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Abstract: Benefit-cost analysis (BCA) aims to help people make better decisions. 
But BCA does not always serve this role as well as intended. In particular, BCA’s 
aim of aggregating all attributes of concern to decision makers into a single, best-
estimate metric can conflict with the differing world views and values that may be 
an inherent characteristic of many climate-related decisions. This paper argues 
that new approaches exist that can help reduce the tension between the benefits 
of providing useful, scientifically based information to decision makers and the 
costs of aggregating uncertainty and differing values into single best estimates. 
Enabled by new information technology, these approaches can summarize deci-
sion-relevant information in new ways. Viewed in this light, many limitations of 
BCA lie not in the approach itself, but with the way it is used. In particular, this 
paper will argue that the problem lies in a process that begins by first assigning 
agreed-upon values to all the relevant inputs and then using BCA to rank the desir-
ability of alternative decision options. In contrast, BCA can be used as part of a 
process that begins by acknowledging a wide range of ethical and epistemological 
views, examines which combinations of views are most important in affecting the 
ranking among proposed decision options, and uses this information to identify 
and seek consensus on actions that are robust over a wide range of such views.
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1  Introduction
Benefit-cost analysis (BCA) aims to help people make better decisions. Under 
appropriate circumstances, individuals and organizations whose choices 
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conform to those suggested by BCA would allocate resources most efficiently 
and thus achieve more of their goals than those whose choices deviated from 
those recommended by BCA. But under some conditions, BCA does not serve 
this decision-improving role as well as intended. Sussman, Grambsch, Li and 
Weaver (2014) note in their introduction to this special issue that applying BCA to 
climate-related decisions can involve numerous challenges such as what factors 
to include in the accounting of benefits and costs, how to value intangibles for 
which no market values exist, how to balance among current and future costs 
and benefits, and how to treat uncertainty about the future. While users and prac-
titioners of BCA often face such questions, climate change makes the questions 
particularly salient because this policy domain involves a strong global external-
ity; raises profound issues of intergenerational equity; and involves potentially 
large changes to physical, biological, and human systems that are impossible to 
predict with any confidence.

To some extent, technical improvements to BCA methodologies can help 
address the challenges of applying the approach to climate-related decisions. For 
instance, Neumann and Strzepek (2014) reviews the state of the art in the eco-
nomic estimation of sectoral impacts of climate change and describes steps for 
improving such estimates. Weyant (2014) similarly offers suggestions for improv-
ing the integrated assessment models used to estimate the social cost of carbon, 
an important input to BCA-based regulatory impacts analysis. But at best, such 
technical improvements, while certainly valuable, provide only a partial solu-
tion. Climate change presents what some literature calls a “wicked” problem, one 
that is not well bounded, is framed differently by various groups and individu-
als, involves large scientific to existential uncertainties, and tends not to be well 
understood until after the formulation of a solution (Jones et al., 2014; Rittel & 
Webber, 1973). BCA offers a particular framing of the climate change challenge, 
which involves aggregating all its disparate effects into a single quantitative 
measure and then using this measure to rank alternative solutions. As Toman 
(2014) notes in his contribution to this special issue, other ethical frameworks 
exist for viewing the climate change challenge that cannot be subsumed into the 
BCA framing. As a consequence, those who value these other ethical frameworks 
may not find compelling many BCA-based rankings of alternative responses to 
climate change.

The concept of “deep uncertainty” represents one important component of 
wicked problems and a particular focus of this essay. In technical terms, deep 
uncertainty exists when the parties to a decision do not know, or do not agree 
on, the system model that relates their actions to their consequences or the prior 
probability distributions for key inputs to such models (Lempert, Popper, & 
Bankes, 2003). As generally practiced, BCA uses the formalisms of probabilistic 
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decision analysis (Morgan & Henrion, 1990) to address uncertainty, assuming 
that it is well characterized; that is, it can be usefully described by a single joint 
probability distribution over future states of the world. These distributions can be 
derived either from quantitative analysis or through expert elicitation of subjec-
tive (Bayesian) judgments of experts. This treatment of uncertainty is consistent 
with the overall BCA goal of aggregating all available information into a single 
quantitative measure.

While useful for many types of decision challenges, treating uncertainty as 
well characterized when it is in fact deep can lead to poor choices (Lempert, Naki-
cenovic, Sarewitz, & Schlesinger, 2004; Lempert & Popper, 2005; Morgan, Kandi-
likar, Risbey, & Dowlatabadi, 1999; Sarewitz & Pielke, 2000; Weaver et al., 2013). 
An analysis that portrays deep uncertainty as well characterized may encourage 
decision makers toward overconfidence and prompt them to choose strategies 
that fail when the future unfolds differently than expected (see for instance, 
Taleb, 2007). Presenting uncertainty as well characterized may also make it more 
difficult for parties with differing expectations about the future to reach consen-
sus on a decision. Basing policy recommendations on forecasts can encourage 
those who oppose the recommendation to attack the forecast, which under condi-
tions of deep uncertainty may prove more difficult to justify than the policy rec-
ommendation itself. In addition, the process of seeking a forecast on which one 
can base a policy recommendation may exclude information that is not useful for 
predicting but can nonetheless help identify, compare, and evaluate potential 
solutions.1

Recent critiques of the integrated assessment models used to inform climate-
related decisions exemplify how deep uncertainty can exacerbate the broader 
framing challenges of wicked problems. Rosen and Guenther (2014) and Pindyck 
(2013) argue that the projections produced by current models are so inaccurate as 
to be useless for any type of BCA analysis. They thus suggest framing the climate 
change challenge as a precautionary problem. But as noted by Weyant (2014) in 
this special issue, rejecting the models entirely is surely an overreaction, since 
they contain a wealth of useful information. More broadly, good decisions regard-
ing complicated challenges such as climate change require solid grounding in 
quantitative, scientifically informed analyses within a well-structured frame-
work, such as that embodied in BCA. Structured analysis can help individuals 
overcome numerous shortcomings and biases in unaided human reasoning 

1 This loss of information in forecasts represents an example of what March and Simon (1958). 
call “uncertainty absorption,” in which inferences are drawn from a body of evidence and the 
inferences rather than the evidence itself are communicated, severely limiting the ability of the 
recipient to judge the correctness of the inference.
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(Kahneman, 2011). Similarly, at the organizational level, Mishan notes that demo-
cratic decision making is time consuming and often prone to error. He highlights 
the value gained from expert best estimates of optimal resource allocations, as 
provided by BCA analyses (Mishan, 1994, pp. 159–166).

