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Using mathematical methods to understand and model crime is a recent idea that has drawn

considerable attention from researchers during the last five years. From the plethora of models

that have been proposed, perhaps the most successful one has been a diffusion-type differen-

tial equations model that describes how the number of criminals evolves in a specific area. We

propose a more detailed form of this model that allows for two distinct criminal types associ-

ated with major and minor crime. Additionally, we examine a stochastic variant of the model

that represents more realistically the ‘generation’ of new criminals. Numerical solutions from

both models are presented and compared with actual crime data for the Greater Manchester

area. Agreement between simulations and actual data is satisfactory. A preliminary statistical

analysis of the data also supports the model’s potential to describe crime.
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1 Introduction

Crime has always been an inherent part of every human society. It is not surprising

that researchers expend a considerable amount of time and resources in an attempt to

understand the way crime is generated and shaped [2]. Mathematical modelling is a

newcomer in the fight against crime, with a number of models being proposed during the

last five years that use a variety of approaches to model crime. These vary from agent-

based models [5, 13], population dynamics models [16] and epidemiological models [23]

to game-theoretic [14, 19] and probabilistic models [7, 15, 22].

Lately, a significant amount of research has been conducted on the spatial and temporal

distribution of crime [3, 6]. Specifically, the formation of areas of increased criminal

activity (hotspots) and their evolution in time and space has drawn the attention of crime

scientists [9, 10]. A novel mathematical modelling approach in attacking this problem

is presented in a series of papers by Short et al. [18, 20, 21], where the authors derive

a continuous model that captures the behaviour of burglars and which leads to the

formation of hotspots.

A common denominator in most work to date is the type of crime the research deals

with. More often than not, researchers either use ‘crime’ as a generic term to describe all
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Table 1. Categorisation of criminal activities present in the data

Serious Minor Discarded

Burglary Public disorder & weapons Drugs

Robbery Shoplifting Other crime

Criminal damage & arson Vehicle crime Anti-social behaviour

Violent crime Other theft

Violence & sexual offences Theft from person

Public order

Possession of weapons

Bicycle theft

crime which can occur or they tend to focus to a specific crime category, e.g. burglaries.

We believe that a visualisation of the way ‘serious’ crime (such as burglaries or violent

crime) and ‘minor’ crime (e.g. shoplifting) evolve and interact would be interesting and

could aid researchers towards a more thorough understanding of crime.

The goal of this paper is twofold. First, we aim to explore the relation between

serious and minor crime in an area from a data-analysis viewpoint. Second, we propose

a quantitative mathematical model that captures the dynamics that govern the temporal

distribution of serious and minor crime, as identified through the analysis of the data.

We make no attempt to base our model on social or psychological theories of crime,

electing instead to focus on it being consistent with the results from the data analysis. We

consider both deterministic and stochastic versions of the model and exhibit its suitability

in describing crime evolution via comparison with the actual data. Finally, parameter

values for the model are extracted from the data using a least squares fit.

2 Data analysis

Examining data of criminal activities of more than one type could be illuminating and

help set the basis for our model. To this end, we use a dataset which contains all reported

crimes in England for a period of two and a half years, obtained from the UK police

website [4]. Each criminal activity is categorised into one of 16 different types. Apart

from this categorisation, the month each crime is committed as well as an approximate

location is available. Despite the uncertainty present in the dataset (monthly basis instead

of daily, imprecise locations), we may safely use it for an initial macroscopic analysis of

crime patterns, as evidenced in [24].

As a first approach, let us examine the distribution of crime in time in some metropolitan

areas. We therefore merge all datasets for each area and aggregate the number of crimes

of each type on a monthly basis. Because of the large number of categories available, we

combine some of these into two larger, arbitrarily defined categories, serious and minor

crime, to simplify the analysis. Discarding some crime types is also useful, due to their

ambivalent nature. Communication with crime scientists indeed confirmed that labels

such as ‘drugs’ tend to be unclear and should best be omitted within the context of an

initial analysis. The detailed categorisation is shown in Table 1. After the data have been

cleaned and formatted, we can plot time series which describe the evolution of the total
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Figure 1. Total serious (red) and minor (blue) criminal activity per month between

September 2011 and January 2014.

number of crimes (serious and minor) in a specific area on a monthly basis, as shown in

Figure 1.

The first impression one gets from studying the time series is the way serious crime

mimics the behaviour of minor crime (and vice versa). Local maxima (resp. minima) of

serious crime coincide with those of minor crime in the overwhelming majority of cases.

