x\,...,xn G Rd, and an arbitrary set of data d\,...,dn, find a 
function g G %ax + • • • + %ak such that g(xj) = djj — 1, . . . , n. 

A simple and efficient realization of the interpolation is to choose a suitable function 
h G % , + • • • + %ak and to interpolate the given data by a function in the linear space 
generated by the n functions h(x — x\),..., h(x — xn). When the interpolation conditions 
are imposed, the result is a system of n linear equations in the unknown coefficients 
ci , . . . ,c„: 

n 

Y2 Cjh{xi — Xj) — di, i = 1 , . . . , n. 

The coefficient matrix A of the linear system has entries Ay = h{xi — xy), and is called 
the interpolation matrix. This interpolation scheme is well-posed if and only if the in­
terpolation matrix is nonsingular. It is known that there exists a collection of distinct 
points x\,..., xn such that the interpolation matrix h(xi — Xj) is singular for every choice 
of h G % , + • • • + %ak. One wishes to characterize the geometric configuration of these 
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points. Partial results have been derived in [DLC], [LC], [L], [BP] and [SX]. Here we 
consider another special case. Assume that k < d and that a\,...,ak are linearly inde­
pendent. Applying a nonsingular linear transformation if necessary, we may assume that 
av — ev,v = 1,... ,£. Set h = </>i + • • • + <j>k, where (f)p(t) = \t\9i/ — l,...,fc. Then 
the result of Theorem 2 shows that the interpolation matrix (h(xt — jt/)) is nonsingular 
if and only if {x\,... ,xn} has no nonempty subset which is a sum of rectangles. In fact, 
Theorem 10 in [SX] and Theorem 2 yield the following stronger results: 

1. Assume that 9\[ contains no sum of rectangles. Then the interpolation matrix 
(h(x( — je,-)) is nonsingular provided that h(x) — <j>\ (|/?i(;c)|2) + • • • + 0*(|/ty(x)|2)> 
where (i) </>i,..., <j>k are completely monotonie but not constant; (ii) <j>i,...,<j)k 

are functions of negative type and <j>\,..., <j>'k are not constant. 
2. Assume that fA£ contains a sum of rectangles. Then the interpolation matrix 

h(xi — Xj) is singular for every choice of h G %jx + • • • + %^v 

We recall that a function <j>\ [0, oo) —* R is said to be completely monotone if 
(-\)k4>(k)(t) > 0 for all t G (0, oo) and for all k = 1,2,..., and </> a function of neg­
ative type if (-1)V(*+1)(0 > 0 for all t e (0, oo) and for all & = 1,2,.... 

Some interpolation matrices may be "nearly singular" by having small eigenvalues. 
This will lead to poor stability of the interpolation scheme and cause computational dif­
ficulties. Thus it is important to estimate the size of the eigenvalues of the interpolation 
matrices. Theorem 4 gives such an estimate for the matrix (||JC/ — Xj\\\) in terms of the 
characteristic matrices. 
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