Overall, applying BCA to climate-related decisions has both benefits and 
costs. How then to best employ this structured analytic framework in this complex 
realm of climate change, fraught with deep uncertainties and profound disagree-
ment over values?

This paper argues that the best answer to this question involves re-framing 
the way it is often cast. Rather than reject BCA entirely or focus solely on improve-
ments to its methods for quantification, this paper argues for reorganizing how 
the different components of BCA methodologies are used to inform decision 
processes. In particular, new methods and tools exist for decision support that 
can help reduce the tension between the benefits providing well-structured, sci-
entifically based information to decision makers and the costs of aggregating 
deep uncertainties and differing values into single best estimates. Enabled by 
new information technology, these approaches can summarize decision-relevant 
information in new ways.

Viewed in this light, many limitations on applying BCA to climate-related 
decisions lie not in the approach itself, but the way it is used. Traditionally, BCA 
follows a process that begins by first assigning agreed-upon values to all the rel-
evant inputs and then using a benefit-cost criterion to rank the desirability of 
alternative decision options. In contrast, the elements of BCA can be used as part 
of a process that begins by acknowledging a wide range of ethical and epistemo-
logical stances, examining which combinations of expectations and values are 
most important in affecting the ranking among proposed decision options, and 
using this information to identify and seek consensus on actions that are robust 
over a wide range of ways of viewing the world.

2   Employing BCA methods and tools in conditions 
of deep uncertainty

Traditional probabilistic decision and risk analysis (Jones et  al., 2014; Morgan 
& Henrion, 1990; Moss et al., 2014), and with them BCA, follow what can use-
fully be described as an “agree-on-assumptions” process (Kalra et al., 2014). The 
analysis begins by first seeking agreement on assumptions regarding current and 
future conditions, and then ranks decision options contingent on these assump-
tions. In recent years, there has emerged a set of decision analytic methods for 
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decision making under conditions of deep uncertainty (Cox, 2012; Kwakkel, 
Walker, & Marchau, 2010) that follow the reverse process. These “agree-on-deci-
sions” approaches defer any agreement on assumptions until decision options 
have been analyzed under many alternative sets of expectations and values.2 In 
general, such approaches aim not to provide a single “best” solution to decision 
makers, but rather help people manage wicked problems by facilitating participa-
tory processes and interactions among analysts and decision makers. This essay 
will focus on one such “agree-on-decision” approach, Robust Decision Making 
(RDM) (Hallegatte, Shah, Lempert, Brown, & Gill, 2012; Lempert, Groves, Popper, 
& Bankes, 2006; Lempert et al., 2003). The comments here, however, often prove 
generally true of the broader class of methods.

RDM rests on a simple concept.3 Rather than using computer models and 
data to describe a best-estimate future, RDM runs models over hundreds to thou-
sands of different sets of assumptions to describe how plans perform in many 
plausible futures. The approach then uses statistics and visualizations on the 
resulting large database of model runs to help decision makers distinguish those 
future conditions where their plans will perform well from those in which they 
will perform poorly. This information can help decision makers identify, evalu-
ate, and choose robust strategies – ones that perform well over a wide range of 
futures and that better manage surprise.

As with other “agree-on-decision” approaches, RDM avoids the challenges 
faced by traditional BCA by incorporating the concept of running the analysis 
“backwards.” Rather than start with predictions, the approach begins with one 
or more plans under consideration (often a current or best-estimate plan) and 
uses multiple runs of the model to identify the futures most relevant to the plan’s 
success. The concept of stress-testing policies against scenarios is clearly not 
new. But new capabilities in information technology help RDM facilitate such rea-
soning. Just as people routinely use search engines like Google to scan millions 
of websites to find information that interests them, so RDM uses computer search 
and visualization on databases of many model runs to help decision makers to 
address such questions as: What are the key characteristics that differentiate 
those futures in which a plan succeeds from those in which it fails? What steps 
can be taken so a plan may succeed over a wider range of futures?

To understand the relationship between BCA and RDM, it is useful to first 
situate them both in the larger concept of decision support, and then within that 

2 The literature offers several names for these “agree-on-decisions” approaches, including “con-
text-first” (Ranger et al., 2010), “decision-scaling” (Casey, Brown, & Wilby, 2012), and “assess 
risk of policy” (Carter et al., 2007; Dessai & Hulme, 2007; Lempert et al., 2004). 
3 These two paragraphs draw on concepts and some phrases from Lempert et al. (2013c).
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context compare distinct attributes of the two approaches. Decision support, using 
a common definition from the National Research Council (2009), represents the 
“set of processes intended to create the conditions for the production and appro-
priate use of decision-relevant information.” As a key tenet, the decision support 
concept emphasizes that the way in which quantitative information is integrated 
into decision-making processes often proves as important as the information 
products themselves. With this in mind, it becomes useful to note that quantitative 
methods such as BCA and RDM have at least four distinct attributes:
1. The performance metric used to measure the consequences of alternative 

decisions,
2. The decision criteria used to rank alternative decisions according to those 

measures,
3. The characterization of uncertainty, and
4. The decision process into which the information generated by the approach 

is incorporated.

What is generally thought of as BCA combines specific choices for each of these 
attributes. It is also important to note that the characterization of uncertainty is 
intertwined with the decision process in which this information is employed.

First, BCA uses monetary values to measure the consequences of decisions. 
Much BCA methodology involves quantitative methods for consistently estimating 
costs and benefits and for converting disparate factors into a common monetized 
measure. For instance, applying BCA to some pollution control technology might 
require estimating the dollar cost of purchasing and operating the technology and 
then estimating the dollar value of the lives saved through its effective operation.

Second, BCA employs the criterion that benefits ought to exceed the costs. 
This criterion can be used as a threshold for categorizing projects as desirable 
or not. Alternatively, it can be used to rank alternative decisions so that the one 
whose benefits most exceed its costs is the most desirable.

Third, BCA generally assumes well-characterized uncertainty. In some cases, 
BCA uses single-valued best estimates of benefits and costs. More sophisticated 
applications characterize uncertainty in these values by representing costs and 
benefits with a probability density function. Such BCA exercises often emphasize 
uncertainty quantification (i.e., specifying appropriate probability distributions 
to represent the uncertainty), and uncertainty reduction (i.e., decreasing the vari-
ance in probabilistic estimates) as important precursors in the analysis.