This trend is very strong in all metropolitan areas examined and is something that should

definitely be taken into account when modelling this situation. A further trend that is

evident in a number of cities, albeit to a different degree, is that of periodicity on a yearly

basis. This phenomenon is not nearly as strong as the first trend we noticed and needs

careful statistical testing to confirm. However, the literature on crime and seasonality

generally suggests that this is usually the case (see [8] for seasonality in property theft

and [1] for more crime categories).
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Table 2. Pearson’s r calculated using data from September 2011 to January 2014. The

coefficients are in the left columns whereas the respective p-values are on the right. S and

M represent serious and minor crime respectively and ΔS and ΔM are forward differences,

e.g. ΔSJune = (Total amount of serious crime in July) − (Total amount of serious crime in

June)

Pearson’s r

S − ΔS M − ΔM S − M ΔS − ΔM S − ΔM M − ΔS

Birmingham −0.58 0.01 −0.48 0.02 0.67 <0.01 0.58 <0.01 −0.56 0.01 −0.09 0.69

Manchester −0.52 <0.01 −0.52 <0.01 0.58 <0.01 0.80 <0.01 −0.58 <0.01 −0.29 0.13

Leeds–Bradford −0.47 0.01 −0.55 <0.01 0.58 <0.01 0.71 <0.01 −0.46 0.01 −0.22 0.26

Liverpool–Merseyside −0.58 <0.01 −0.66 <0.01 0.67 <0.01 0.71 <0.01 −0.35 0.07 −0.55 <0.01

Newcastle–Sunderland −0.54 <0.01 −0.55 <0.01 0.61 <0.01 0.56 <0.01 −0.22 0.26 −0.38 0.04

Nottingham–Derby −0.53 <0.01 −0.57 <0.01 0.57 <0.01 0.45 0.02 −0.51 0.01 0.01 0.98

Entire dataset −0.61 <0.01 −0.60 <0.01 0.69 <0.01 0.87 <0.01 −0.65 <0.01 −0.43 0.02

To further test the observation that both crime types have the same qualitative beha-

viour, we can calculate correlation coefficients in our sample. We mainly use Pearson’s

r, a coefficient ranging from −1 to 1 which shows trends of linear relationship between

two variables. A value of 1 or −1 indicates that the relationship between two variables

is perfectly described by a linear function, whereas smaller (in absolute value) coefficients

indicate lower correlation. Additionally, we calculate Spearman’s ρ, another measure of

statistical dependence that ranges from −1 to 1, which assesses how well the relationship

between two variables can be described using a monotonic function. The statistical signi-

ficance of both correlations can be tested using the Fisher transformation and calculating

the relevant p-values. A p-value lower than a certain threshold (here 0.05) signifies that

we can reject the null hypothesis of the variables being independent. Some results of the

calculations can be seen in Table 2, whereas the full results can be seen in Table A 1. S

and M denote serious and minor crime respectively, whereas ΔS and ΔM are forward

differences such that if Si is the total crime rate for month i, we have ΔSi = Si+1 − Si. One

can think of these forward differences as approximate discrete derivatives that provide a

way of measuring the rate of change of S and M. Hence, correlations between them and

S and M can indicate the functional dependence of these derivatives on S and M.

Each half of the first two columns in Table 2 indicates that there exists a strong negative

correlation between S and ΔS (resp. M and ΔM). Hence, when serious crime S increases,

its rate of change ΔS will tend to decrease whereas when S decreases, ΔS will increase.

Therefore, a negative feedback loop is formed for these variables, which will revert S to its

mean value whenever it jumps significantly. This kind of behaviour can be explained by

having criminals being removed from the system more rapidly as the crime rate increases;

more crime leads to more arrests and sentencing [11]. The same reasoning can explain

the relation between M and ΔM as well.

The third and fourth columns in Table 2 reinforce our initial impressions from the time

series as it shows the existence of a strong linear correlation between serious and minor

crime, with a Pearson’s r of 0.69 for the aggregated data. ΔS and ΔM exhibit the same

kind of relation, indicating that the serious and minor crime rate vary in the same way.
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Finally, we have calculated the correlations between S and ΔM and between M and ΔS .

These computations aim to see if there is any correlation between one crime type and the

rate of change of the other, which seems to be the case but only for the S−ΔM coefficient,

as most coefficients for the other case are not statistically significant. This suggests that

serious crime in an area will tend to influence minor crime, a phenomenon which is

frequently observed in areas where organised crime is present. For instance, members of

gangs may ‘control’ the amount of minor crime taking place in areas where they are

active. We shall propose, in the following section, a mechanism by which one crime type

can have effect, albeit indirect, on the other.

At this point, it should be mentioned that this analysis was also carried out for

a number of rural areas as well. While a full presentation and comparison with the

metropolitan areas analysis is outside the scope of this paper, it is important to state

that there are no significant differences in the temporal distribution of crime between

urban and rural areas (see Table A 1). A calculation of the correlation coefficients yields

similar results to those of the metropolitan areas, although the significant correlations

tend to have a slightly lower absolute value. At the moment, it is unclear whether this is

a significant differentiation which would lead to a different model. Initially, we will focus

on the findings for the metropolitan areas and we hope to carry out a more extensive

comparison between the two types of areas in the future.