Fourth, BCA generally envisions a process in which experts gather evidence, 
estimate costs, and then provide BCA rankings to decision makers for review and 
action. Many regulatory and government policy-making processes are structured 
this way. Experts assemble scientific and economic information, which they use 
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to generate best estimates of benefits and costs. The experts then supply these 
estimates to decision makers, who make policy proposals, solicit public review, 
and then issue a decision.

Considering these attributes as distinct proves important, because the first 
two (expressing consequences in monetary values and valuing decisions whose 
benefits exceed their costs) can be usefully separated from the second two (assum-
ing well-characterized uncertainty and providing authoritative best-estimate 
values to a decision process). In particular, RDM is quite catholic regarding meas-
ures, and its robustness criteria can easily incorporate BCA criteria as described 
below. Thus, considering these four attributes as distinct allows BCA’s decision 
criterion and valuation methods to be incorporated into an RDM process, which 
may provide approaches more appropriate for informing decision under many 
conditions of deep uncertainty.

As shown in Figure 1, RDM’s process begins with a decision-structuring 
exercise in which decision makers define the goals, values, uncertainties, and 
choices under consideration. A key step in this process identifies one or more 
policies that will be the focus of the initial iterations of the analysis. Analysts 
next use computer models to generate a large database of runs, where each such 
case represents the performance of a proposed policy in one plausible future. In a 
process called “scenario discovery” (Bryant & Lempert, 2010b; Groves & Lempert, 
2007; Lempert, 2013) computer visualization and statistics on this database then 
help decision makers identify clusters representing scenarios that illuminate 

1. Decision
structuring

New options

4. Tradeoff
analysis

3. Scenario
discovery

Robust
strategy

Scenarios that
illuminate

vulnerabilities

Deliberation

Analysis

Deliberation
with analysis

2. Case
generation

Figure 1 Iterative, participatory steps of an RDM analysis.
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vulnerabilities of the policies. These scenarios can then help decision makers 
identify potential new ways to address those vulnerabilities and evaluate through 
tradeoff analysis whether these choices are worth adopting. The process contin-
ues until decision makers settle on a robust strategy.

The literature has many definitions of robustness, but most can incorporate 
benefit-cost criteria. For instance, Lempert and Collins (2007) offer two defini-
tions of robustness: 1) satisficing over a wide range of plausible futures and 2) 
trading some optimal performance for less sensitivity to broken assumptions. 
Both definitions can incorporate a benefit-cost criterion: the first by judging 
favorably decisions whose benefits exceed costs over a wide range of futures, and 
the second by judging favorably decisions whose expected benefit-cost ratio is 
close to optimum given a best estimate probability distribution over future states 
of the world, but remains satisfactory over a wide range of plausible probability 
density distributions. Note that robust strategies are often adaptive; that is, they 
are explicitly designed to evolve over time in response to new information (Rosen-
head, 2001; Walker, Marchau, & Swanson, 2010). The design of such strategies is 
often not obvious, but by providing detailed understanding of the vulnerabilities 
of proposed strategies, “agree-on-decisions” analytic methods often help deci-
sion makers identify and choose more successful adaptive strategies (Haasnoot 
et al., 2013; Lempert & Groves, 2010; Lempert et al., 2003; Walker, Rahman, & 
Cave, 2001).

RDM explicitly follows a “deliberation with analysis” process of decision 
support, in which parties to the decision deliberate on their objectives, options, 
and problem framing; analysts generate decision-relevant information using the 
system models; and the parties to the decision revisit their objectives, options, 
and problem framing influenced by this quantitative information (NRC, 2009). 
RDM adds to this general approach the concepts of running the analysis back-
ward – that is, beginning with a proposed strategy – and testing plans against 
many different plausible futures. The overall process aims to facilitate delibera-
tion among diverse stakeholders by embedding systematic quantitative reason-
ing about the consequences of and tradeoffs among alternative decision options 
within a framework that recognizes the legitimacy of different interests, values, 
and expectations about the future (Lempert, 2013; Lempert, Groves, & Fischbach, 
2013a; Parker, Srinivasan, Lempert, & Berry, 2013).

RDM uses the same models and data as traditional BCA analyses, but in a 
fundamentally different way. The latter regard models as representations of 
reality that are sufficiently accurate to recommend the best response to an 
uncertain future. In contrast, RDM regards models as mapping assumptions to 
consequences (Bankes, 1993). Often RDM can significantly enhance the value 
of decision makers’ existing models (designed for predict-then-act analysis) by 
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running them numerous times to identify vulnerabilities and to find plans that 
are robust over many combinations of assumptions.

This RDM process can and does incorporate the qualitative measures and 
decision criterion on BCA, but in a context in which the costs and benefits are 
presumed to be deeply uncertain (Lempert, Schlesinger, & Bankes, 1996; Toman, 
Griffin, & Lempert, 2008). The next section will describe several examples in 
detail. The discussion below provides the basic outlines of the approach.

The RDM analysis would use a simulation model to evaluate the costs and ben-
efits of one or more proposed policy or regulation contingent on the values for a 
large set of assumptions. These assumptions could involve differing expectations 
about future states of the world, differing interpretations of current observations or 
scientific theories, as well as differing opinions on how to value particular factors, 
such as the value of a life. The RDM analysis would then run this model thousands 
to millions of times to create a large database. Each entry in the database (a case) 
would report the monetized costs and benefits for one proposed policy for one par-
ticular set of values for each of the assumptions. (Each such set of assumptions is 
called a future.) BCA criteria would then be used to categorize each case as satis-
factory (e.g., benefits exceed costs) or unsatisfactory (e.g., costs exceed benefits). 
Analysts could then use visualizations and statistics on this database to address 
questions such as:

 – What policies meet the BCA criteria over a wide range of futures and values?
 – What key combinations of assumptions are most important in distinguish-

ing those futures where a particular policy meets the BCA criteria from those 
futures where it does not?

This information can then be used by analysts, or in deliberative decision pro-
cesses with decision makers, to address other questions, such as: Does the 
balance of scientific evidence suggest that the combinations of assumptions 
that favor a policy are sufficiently likely so that decision makers should adopt 
the policy? Are there ways to modify a proposed policy, perhaps by allowing it 
to adjust over time, to significantly expand the set of assumptions over which it 
meets the BCA criteria?