Summing up this preliminary data analysis, there are two main points that need to be

kept in mind while constructing the model. First, serious crime and minor crime should

exhibit the same qualitative behaviour and second, both crime categories should form a

negative feedback loop with their rate of change/time derivative. We will now propose a

continuous model that presents these properties.

3 Deterministic model

3.1 Overview

Our main goal is to obtain a model that describes the evolution of crime in a certain

area and exhibits behaviour close to the one shown in Figure 1 and with the properties

of Table 2. To this end, let us examine a model that consists of two different types of

criminals, serious and minor. We will use ρ1(t) (resp. ρ2(t)) to denote the number of

serious (resp. minor) criminals active in our area at time t. In the spirit of Short et

al. [21], the behaviour of the criminals is driven by a quantity which we will refer to

as the attractiveness of the area. One can think of the attractiveness as an indicator of

how probable it is for a criminal to act at a specific time. To increase the flexibility of

the model, we allow the attractiveness to depend not only on the behaviour of the active

criminals but also on other factors such as time, characteristics of the area examined, or

the type of crime committed. With this in mind, we split the attractiveness as follows:

Attractiveness = A(t) + B(t).

Here, A(t) denotes the ‘intrinsic’ part of the attractiveness that depends on factors other

than the behaviour of criminals and B(t) represents the ‘dynamic’ part of the attractiveness

that is caused by criminal activity. To be more concrete, let us suppose that knowledge
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of crimes being committed in an area tends to encourage more crimes to take place. This

effect would then be represented by the dynamic B(t) term. Conversely, if the number

of police officers patrolling a certain area changes according to the number of crimes

taking place, that would be a negative effect represented again by B(t). On the other hand,

changes in attractiveness due to factors not affected by criminal activity (e.g. time of day

or seasonality) will be accounted for by the intrinsic attractiveness A(t).

We will now discuss the behaviour of the criminals ρ1 and ρ2. Let us assume that at

a certain time t a number of individuals commit a crime. Some of those are arrested and

therefore removed from the system, whereas others appear in the system, perhaps due to re-

lease from prison or through people becoming criminals. We first consider how the number

of criminals evolve. We take the rate of lost criminals, through arrest and conviction, to be

a constant multiple of the rate at which crimes are committed, namely kiρi (A + B), i = 1, 2.

Because of the way attractiveness is defined, we assume that the total number of crimes

of type i committed at time t is proportional to the product of the total attractiveness by

the number of criminals, resulting in a contribution to the rate of change of the form

−kiciρi (A(t) + B(t)) , i = 1, 2,

where each ki and ci are constants of proportionality. It is however considerably more

difficult to propose a form for the term which represents the generation of new criminals.

To simplify the analysis to follow, we will consider it as constant and name it γ1 (γ2) for

the creation of serious (resp. minor) criminals. Therefore, the evolution in time of the

number of criminals of either type is described by the following equation:

dρi

dt
= replacementcriminals−constant×criminals who are committing a crime, i = 1, 2.

These can be rewritten in more detail as two evolution equations for our two types of

criminals:

dρ1

dt
= γ1 − k1c1ρ1 (A + B) , (3.1)

dρ2

dt
= γ2 − k2c2ρ2 (A + B) . (3.2)

Let us now examine the behaviour of the dynamic part of the attractiveness, B(t). Every

crime that is committed increases B(t) and therefore the dynamic attractiveness is boosted

by a term proportional to the total number of crimes of both categories committed. We

use the term

(λ1ρ1 + λ2ρ2) (A + B)

to model this boost, where λ1 and λ2 are constants. Note that we have implicitly assumed

that the dynamic attractiveness B(t) is global rather than local, in the sense that criminals

may exchange information about crimes committed. This is consistent with the growth part

of the attractiveness in the spatio-temporal model in [21]. We further assume that B decays

exponentially in time. Hence, the evolution equation for this part of the attractiveness is

dB

dt
= (λ1ρ1 + λ2ρ2) (A + B) − ωB, (3.3)

https://doi.org/10.1017/S0956792516000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000139


A mathematical model of serious 409

where ω is the (constant) decay rate. This equation, together with equations (3.1) and

(3.2), forms a 3 × 3 non-linear coupled system of ODEs. Although this model form is

mathematically similar to the one of Short et al. [21], the interpretations of the two

models vary considerably. Whereas the Short model takes into account diffusion of both

criminals and attractiveness as well as local spatial effects, the model proposed above

describes the temporal evolution of two types of criminals in a larger scale.

We can now confirm the existence of a negative feedback between both crime types

and their derivatives, a characteristic we noted in the data analysis section as well. When

serious crime S increases, the (λ1ρ1 + λ2ρ2) (A + B) term in equation (3.3) will increase as

well. This will boost the dynamic part of the attractiveness B which will in turn cause the

−k1c1ρ1 (A + B) term in equation (3.1) to decrease, ultimately decreasing dρ1/dt. The same

hold for ρ2 and its derivative as well. At this point, we should note that the behaviour of

ρ1 and ρ2 is, in general, symmetric, mirroring the behaviour of serious and minor crime

in the data analysis. Despite the symmetric form of all three equations, it is possible to

introduce asymmetry in the model in an indirect way by altering the sizes of λ1 and λ2.

An alternative form of the model can be obtained if we assume that the dynamic attract-

iveness B is more ‘personal’, that is information is not shared between criminals so that

only those who have committed a crime are aware it has taken place. This would replace

the (λ1ρ1 + λ2ρ2) (A + B) term in equation (3.3) with a term of the form c (A + B), resulting

in an uncoupled equation for the attractiveness. This simpler version however does not link

ρ1 and ρ2 and is consequently not consistent with the results of the data analysis. There-

fore, we will continue our analysis with the more complicated form of the model because

of its greater flexibility and therefore increased ability to fully grasp the dynamics at play.

3.2 Model analysis

As a first step, we can write the equations of the system in non-dimensional form. To

simplify the analysis to follow, let us define Ki = ciki, i = 1, 2. We begin by looking for

natural scales of quantities present in the model. A natural choice for the time scale is

τ = 1/ω, as this is the relaxation time for the dynamic attractiveness B. We also scale ρ1

(resp. ρ2) by ω/λ1 (resp. ω/λ2) as this gives a balance of the B terms on the right-hand

side of equation (3.3). Finally, B is scaled in a way to balance the left-hand side (rate of

change of serious crime) and the second term (criminal removal rate) on the right-hand

side of equation (3.1). We therefore scale variables as follows, denoting dimensionless

quantities with a hat:

t̂ =
1

ω
t, ρ̂i =

ω

λi
ρi, B̂ =

ω

K1
B.

At the moment, we have limited information on the magnitude of the intrinsic part of the

attractiveness A and will therefore scale it in the same way as the dynamic attractiveness:

Â =
ω

K1
A.

Finally, we introduce the dimensionless constants

γ̂i =
ω2

λi
γi, K =

K2

K1
, i = 1, 2
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and after dropping the hat notation, the system of equations can now be written as

dρ1

dt
= γ1 − ρ1 (A + B) ,

dρ2

dt
= γ2 − Kρ2 (A + B) ,

dB

dt
= (ρ1 + ρ2) (A + B) − B.

For simplicity, let us now consider the above system with the intrinsic attractiveness

being constant, A(t) = A. It is easy to see that there exists a unique equilibrium point,

namely

ρ̄1 =
Kγ1

AK + Kγ1 + γ2
,

ρ̄2 =
γ2

AK + Kγ1 + γ2
,

B̄ =
Kγ1 + γ2

K
.

We can now use the Routh–Hourwitz criterion to prove that the steady state is stable

for any choice of parameter values. One of the necessary and sufficient conditions for

stability of the steady state, namely that K (A + B)2 > 0, is automatically satisfied as K

is positive. By substituting the equilibrium values for ρ1, ρ2 and B, the second condition

can be written as

(K + 1)(γ1 + γ2) + A

(
K

K(A + γ1) + γ2
+ K + 1

)
> 0,

which obviously holds as well. Similarly, we can prove that the final condition of the

Routh–Hourwitz criterion holds as well and therefore the steady state is always stable.

4 Numerical results

Despite the innocuous form of the equations of the model, it may be impossible to find

an exact solution. Thus, we resort to numerical simulations to gain some insight into

the behaviour of the model. The differential equations are integrated using MATLAB’s

ODE15 integrator. The reasoning behind choosing a stiff integrator can be justified by

our lack of information regarding the parameter values and the initial data. For the

simulations presented here, we use a sample collection of parameters that are similar to

those used in [21]. These do not necessarily represent realistic values, as at this point our

main goal is to examine the form of the solutions rather than a model that accurately

describes criminal activity quantitatively.

Example output from the simulations can be seen in Figure 2. Serious crime ρ1(t)is

represented by a blue line, minor crime ρ2(t) by an orange line and dynamic attractiveness

B(t) by a green line, whereas t denotes time in days. All simulations were run with initial

data away from equilibrium when A is constant, namely ρ1(0) = ρ̄1 +0.5, ρ2(0) = ρ̄2 +0.5.

When A(t) is periodic, all initial conditions are equal to
(
ρ̄1, ρ̄2, B̄

)
, where we have taken

https://doi.org/10.1017/S0956792516000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000139


A mathematical model of serious 411

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

0 10 20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

0.25

(c)

0 50 100 150 200
0.00

0.05

0.10

0.15

0.20

0.25

0.30

(c)

0 2 4 6 8 10
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(d)

0 50 100 150 200
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(d)

Figure 2. Numerical simulations using parameters described in Table 3. The x-axis represents time

in days, the blue line represents serious crime ρ1, the orange line represents minor crime ρ2 and the

green line is the dynamic attractiveness B. When A is constant, the initial condition for ρ1 (resp.