3   Example application for infrastructure  
investments at the Port of Los Angeles

This RDM process has been employed in many applications. For instance, ana-
lytic facilitation work with the U.S. Bureau of Reclamation’s recent Colorado 
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Basin Supply and Demand Study (Groves, Fischbach, Bloom, Knopman, & 
Keefe, 2013) and with the Louisiana Office of Coastal Projection and Restoration 
 (Fischbach et al., 2012; Groves, Sharon, & Knopman, 2012; IPCC 2014, see box 2.1), 
have helped large stakeholder groups with diverse values, interests, and expec-
tations develop and come to consensus on robust plans. This paper, however, 
describes a much simpler application for the Port of Los Angeles that explicitly 
used a straightforward, science-rich application of BCA within an RDM frame-
work (Lempert, Sriver, & Keller, 2012; henceforth LSK).

The Port of Los Angeles (PoLA) is one of the largest container ship facilities 
in the world. Along with many jurisdictions worldwide, PoLA must consider how 
to include climate change – in particular sea level rise – into its infrastructure 
investment decisions. In particular, PoLA faces the question of how to address 
the potential for presumably low-probability but large-impact levels of extreme 
sea level rise in its investment plans. Such extreme events – e.g., increased storm 
frequency and/or a rapid increase in the rate of sea level rise – can affect infra-
structure investments, but in ways difficult to address because of the deep uncer-
tainty involved.

The LSK study thus used RDM to examine whether PoLA should consider 
hardening its container terminals against extreme sea level rise.4 Every few 
decades the port conducts a major upgrade of its terminals. During such an 
upgrade, the cost for hardening against an additional meter or so of sea level 
rise is relatively small. Hardening a terminal at other times would prove much 
more costly. Because these terminals are relatively high above the water, a deci-
sion to harden at the next upgrade can be thought of as purchasing relatively 
low-cost insurance against the potential impacts of poorly understood extreme 
events.

Should PoLA buy such insurance? To address this question, LSK conducted 
a BCA within an RDM framework. It proves useful to describe this analysis using 
the four attributes described above.

3.1  Performance metric

First, LSK uses a monetary performance metric to measure the consequences 
of the alternative decisions. LSK calculates these costs using a simple decision 
tree, as shown in Figure 2. Along the upper branch, PoLA chooses to harden a 
terminal at the next upgrade, which, by assumption, eliminates any subsequent 
impacts from sea level rise for the lifetime of the terminal. Thus the costs along 

4 This section draws heavily from LSK.
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this branch are the monetary costs of hardening. Along the lower branch, PoLA 
chooses not to harden and the combination of future sea level rise and increased 
storm surge frequency proves insufficient to flood the terminal. For this branch 
there are no costs. Along the middle branch, PoLA decides not to harden and 
the combination of future sea level rise and storm surge frequency proves suffi-
cient to flood the terminal. For this branch, the costs are the monetized damages 
due to flooding and the future costs of preventing those damages. For simplicity, 
LSK estimates these costs by assuming that there is some threshold probability of 
annual flooding beyond which PoLA will choose to replace its terminal with one 
that cannot be flooded. That is, LSK assumes that the primary cost of deciding not 
to harden at the next upgrade is the need for early replacement of an expensive 
asset. Overall, it is important to note that this analysis considers costs from the 
point of view of the financial perspective of the port, and not the broader social 
interest.

Figure 2 shows the resulting costs for each the three branches. The cost of 
the upper branch is the cost of hardening at the time of the upgrade, given by 
Charden. The cost of the lower branch is zero. The cost of the middle branch is the 

present value of the lost lifetime of the terminal, given by upgrade
dLC e

L
ττ − −

  
 where 

L is the terminal lifetime, τ the year is which PoLA choose to replace the termi-
nal, and d is the discount rate. This formulation of the benefit-cost calculation of 
course represents a significant simplification, but proves sufficiently rich for our 
purposes here. In particular, this problem formulation captures the fundamen-
tal tradeoff between buying inexpensive insurance today avoid potentially large 
future costs (note that Charden >  > Cupgrade) in the face of deep uncertainty regarding 
climate change and other trends.

Figure 2 Simplified representation of PoLA’s decision regarding whether to harden its termi-
nal at its next upgrade, and the costs resulting from its choices from Lempert et al. (2012).
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3.2  Decision criterion

As its decision criterion, LSK uses least expected cost. Accordingly, PoLA should 
choose to harden at the next upgrade if the cost of hardening is less than the 
expected cost of early terminal replacement forced by flooding in the future. That 
is, if

 
harden upgrade crit1

( , )
L dLC C p e d

L
τ τ

τ

τ
ρ τ τ

= −

=

 −<   ∫  (1)

where ρ(τ, pcrit) is the probability that PoLA will have to replace the terminal in 
year τ because the annual flooding probability has exceeded pcrit, the value PoLA 
managers in that year regard as a safe threshold. 5

3.3  Uncertainty characterization

Many uncertainties affect this calculation of expected cost. The characterization 
of these uncertainties depends on the decision process employed. Traditional 
BCA assumes well-characterized uncertainty, and would begin by quantifying 
the uncertainty for each of the terms in Equation 1. In particular, analysts would 
use the best available science to generate probabilistic estimates of future sea 
level rise and of future changes in storm surge at the port in order to arrive at a 
best-estimate distribution for ρ(τ, pcrit). The available climate science is, however, 
insufficient to provide much confidence in such an estimate, especially in the 
tails of the distribution for the extreme levels of sea level rise that are most impor-
tant to informing this particular decision.

The RDM process provides sufficient flexibility so that the uncertainty char-
acterization can treat parameters in different ways, depending on the informa-
tion available about them. LSK divides the parameters in Equation 1 into three 
categories, those: 1) whose values would be known at the time of the decision, 2) 
whose uncertainty is well characterized, and 3) whose uncertainty is deep. The 
first set of parameters has numeric values and the second has joint probability 
distributions. For the third set, LSK builds simple phenomenological models, 
scales over wide parameter ranges, identifies thresholds relevant to the BCA crite-
ria, and then compares these thresholds to available scientific information. This 
process is described below. Here the focus is on the phenomenological models.

5 Note that Equation 1 could more generally be written as the integral over a joint probability 
distribution capturing uncertainties in Cupgrade, L, and pcrit in addition to τ. The RDM analysis de-
scribed below will address uncertainty in all these parameters.
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Consistent with the risk management literature, this analysis considers 
three components of risk: hazard, exposure, and vulnerability. The parameters 
in Equation 1 related to future terminal management affect vulnerability, in par-
ticular the terminal lifetime L and the acceptable annual flooding likelihood pcrit. 
Future climate conditions contribute to hazard, in particular the magnitude and 
timing of extreme sea level rise and any increase in storm surge frequency. The 
exposure is constant, because LSK consider a particular PoLA terminal.

LSK assumed that the cost of hardening, the cost of the upgrade, and the 
discount rate are all known at the time of the decision. A single, uncontroversial 
choice of discount rate was appropriate in this analysis because it compares the 
financial consequences of present and future capital investment decisions for a 
single decision-making entity.

LSK regards the two parameters associated with future terminal management –  
the terminal lifetime and pcrit – as deeply uncertain and considers a wide range of 
values for each.

To include the climate information in the analysis, LSK describes a simple 
model that scales over a wide range of climate futures in order to find the impor-
tant thresholds for the BCA criteria, similarly to the way climate information is 
used in the decision-scaling approach (Brown, Werick, Leger, & Fay, 2010; Brown 
& Wilby, 2012). LSK then compares these thresholds, as described below, to the 
available science. LSK begins by considering two contributions to the hazard: 
annual mean sea level rise and the hourly anomaly in the sea level. LSK usefully 
approximates the annual mean sea level as:

 2 * ( *),tz a bt ct c I t t= + + + −  (2)

where the term a is the current sea level at PoLA, b is a constant rate [mm/year], 
and c is an acceleration term (mm/year2). To simplify the analysis, LSK assumes 
that these first three terms represent only the effects of relatively well-understood 
processes, such as thermal expansion of the oceans due to rising temperatures 
and the melting of small glaciers, that are well constrained by past observations. 
The fourth term represents currently poorly understood and poorly constrained 
processes, for example potentially abrupt changes in the dynamics of ice flow 
(cf. Alley, Clark, Huybrechts, & Joughin, 2005), which LSK approximates with a 
step-function increase in the rate of sea-level rise c* [mm/year] that occurs after 
some time t*. LSK regards the first three terms as well-characterized uncertainty, 
and fit a joint probability distribution for their values to past trends. LSK regards 
the two parameters governing the fourth term – c* and t* – as deeply uncertain.

To estimate the hourly anomaly, LSK notes that PoLA has 80 years of hourly 
data on the sea level at the site of its terminals. These data are well approximated 

https://doi.org/10.1515/jbca-2014-9006 Published online by Cambridge University Press

https://doi.org/10.1515/jbca-2014-9006


500      Robert J. Lempert

by a generalized extreme value (GEV) distribution. To consider potential changes 
in the frequency of large storm surge events, LSK considers a set of GEV distribu-
tions, created by varying the parameter governing the width of the current dis-
tribution over a wide range.6 LSK regards this change in the hourly anomaly as 
deeply uncertain.

3.4  Process

This RDM BCA is structured around asking two questions in the following order:
 – Under what future conditions would a decision to harden at the next 

upgrade pass a benefit-cost test; that is, under what conditions is 

harden upgrade ?dLC C e
L

ττ − −<   

 – Do current science and other available information suggest that such condi-
tions are sufficiently like to justify such an investment?

It proves useful to address these two questions sequentially because the first 
can be answered with confidence, while the second requires judgments that will 
intertwine expectations about future climate with values regarding what risks are 
most appropriate to take.

To identify the scenarios in which hardening at the next upgrade passes a ben-
efit-cost test, LSK begins by generating a large number of cases (Step 2 in Figure 1). 
The study uses a 500-point Latin hypercube (LHC) sample over the five deeply uncer-
tain parameters: three for future abrupt sea level rise and two for future terminal 
management. The LHC sample is similar to Monte Carlo, but provides a numerically 
more efficient sampling of the space defined by the deeply uncertain parameters. 
For each case in the sample, LSK calculates an expected cost by conducting a 
probabilistic sample over the parameters describing the well-characterized compo-
nent of future sea level rise. This ensemble of 500 cases thus spans a wide range of 
futures characterized by both deep and well-characterized uncertainties.

The results, summarized in the left panel of Figure 3, show that in about 
two-thirds of the 500 cases a decision to harden at the next upgrade would fail a 

6 Specifically, LSK varies the GEV scale parameter over the range 517 mm  ≤  ψ  ≤  569 mm, where 
the lower bound is the current scale and the upper bound is 10% larger. As the scale varies, the 
mean of the hourly anomaly around the annual mean must remain constant (our treatment of 
the anomalies demand that they do not shift the annual mean), so we write the location of each 
distribution in our set as μ = –176–(ψ–517 mm)[Γ(1.305)–1]  = –176+0.1033(ψ–517 mm), where Γ() is 
the gamma function (Hosking, 1990).
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benefit-cost test, while in the remaining one-third of cases hardening would have 
cost savings. In a small number of cases these savings would be quite large, up to 
20 times the cost of the hardening.

The study next performs a statistical “scenario discovery” analysis on this 
database of model runs (Bryant & Lempert, 2010; Dalal, Han, Lempert, Jaycocks, 
& Hackbarth, 2013; Lempert et al., 2006) to answer the question: What conditions 
best characterize those futures where hardening at the next upgrade passes a 
benefit-cost test (Step 3 in Figure 1)? Scenario discovery applies a cluster analysis 
to the database, seeking to identify those combinations of uncertain input param-
eters that most concisely distinguish those futures in which the BCA is positive 
from those where it is negative.7 The results, shown in the right panel of Figure 3, 
suggest that hardening at the next upgrade makes sense in cases with near-term 
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Figure 3 Histogram (left panel) showing net benefit for hardening for each of 500 alternative 
futures, and key factors (right panel) most important in distinguishing those futures where 
hardening passes a benefit-cost test from those futures in which it does not from Lempert et al. 
(2012).

7 The algorithms seek to maximize three measures of merit for the scenarios: coverage, which is 
the fraction of all vulnerable cases contained within the scenario; (2) density, which is the frac-
tion of cases within the scenario that are vulnerable; and (3) interpretability: the ease with which 
the scenario can be communicated to and understood by policymakers. Interpretability is typi-
cally measured heuristically as the number of restrictions used to define the scenario. Improving 
any one of these three measures often negatively impacts one or both of the others.
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and rapid sea level rise, a long terminal lifetime, and a significant increase in 
local storminess. The specific values parameter part for these thresholds are 
shown on the figure. The value of the critical threshold proves less important.

LSK labels this cluster of cases the Harden at the Next Upgrade scenario. The 
study also calculates a probability threshold for this scenario; that is, the likeli-
hood that a risk-neutral decision maker would have to ascribe to it such that the 
BCA decision criteria for hardening in Equation 1 is satisfied. Using a uniform 
distribution over the two respective sets of cases yields a probability threshold 
of  > 7%. That is, if the Harden at the Next Upgrade scenario is more likely than 7%, 
then hardening may make sense.