ρ2) is equal to ρ̄1 + 0.5 (resp. ρ̄2 + 0.5). When A is periodic, the initial conditions are at equilibrium.

Initial attractiveness B is always at equilibrium B̄.

the periodic part of A(t) to be equal to zero at the equilibrium formulas. The rest of the

parameters for these plots are as described in Table 3.

We observe that when the intrinsic attractiveness A(t) is constant (plots a and b),

all variables settle down to their equilibrium values after some initial variation. On the

other hand, when the intrinsic attractiveness is periodic, it is obvious that the system is

driven by this periodicity (plots c and d). The short-term behaviour of the system does
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Table 3. Parameter values used for numerical simulations

γ1 γ2 K1 K2 λ1 λ2 ω A(t) Plot

0.02 0.01 1 1 0.7 0.2 0.2 1/30 a

0.2 0.1 2 1 2.5 1.5 1 1/30 b

0.02 0.01 1 1 0.7 0.2 0.2

(
1 + sin

πt

6

)
/10 c

0.2 0.1 2 1 2.5 1.5 1

(
1 + sin

πt

6

)
/10 d

not change significantly when moving from constant A to periodic A, as is evident by

comparing plots (c) and (d). The resulting long-term behaviour is close to the way the

number of criminals varies in areas as in Figure 1 and therefore this type of model should

be considered more realistic than the former. It should be noted that in both models, the

behaviour of the two criminal types is very similar, which was one of the properties that

was strongly evident during the data analysis. At this point, it is clear that the qualitative

behaviour of the model is not far from that of the criminal time series, given that we are

using a deterministic model to describe a process which is inherently random in nature. In

an effort to further increase the flexibility of the model, we will now examine a stochastic

version of it.

4.1 Stochastic model

Let us begin by identifying possible sources of randomness in our model. Some obvious

candidates for that role would be the intrinsic attractiveness A (due to random fluctuations

in the attractiveness of the area examined) or the coefficients Ki (random fluctuations in

the effectiveness of enforcement agencies). For the sake of simplicity, we will begin by

incorporating the randomness of the criminal generation rates, γ1 and γ2. Indeed, from

a criminological point of view, there is no reason why the ‘generation’ of new criminals

should not be a random process. To model this, let us rewrite the equations for the number

of criminals with the criminal generation rates being stochastic instead of constant:

dρ1 = γ1dt + 1dWt − K1ρ1 (A + B) dt,

dρ2 = γ2dt + 2dWt − K2ρ2 (A + B) dt.

Our original system now consists of one deterministic and two stochastic differential

equations with constant diffusion coefficients, where Wt is the usual Wiener process

(Brownian motion). These can be solved numerically using one of the standard SDE

integrators such as Euler–Maruyama or the higher order Milstein method. For the

simulations to follow, we used the Euler–Maruyama method with an extra modification.

If the magnitude of either stochastic criminal generation rate δi is such that it would

drive either ρi to a value smaller than 10% of that at steady state, then this parameter

is set to zero for that specific step. For all simulations run, the noise strengths δi were

equal to γi/10. In plots (a–d) of Figure 3, we present sample output from the stochastic

simulations for the parameter values used in the deterministic case (left column). We also
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Figure 3. Numerical simulations of stochastic model using parameters described in Table 3. In the

left column, we plot ρ1 (red), ρ2 (blue) and B (green), where the x-axis represents time in days. In

the right column, we plot the monthly crime rate and the x-axis represents time in months.
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Table 4. Correlation coefficients (left columns) and their respective p-values (right

columns) calculated from the output of the stochastic simulations shown in Figure 3

Pearson’s r

Plot S − ΔS M − ΔM S − M ΔS − ΔM S − ΔM M − ΔS

a,b −0.25 <0.01 −0.28 <0.01 1.00 <0.01 0.99 0.00 −0.30 <0.01 −0.23 <0.01

c,d −0.55 <0.01 −0.48 <0.01 0.89 <0.01 0.80 <0.01 −0.24 <0.01 −0.57 <0.01

e,f −0.38 <0.01 −0.42 <0.01 0.99 <0.01 0.99 0.00 −0.42 <0.01 −0.37 <0.01

g,h −0.59 <0.01 −0.49 <0.01 0.89 <0.01 0.79 <0.01 −0.26 <0.01 −0.58 <0.01

present plots of the total number of crimes per month as predicted by the model (right

column). This is achieved by summing

kiρi(A + B), i = 1, 2

over 30 days. Calculating Pearson’s r for the same categories as in the data analysis, we

observe that agreement with the correlation coefficients obtained from the data analysis

is in general satisfactory, as seen in Table 4.

It is evident from the simulations that the behaviour of the stochastic system is close

to that of the deterministic, as expected. Altering 1 and 2 will change the amount of

stochasticity present in the system and can be possibly used to improve agreement with

data. We also note that the behaviour of both crime rates per month is qualitatively very

similar to that of the actual time series, a promising fact for the ability of the model to

approximate the data. It should be noted though that if any numerical comparison is to

be made, a realistic set of parameter values is needed.