Identifying this Harden at the Next Upgrade scenario and its probability 
threshold proves valuable because they represent quantitative statements that 
can be made with high confidence in this otherwise deeply uncertain situation. 
The analysis makes clear that if the conditions shown in Figure 3 hold, then the 
decision to harden at the next upgrade passes a benefit-cost test. The analysis 
also suggests that if a risk-neutral decision maker who estimated these conditions 
to be more likely than 7% then they should consider such hardening.

LSK now inquires the extent to which the available scientific evidence sug-
gests that the Harden at the Next Upgrade scenario is sufficient likely to justify a 
decision to harden at the next upgrade (step 4 in Figure 1). The study begins by 
noting that definition of the scenario and its probability threshold imply harden-
ing passes a benefit-cost test if the following conditions hold:

 mm mmPr * 14 0.3 ( * 2010) Pr{ 533 mm} Pr{ 50 years} 7%
year year

c t Lψ
  ≥ + − > > > 
 

 (3)

Sufficient climate science is available to help inform imprecise probabilistic 
judgments about the likelihood of the parameters describing abrupt sea level 
rise. First note that the first scenario condition in Equation 3 implies a sea 
level rise contribution from poorly understood processes of about 1.4 meter 
(m) in 2100. When combined with the roughly 0.5 m contribution from well-
understood processes, the Harden at Next Upgrade scenario implies roughly 
two meters of sea level rise by century’s end. Such a level is within, but at the 
high end of, some current sea level rise projections. To quantify this statement, 
LSK takes two expert assessments of the range of plausible sea level rise, fits 
probability distributions to these ranges, and then maps these distributions 
onto a joint probability distribution for the para meters c* and t*.

For the two expert estimates, LSK draws on Pfeffer, Harper and O’Neel (2008) 
and the California Sea Level Rise Interim Guidance document CO-CAT (2010), and 
then uses a rejection sampling approach to generate a joint distribution for c* 
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and t* consistent with each expert assessment. These two joint distributions then 
imply a range of probability estimates for the extreme sea level rise condition in 
Figure 3. The range is relatively narrow, and suggests that the probability that the 
extreme sea level rise condition for the Harden at the Next Upgrade scenario will 
be satisfied lies between 14 and 16%.

Less information is available to estimate probability ranges for the other two 
scenario conditions in Equation 3. Figure 4 thus summarizes the decision-rele-
vant constraints on these two conditions. The probability ranges on the first sce-
nario conditions suggests that in order to satisfy Equation 3, the joint probability 
of the other two conditions should lie in the figure’s shaded region; that is, the 
product of the two probabilities ought to exceed roughly 67%.

First, note that the scenario condition on the lifetime is longer than those 
previously experienced by PoLA. While only sparse scientific evidence exists 
regarding the condition for the hourly anomaly, ψ > 533 mm, none of it currently 
supports a high likelihood estimate for this scenario condition. Some studies 
(Menendez and Woodworth, 2010; Woodworth and Blackman, 2004) suggest 
that the future hourly anomaly may remain unchanged from that currently 
observed (i.e.: ψ≈517 mm). In contrast, other studies (Bromirski, Flick, & Cayan, 
2003; Méndez, Menéndez, Luceño, & Losada, 2007) find that the observed 
variability of sea levels has been increasing at several locations. Cayan et al. 
(2008) analyze model projections and place bounds on future increases in 
storminess near San Francisco, corresponding in LSK’s analysis to a range of 
517 mm  ≤  ψ  ≤  533 mm. While future research may suggest these bounds are too 
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Figure 4 Probabilities of a long terminal lifetime (L > 50 years) and significant increase in the 
daily anomaly (ψ > 533 mm) required for decision to harden terminal bottoms (H = 2804 mm) (at 
next upgrade to pass a cost-benefit test). Dark and light shaded regions show probabilities 
required using high and low estimates, respectively, of likelihood of condition on c* and t*. 
Dashed lines show results for other facilities discussed in Lempert et al. (2012). 
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narrow,8 current evidence does not support judgments that the likelihood of the 
future storminess scenario condition might lie in the region for hardening at the 
next upgrade shown in Figure 4.

Thus, PoLA might reasonably choose not to harden at the next upgrade of 
this facility, even at a cost of 1% of the cost of the upgrade. LSK repeated this 
analysis for three other PoLA assets. For one, the Alameda and Harry Bridges 
Crossing, hardening at the next upgrade might pass a benefit-cost test.

4   Imprecise probabilities, threshold responses, 
and precaution

Given the importance of probabilistic information to traditional BCA and the 
importance of critical thresholds and potentially irreversible impacts to many 
climate-related decisions, it is useful to review how the previous example dealt 
with these issues.

To represent deep uncertainty, RDM uses sets of alternative probability dis-
tributions over future states of the world (Morgan et  al., 2009). That is, RDM 
considers imprecise probabilities (Walley, 1991). Consistent with the concept of 
backwards analysis, RDM analyses often report probability thresholds, represent-
ing the likelihood decision makers would have to ascribe to particular scenarios 
in order to change their choice of strategy. Figure 4 shows an example of such 
probability thresholds in the context of a decision that involves low-probability, 
high-consequence extreme events.

This approach to deeply uncertain probabilistic information offers at least 
three advantages (Lempert, 2013; Lempert et al., 2006). First, it offers a value of 
information ranking of the most important uncertainties for which probabilis-
tic information would prove decision-relevant. This ranking can usefully focus 
efforts aimed at uncertainty quantification. Second, differing judgments about 
probabilities to the end of the analysis can help parties to the decision explore the 
implications of uncomfortable or contentious findings before committing them-
selves to the necessity of accepting their implications. This concept derives from 
scenario planning, which presents multiple views of the future without privileg-
ing among them, in order to expand the range of futures considered by decision 
makers and to facilitate communication and collaboration among individuals 

8 Note that the values at the high end of LSK’s experimental design range produce a storm surge 
of roughly 1.6 meters at the return rates of relevance to this analysis. In contrast, Hurricanes Ike 
and Katarina in the US Gulf Coast produced a maximum surge of up to 7 or 8 meters.
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with differing expectations and values (Schoemaker, 1993). This feature played 
an important role in successfully engaging port staff with the PoLA analysis, by 
allowing them to consider the vulnerability of their facilities to extreme sea level 
rise before having to make any judgments about whether they should take such 
vulnerabilities seriously. Third, considering a wide range of plausible probabil-
ity distributions can help identify strategies whose good performance is insen-
sitive to potentially erroneous probability judgments (Hall et al., 2012; Lempert 
& Collins, 2007; McInerney, Lempert, & Keller, 2012). Identifying such strategies 
may be particularly important in the face of potentially abrupt and irreversible 
changes in the climate system.

The precautionary principle offers another approach to addressing deeply 
uncertain probabilistic information. The principle suggests that an activity be 
avoided unless clear evidence exists that it will not prove harmful. In contrast, 
RDM addresses precaution in two distinct ways. First, the scenario discovery step 
in Figure 1 identifies the key conditions that one might wish to guard against, 
thus clarifying the conditions that might justify precaution. Second, the tradeoff 
analysis step in Figure 1 can use the definition of robustness that trades some 
optimal performance for less sensitivity to broken assumptions (Lempert & 
Collins, 2007). This criterion interpolates between precaution (expressed as mini-
mizing the maximum regret) and expected value, thus allowing decision makers 
to ask how much precaution they wish to adopt.

5  Multi-attribute decision making
The PoLA example demonstrates an application of BCA in an “agree-on-decision” 
framework that focuses on the treatment of deep uncertainty regarding the likely 
consequences of alternative decisions. This example considers a situation in 
which all the consequences, both present and future, of alternative policy choices 
are easily quantified into a common monetized metric. It is useful to briefly review 
other examples where this is not the case.

Multi-attribute decision theory (Keeney & Raiffa, 1993), or multi-criteria deci-
sion analysis (MCDA), provides a general framework for comparing alternative 
policy choices based on their outcomes. This decision theory acknowledges that 
people may care about different potential consequences of their actions and may 
not find it useful to combine them all into a single quantitative metric. In general 
to compare alternative actions according to multiple objectives, one can: 1) quan-
tify all the objectives using a single metric, 2) employ separate metrics for each 
type of consequence and apply a weighting to sum them in an aggregate index, or 
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3) retain multiple metrics and evaluate policy options based on tradeoffs among 
these multiple objectives. BCA follows the first approach. Multi-attribute decision 
theory emphasizes the second two.

Some RDM analyses have employed the second approach, that of apply-
ing weightings to aggregate separate metrics into a single index. For instance, 
Lempert et al. (2003) compared alternative sustainable development policies 
using an index, inspired by the human development index (UNDP, 1990), that 
included individual metrics for per capita income, longevity, and environ-
mental quality. To reflect alternative worldviews, the analysis considered four 
different weightings over each metric, differing in the weight placed on environ-
mental quality (either zero weight or equal to the weight placed on income and 
longevity) and weight placed on the developed countries that were one main 
audience for the policy analysis (either population weighted over OECD coun-
tries only, or population weighted globally). The analysis separately identified 
robust strategies for each of the four different weightings. One weighting –  
the one that included both global population averages and environmental 
quality – was most stressing in the sense that, of the adaptive decision strate-
gies considered, the one that proved most robust using the global index with 
environmental quality was also robust for the other three indices. This most 
stressing index was thus the focus of the analyses. Note that the BCA analy-
ses, as part of an effort to monetize costs or benefits, often make value judg-
ments that may be contested by parties to the affected decisions. This general 
approach of seeking robust strategies over alternative weightings might thus 
provide another way to use BCA within an RDM framework in contexts where 
alternative choices about quantitative methodologies reflect real differences in 
ethical values.

Many RDM analyses compare policy options based on the third approach 
above, illuminating tradeoffs among multiple objectives. The “dashboard” 
approach to BCA advocated by Toman (2014) is one example of this approach 
to multi-criteria decision analysis. The RDM-based Colorado Basin Supply 
and Demand Study (Groves et  al., 2013) considered 26 different measures –  
including factors such as reliability of water deliveries, environmental projection, 
recreation opportunities, and cost, each evaluated at different geographic loca-
tions – as part of a multi-year process of deliberation with analysis with repre-
sentatives of the federal government, seven Western states, and other users of the 
Colorado River system. The analysis presented the decision makers with tradeoff 
curves showing how alternative strategies balanced among these objectives over 
a wide range of plausible future scenarios. The high correlation among many of 
the objectives simplified the task of generating low-dimensional tradeoff curves 
that proved useful for the decision makers.
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Tools are increasingly becoming available to facilitate such deliberative 
processes in the more general case in which multiple objectives are not well 
correlated and it proves difficult to identify strategies robust across them. For 
instance, Kasprzyk, Nataraj, Reed and Lempert (2013) recently demonstrated an 
approach for identifying “Pareto satisficing” water management strategies using 
evolutionary algorithms and a simple measure of robustness. In multi-attribute 
decision theory, a set of Pareto-optimal strategies are those one whose perfor-
mance according to any one objective cannot be improved without degrading 
performance according to any other objective, contingent on some best-estimate 
assumptions about the future. Pareto satisficing generalizes on this concept by 
seeking a set of strategies whose performance stays reasonably close to the Pareto 
optimal surfaces for each of many alternative future states of the world. Kaspr-
zyk et al. (2013) operationalized this concept by using evolutionary algorithms 
to calculate a Pareto-optimal set of water management strategies, with a focus 
on the use of water markets, for a best-estimate probability distribution over 
future states of the world while considering multiple objectives including cost, 
cost variability, various measures of reliability, and complexity of the underlying 
water markets. The analysis estimated the robustness of this set of strategies to 
deep uncertainty by evaluating how much their performance, according to each 
objective, varied with alternative assumptions about the likelihood of important 
factors such as future extreme drought. The analysis found that the performance 
of some classes of strategies varied little over the full range of plausible futures, 
compared with that for strategies with more complex market designs. In partic-
ular, the analysis suggests that simple market designs prove more robust than 
more complex market designs. Overall, this example suggests how BCA can be 
used as one criterion within a multi-attribute analysis.