5 Parameter estimation

An inherent problem in most types of social models is that of estimating the value of

the parameters used, coupled with the quantification of the uncertainty regarding their

knowledge. When faced with such a problem, one would usually employ techniques such

as non-dimensionalisation and experimentation to reduce the complexity of the model

and obtain an estimate for the values of the parameters. Unfortunately, in many cases,

this procedure may not be especially helpful or it may even be impossible to follow at

all. For example, in this model, while non-dimensionalisation significantly reduces the

number of parameters from 8 to 4, it fails to help with the estimation of parameters as

we have no information regarding the baseline values of the constants that were used

for the non-dimensionalisation (e.g. typical time scale). Due to the nature of the model,

experimentation is not a valid approach either. Therefore, to obtain a realistic parameter

regime, it is important to make full use of the crime data at our disposal.

We begin by choosing perhaps the simplest procedure that yields an estimate for

the parameter values, minimising an objective function. In general, inverse problems

associated with minimising functions can be hard to solve consistently as they are usually

not well-posed. Instability of solutions is usually the culprit and this is something that
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Table 5. Parameter estimation for 29 months, each month being represented by a data

point for every crime category

k1 k2 λ1 λ2 γ1 γ2 ω c1 c2 ρ1(0) ρ2(0) B(0) A Fmin Solver

0.50 1.05 0.30 0.08 0.81 0.77 0.03 1.05 1.23 0.91 0.33 0.53 1.40 0.06 TNC

0.69 1.87 0.54 0.69 0.35 0.66 0.01 0.46 1.05 0.38 0.11 2.17 1.18 0.07 BFGS

0.34 0.87 0.11 0.69 0.92 2.18 0.02 1.19 3.45 1.00 0.31 1.55 0.98 0.07 SLSQP

must be noted when performing this kind of parameter estimation, as it may significantly

affect uncertainty regarding the estimates obtained. Keeping this in mind, we define an

objective function F, the arguments of which are the parameters whose value we want

to estimate. This function will quantify the difference between the total monthly crime

rates from the data analysis and that predicted by our model. One simple form for our

function is the following:

F =
∑

All months

(Serious crimedata − Serious crimemodel)
2

+
∑

All months

(Minor crimedata − Minor crimemodel)
2 .

While executing the parameter estimation, the objective function is evaluated as follows:

(1) Fix initial data ρ1(0), ρ2(0), B(0), and an initial guess for the vector of parameters to

be estimated, defined as p0 = (k0
1 , k

0
2 , λ

0
1, λ

0
2, γ

0
1 , γ

0
2 , ω

0, c0
1, c

0
2, ρ1(0), ρ2(0), B(0)).

(2) Solve the deterministic model numerically.

(3) Evaluate Serious crimedata (resp. Minor crimedata) by calculating k1ρ1(A + B) (resp.

k2ρ2(A + B)).

(4) Substitute into the objective function and calculate its value.

(5) Solve the minimisation problem, coupled with the constraint that all parameters must

be greater than zero.

The minimisation was carried out using a plethora of solvers, such as Sequential Least

Squares Quadratic Programming, Truncated Newton Constrained and the low-memory

version of the BFGS algorithm (which is normally used for unconstrained optimisation,

but can handle box constraints). A general observation is that the minimisation of F
is not easy as the minimisers obtained may vary significantly depending on the initial

guess as well as the algorithm chosen. One possible explanation would be the existence

of lots or hills and/or valleys in the graph of F, where most Newton-based algorithms

struggle. Due to the nature of the problem, experimentation with the step size does not

help either. Despite these difficulties in the minimisation procedure, it is possible to obtain

estimates for the values of the parameters. Using these estimates (Table 5), we can solve

the equations numerically and compare the actual crime rates with the model-predicted

ones.

In Figure 4, we present example output from the simulations of the model. We performed

two minimisations, first keeping the intrinsic attractiveness A constant (left column), and

https://doi.org/10.1017/S0956792516000139 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000139


416 A. A. Lacey and M. N. Tsardakas

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(TNC)

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(TNC)

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(BFGS)

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(BFGS)

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(SLSQP)

0 5 10 15 20 25 30
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

(SLSQP)

Figure 4. Comparison between actual crime data (dots) and deterministic model simulation (solid

lines) for the Manchester area, using parameter values obtained from the minimisation procedure,

as shown in Table 5. Plots in the left column were created with A constant, whereas its periodic

form was used for plots in the right column. The x-axis represents time in months. Red colour

represents serious crime and blue represents minor crime.

then using the parameter values obtained to estimate parameters for a more general

periodic form of A with a period of one year, namely A1 + A2 sin
(
πt/6 + A3

)
(right

column). We observe that the deterministic model is a satisfactory approximation to

the (random) data. However, due to the number of parameters estimated (either nine

for constant A or 12 for periodic A), coupled with three initial conditions, the issue of

possible parameter redundancy has to be considered. Indeed, it is possible to change the

total crime rates without altering the equations of the model. To illustrate this, let us
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arbitrarily choose two positive numbers a1, a2 and consider the following scaling:

ρi → aiρi, ki → ki/ai, γi → aiγi, ci → aici, λi → λi/ai, i = 1, 2.