6  Deliberation and delegation
This paper argues that BCA concepts, used within an “agree-on-decision” process, 
can in some circumstances help people to make better decisions than they would 
using BCA in a more traditional form. This claim raises the question of what con-
stitutes a “better decision.” In some cases, we might regard a good decision as 
one that leads to a good outcome. But seemingly good choices can turn out badly, 
while seemingly unreasonable ones can turn out well. In principle, a good deci-
sion might correspond to some optimal choice derived from best scientific esti-
mates of future uncertainty. But as documented in this special issue, this criterion 
often proves hard to implement for many types of climate-related decisions.
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In light of such considerations, Working Group II of the IPCC Fifth Assess-
ment Report (2014, FAQ 2-1) provides a more process-oriented description of good 
decisions. The report notes that no universal criterion exists, but good decisions 
tend to emerge from processes in which people are:

 – Explicit about their goals
 – Consider a range of alternative options
 – Consider tradeoffs
 – Use best available science to understand the potential consequences of their 

actions
 – Contemplate the decision from a wide range of views and vantages
 – Follow agreed-upon rules and norms that enhance the legitimacy of the 

process and its outcomes

In the limit in which uncertainties are well characterized and goals aligned, these 
criteria suggest that the standard BCA process – which aggregates different meas-
ures into a single monetary value, summarizes uncertainties with a best-estimate 
probability distribution, ranks the benefit-cost ratios of alternative options, and 
then provides this information to decision makers – may lead to good decisions. 
However, in situations characterized by deep uncertainties and differing values, 
a backwards analysis embedded in a process of deliberation with analysis may 
prove more successful. Such backwards analyses can have costs. RDM in partic-
ular is often more demanding of computational resources than are traditional 
analyses, and often requires more complete systems models that relate actions 
to consequences (Lempert & Collins, 2007; Lempert et  al., 2013b). Thus, when 
uncertainties are well characterized, RDM may prove unnecessarily costly. But 
when uncertainties are deep, using BCA concepts with such a process may avoid 
overconfidence, may allow multiple entry points into the analysis, and may 
help widen both the range of uncertainties and the range of policy responses 
considered.

These claims are based on inferences from the psychological and organiza-
tional behavior literatures (see for instance Bryant & Lempert, 2010; Lempert 
& Popper, 2005; Lempert et al., 2003) and on experience gathered from many 
engagements using RDM in decision-support applications. However, formal 
testing and evaluation proves particularly useful toward determining the extent 
to which expectations about the effectiveness of decision-support methods such 
as RDM are borne out in practice. A handful of studies have evaluated compo-
nents of the RDM process. Budescu, Lempert, Broomell & Keller (2013) compared 
two decision aids that portray imprecise probabilities in different ways: one aid 
ranks decision options using expected values contingent on a best-estimate 
probability density function (consistent with traditional BCA) and the other aid 
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graphically displays the expected value of the alternative decision options over 
the entire range of plausible probabilities (consistent with RDM). The experi-
ment found that the type of aid systematically influenced the way subjects 
approached the problem, and that subjects had a preference for the latter aid. 
Parker et al. (2013) used experiments with individuals and expert interviews to 
evaluate understanding of and utility gained from the results of scenario dis-
covery analyses. The study found that participants generally understand the 
scenario discovery displays. When these analytically derived scenarios were 
compared with related scenarios derived from a more traditional qualitative 
process, some experts found the former more difficult to understand. But those 
comfortable with the RDM process found its scenarios more solid, comprehen-
sive, and concrete. While such studies yield valuable insights, more work in this 
vein would clearly be useful in suggesting the contexts in which alternative deci-
sion support methods can prove most useful and how they can be made more 
effective.

The last of the IPCC’s criteria for an effective decision process suggests an 
additional challenge for using BCA within an “agree-on-decision” process: 
that existing rules and norms for some decision processes may favor “agree-
on-assumptions” analyses. Many previous “agree-on-decision” applications 
have focused on deliberative processes, such as the planning efforts carried 
out by water and flood risk management agencies, in which the participants 
have considerable discretionary authority to weigh risks and to suggest appro-
priate policy responses. In such cases, the analysis aims to help these groups 
reach consensus and exercise their discretionary judgments more wisely. In 
contrast, public agencies often use BCA in a context in which experts exercise 
authority delegated to them by an elected authority and, as such, are trying to 
limit the scope of their discretionary judgment. In such cases, existing rules 
and norms may favor BCA’s framework for providing best-estimate judgments 
of existing science, authoritative aggregations of differing values, and single 
rankings of alternative policy choices. Analytic processes that highlight the 
existence of multiple, legitimate views might not fit as easily within such 
contexts.

This mismatch between the benefits of an “agree-on-decisions” analytic 
process and the existing norms and rules of delegated decision processes might be 
reduced in several ways. Most straightforwardly, if “agree-on-decisions” methods 
allow an agency to identify a robust strategy – that is, one that meets its goals 
over a wide range of ways of aggregating values and of best-estimate judgments –  
then the agency can report this result and demonstrate its insensitivity to the 
uncertainties. For instance, adaptive management strategies (Lempert & Collins, 
2007; Lempert et al., 1996), those designed to evolve over time in response to new 
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information, may often prove more robust than static strategies. Such adaptive 
strategies can prove difficult to implement, but “agree-on-decision” methods 
may reduce some of these barriers (Lee, 1993). In other cases, in which no strat-
egy is robust over the full range of expectations and values, “agree-on-decisions” 
analyses may provide transparency regarding the most important sets of assump-
tions. For instance, agencies basing a decision on a social cost of carbon estimate 
could report the sets of future conditions under which that decision would have 
turned out differently, or the regrets of choosing a higher social cost of carbon 
compared with the regrets of choosing a lower value. Good planning requires 
decision makers to consider the conditions in which their plan might not meet its 
goals. By using BCA within an “agree-on-decisions” approach, decision makers 
could make these judgments clear.

Overall, BCA provides a powerful set of tools for improving decisions, 
although in some cases the approach does not serve this role as well as intended. 
In particular, BCA’s aim of aggregating all attributes of concern to decision 
makers into a single, best-estimate metric can conflict with the differing world 
views and values that may be inherent characteristics of many climate-related 
decisions. To help resolve such difficulties, one can usefully note that tradi-
tional BCA has a least four distinct attributes: (1) the cost and benefit perfor-
mance metric used to compare the consequences of alternative decisions, (2) the 
decision criterion that ranks alternative decisions by the extent to which ben-
efits exceed costs, (3) the characterization of the uncertainty that affects these 
rankings, and (4) a process that first seeks agreement on the assumptions that 
determine the estimates of costs and benefits before ranking alternative deci-
sions according to these estimates. New information technology now makes it 
possible, however, to effectively employ BCA’s metrics and decision criterion in 
alternative decision processes that may be better suited to many climate-related 
decisions. In particular, BCA’s core concepts can be used within an “agree-
on-decisions” analytic process that begins by acknowledging a wide range of 
ethical and epistemological views, examines which combinations of views are 
most important in affecting the ranking among proposed decision options, and 
uses this information to identify and seek consensus on actions that are robust 
over a wide range of such views.
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