It is now easy to see that all equations of the model and the total crime rates kiρi (A + B)

remain the same. This scaling shows that there cannot possibly be a set of unique

parameters that serves as a global best fit to the crime rate, as we can always alter

parameters by a1, a2 but leave everything else unchanged.

The availability of larger datasets would be a significant asset in improving model

training, as would be a dataset of higher resolution (e.g. crimes reported daily instead

of monthly). Furthermore, we performed the procedure above for areas other than

Manchester, obtaining qualitatively similar results in the output of the simulations. The

value of the objective function at its minimum was always consistent with the one is

Manchester’s case, ranging from 0.078 (Liverpool) to 0.045 (Southampton).

Finally, we can use the parameters obtained above for the stochastic model as well.

We used the same parameters as for the deterministic simulations and added Gaussian

noise. After running a number of simulations for each parameter set and averaging them,

we present example output in Figure 5. We expect that, for a large enough number of

simulations, the outcome of the stochastic model should be approximately the same as

the deterministic one. Indeed, it is obvious that the stochastic simulations are qualitatively

similar to the deterministic ones, as both crime rates fluctuate above and below their

equilibrium values. A direct comparison however between the deterministic and the

stochastic model is harder to make, as it is not easy to quantify their performance. We

believe that the deterministic model should be considered as a tool for indicating the

mean behaviour of both crime rates in the long run, whereas the output of the stochastic

one indicates the expected variation in serious and minor crime and is qualitatively closer

to the data.

6 Conclusions

As far as the actual data are concerned, it is clear that a variety of interesting conclusions

can be drawn even from a preliminary analysis, as was the one conducted here. We based

our model mainly on the high degrees of correlation between serious crime, minor crime

and their rates of change. However, we chose not to incorporate in our model the fact

that serious crime is correlated with the rate of change of minor crime, while there is

no such link in the opposite direction. This observation is consistent with some theories

proposed by criminologists [12, 17] and is something that needs to be further examined

in the future, as it could simplify the model (possibly by imposing a relation between λ1

and λ2).

The transition from a deterministic model to a stochastic one was beneficial as it

increased the flexibility of the model. One disadvantage, though, of this transition is the

higher difficulty associated with estimating parameter values for a stochastic model. This

can be sidestepped by using both versions of the model, estimating parameters from the

deterministic one and then calibrating the amount of randomness present in the stochastic

one to improve agreement with the data.
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Figure 5. Comparison between actual crime data (dots) and stochastic model simulation (solid

lines) for the Manchester area, using the same parameter values as in Figure 4 with δi = γi/10 and

A periodic. Red colour represents serious crime and blue represents minor. For the plots in the left

column, 10 runs were executed and then averaged, as opposed to 100 runs in the right column.

The estimation of parameter values itself is also an area of further improvement. A

clear cut solution to this problem may not be so easy to find although it is certain

that more detailed data, especially in the temporal scale, would be an important as-

set. An objective function that more accurately represents the difference between actual

and predicted crime of both types per month could theoretically improve the con-

sistency of the minimisers obtained. It is also possible to adopt a different approach

altogether in estimating parameter values, such as Bayesian methods, which is work in

progress.
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Finally, it should be mentioned that the framework set in this paper can be expanded to

model crime distribution in space for serious and minor crime, along the lines of [18,20,21].

A model that successfully captures the points mentioned here and expands them to

account for spatial variation as well is also work in progress. This could not only provide

researchers with significantly improved understanding of the dynamics between serious

and minor crime but also enable policy makers and law enforcement agencies to better

predict crime evolution and increase their effectiveness as well as the allocation of their

resources.
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Appendix A

Table A 1. Pearson’s r (top half) and Spearman’s ρ (bottom half) calculated using data

from September 2011 to January 2014 obtained from the UK police website. The coefficients

are in the left columns whereas the p-values are on the right. S and M represent serious

and minor crime respectively and ΔS and ΔM are forward differences, e.g. ΔSJune = (Total

amount of serious crime in July) − (Total amount of serious crime in June)

Pearson’s r

S − ΔS M − ΔM S − M ΔS − ΔM S − ΔM M − ΔS

Birmingham −0.58 0.01 −0.48 0.02 0.67 <0.01 0.58 <0.01 −0.56 0.01 −0.09 0.69

Manchester −0.52 <0.01 −0.52 <0.01 0.58 <0.01 0.80 0.00 −0.58 <0.01 −0.29 0.13

Leeds–Bradford −0.47 0.01 −0.55 <0.01 0.58 <0.01 0.71 0.00 −0.46 0.01 −0.22 0.26

Liverpool–Merseyside −0.58 <0.01 −0.66 <0.01 0.67 <0.01 0.71 0.00 −0.35 0.07 −0.55 <0.01

Southampton–Portsmouth −0.33 0.09 −0.40 0.04 0.66 <0.01 0.44 0.02 −0.17 0.38 −0.22 0.26

Newcastle–Sunderland −0.54 <0.01 −0.55 <0.01 0.61 <0.01 0.56 <0.01 −0.22 0.26 −0.38 0.04

Nottingham–Derby −0.53 <0.01 −0.57 <0.01 0.57 <0.01 0.45 0.02 −0.51 0.01 0.01 0.98

Sheffield −0.57 <0.01 −0.51 0.01 0.44 0.02 0.49 0.01 −0.51 0.01 −0.08 0.67

Suffolk −0.32 0.09 −0.48 0.01 0.85 0.00 0.54 <0.01 −0.17 0.38 −0.25 0.21

Norfolk −0.57 <0.01 −0.52 <0.01 0.54 <0.01 0.21 0.29 −0.11 0.57 −0.15 0.46

Cambridgeshire −0.42 0.03 −0.50 0.01 0.52 <0.01 0.53 <0.01 −0.24 0.22 −0.24 0.22

Lincolnshire −0.49 0.01 −0.51 0.01 0.73 0.00 0.76 0.00 −0.50 0.01 −0.26 0.18

Cumbria −0.51 0.01 −0.51 0.01 0.68 <0.01 0.61 <0.01 −0.38 0.04 −0.28 0.15

Durham −0.45 0.02 −0.50 0.01 0.56 <0.01 0.44 0.02 −0.36 0.06 −0.01 0.95

Sussex −0.69 <0.01 −0.45 0.02 0.77 0.00 0.78 0.00 −0.59 <0.01 −0.33 0.08

Devon–Cornwall −0.53 <0.01 −0.40 0.04 0.66 <0.01 0.71 0.00 −0.47 0.01 −0.21 0.29

Entire dataset −0.61 <0.01 −0.60 <0.01 0.69 0.00 0.87 0.00 −0.65 <0.01 −0.43 0.02

Birmingham −0.47 0.03 −0.58 <0.01 0.66 <0.01 0.57 0.01 −0.63 <0.01 −0.09 0.70

Manchester −0.54 <0.01 −0.53 <0.01 0.55 <0.01 0.77 0.00 −0.60 <0.01 −0.30 0.12

Leeds–Bradford −0.46 0.01 −0.59 <0.01 0.62 <0.01 0.65 <0.01 −0.51 0.01 −0.24 0.23

Liverpool–Merseyside −0.64 <0.01 −0.60 <0.01 0.69 0.00 0.75 0.00 −0.41 0.03 −0.46 0.01

Southampton–Portsmouth −0.47 0.01 −0.39 0.04 0.62 <0.01 0.55 <0.01 −0.14 0.47 −0.26 0.18

Newcastle–Sunderland −0.57 <0.01 −0.56 <0.01 0.71 0.00 0.38 0.04 −0.19 0.33 −0.46 0.01

Nottingham–Derby −0.55 <0.01 −0.54 <0.01 0.45 0.02 0.40 0.03 −0.53 <0.01 0.02 0.94

Sheffield −0.58 <0.01 −0.48 0.01 0.40 0.03 0.55 <0.01 −0.52 <0.01 −0.02 0.92

Suffolk −0.24 0.22 −0.51 0.01 0.84 0.00 0.46 0.01 −0.18 0.35 −0.24 0.22

Norfolk −0.65 <0.01 −0.44 0.02 0.43 0.02 0.18 0.36 −0.20 0.30 −0.08 0.70

Cambridgeshire −0.47 0.01 −0.48 0.01 0.49 0.01 0.58 <0.01 −0.21 0.29 −0.30 0.13

Lincolnshire −0.44 0.02 −0.49 0.01 0.73 0.00 0.71 0.00 −0.50 0.01 −0.29 0.14

Cumbria −0.47 0.01 −0.51 0.01 0.62 <0.01 0.55 <0.01 −0.34 0.08 −0.26 0.19

Durham −0.32 0.09 −0.49 0.01 0.54 <0.01 0.40 0.03 −0.28 0.15 <0.01 0.99

Sussex −0.71 0.00 −0.36 0.06 0.80 0.00 0.75 0.00 −0.56 <0.01 −0.40 0.04

Devon–Cornwall −0.47 0.01 −0.35 0.07 0.69 0.00 0.71 0.00 −0.39 0.04 −0.16 0.43

Entire dataset −0.59 <0.01 −0.54 <0.01 0.64 <0.01 0.90 0.00 −0.64 <0.01 −0.41 0.03
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