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PROTO-DIFFERENTIATION OF SUBGRADIENT 
SET-VALUED MAPPINGS 

RENÉ A. POLIQUIN 

1. Introduction. Set-valued mappings arise quite naturally in optimization and 
nonsmooth analysis. In optimization, typically one has a family of optimization 
problems that depend on some parameter. One can then associate to this family 
of problems the set-valued mappings that assign to the parameter the set of 
optimal solutions, the set of feasible solutions or the set of multipliers. Many of 
these set-valued mappings encountered in optimization have been shown to be 
"proto-differentiable" (see Rockafellar [16]) i.e., in some sense these set-valued 
mappings are "differentiable". Using estimates provided by the proto-derivatives, 
see Proposition 2.1, one can then obtain information on how the sets depend on 
the parameter. The concept of proto-differentiation is described in Section 2. 

In nonsmooth analysis, functions that are not differentiable in any classical 
sense are studied. To replace the gradient, several types of "subgradients" have 
been introduced. Proximal subgradients, lower semigradients and the (Clarke) 
generalized subgradients are all examples of subgradients; [2], [6] and [10]. In 
all three cases the mapping that assigns to each point the set of subgradients 
is potentially set-valued. Other examples of set-valued mappings are given by 
the normal cone, the tangent cone and the contingent cone; see [2]. Rockafellar 
has shown that the subgradient mapping of a convex function (they all agree for 
convex functions) is proto-differentiable almost everywhere. Since subgradients 
provide first-order information, this result can be viewed as giving second-order 
information on convex functions. In fact there is an equivalence between the 
subgradients being proto-differentiable and the convex function having a gener­
alized second-order directional derivative; see Section 2. 

The purpose of this paper is to show, in Section 4, that the generalized subgra­
dient set-valued mapping of an "amenable" function is also proto-differentiable 
(again, as in the case of convex functions, all three subgradients mentioned ear­
lier are the same for these functions; see [6]). Amenable functions are described 
in detail in Section 3; they are the composition of a "piecewise linear-quadratic" 
convex function with a C2 (twice continuously differentiable) mapping, in ad­
dition a constraint qualification must be satisfied. Amenable functions are very 
important in optimization, in fact most common types of problems encountered 
in practice can be reformulated using these amenable functions; see [13]. 

We leave to another paper [7], the study of applications of this proto-
differentiation result to sensitivity analysis of optimal solutions. The sensitivity 
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results are similar to the ones obtained in [17], where the composition of a C2 

convex function with a C2 mapping is investigated. Essentially for a family of 
parametrized optimization problems, formulated using amenable functions, the 
set-valued mapping that assigns to each parameter the set of vectors satisfying 
the first-order condition (i.e., the primal and dual vectors) is proto-differentiable, 
and the proto-derivatives can be calculated by solving an auxiliary problem sim­
ilar in nature to the original optimization problem. 

For a simple example of how the proto-differentiability of the generalized 
subgradient mapping can be used to yield information on the optimal solutions, 
consider the following linearly perturbed optimization problems: 

Pv: inf {f(x)-(x,v)}. 
xeRn 

If we let r(v) = {x : v G 3/(x)}, where df(x) is the set of generalized subgra­
dients t o / at x, then T(v) includes the set of optimal solutions to the perturbed 
problems Pv. If we fix an optimal solution x to the unperturbed problem, i.e., 

fix) = inf f(x), 
xeR" 

then assuming that the subgradients are proto-differentiable at x relative to 0, 
we have F proto-differentiable at 0 relative to x. Using the estimates described 
in Proposition 2.1 one could perform a kind of sensitivity analysis on the set of 
optimal solutions. 

2. Proto-differentiability of a set-valued mapping and second-order epi-
differentiability of a function. Rockafellar has recently introduced the concept 
of proto-differentiability of a set-valued mapping. Let F : R" —> Rn be a set-
valued mapping (i.e., Fix) C Rn) and v a vector in Fix). To introduce a notion of 
"differentiation" of this set-valued mapping, the following difference quotients 
are defined: for t > 0, let 

r = g P h r - ( x , v ) ^ € R „ x RB)j 

where gphT is the graph of T i.e., {(y, z) : z £ T(y)}. 
The set-valued mapping T is proto-differentiable at x relative to v if the sets 

r , converge in the "Painlevé-Kuratowski" sense i.e., 

(2.1) lim sup Ft = lim inf Ft 

where 
lim supr, = {w : 3tn [ 0, and wn G Ftn with wn —> w} 

and 

lim inf 40 Ft — {w : \/tn [ 0, 3wn G Ftn with wn —> w}. 
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The lim sup T, is called the contingent cone of T at x relative to v, and the 
r|0 

liminf Tt is referred to as the derivative cone of T at x relative to v. The proto-
'10 

derivative, T'x v : Rn —• R", is the set-valued mapping whose graph is the limiting 
set in (2.1). Alternative descriptions of the lim sup and lim inf can be obtained 
by way of the distance function to a set; for such characterizations we refer to 
[16]. 

Just as the derivative of a function is used to establish estimates of the func­
tion, the same can be said of proto-derivatives. In the Proposition, the set B is 
the usual closed unit ball in R \ 

PROPOSITION 2.1. (Rockafellar [16]) For any p > 0 (arbitrarily large) and any 
e > 0 (arbitrarily small), there exists r > 0, such that for all t E (0,r) 

(r, H pB) C (gph I^ v + eB) and 

(gVhT,
xvnpB)CÇrt + eB). 

Proto-derivatives have been used by J.L. Ndoutoume [5] to obtain first-order 
necessary optimality conditions for the following problem: minimize {g(y) + 
h(u)} subject to B(u) + / G A(y) + d(p(y) where A : V »-» V, B : U »—> V7 are 
linear and continuous, g '. H \—• R is a locally Lipschitzian function, h : U \—> 
RU{oo} and ip : V \—* RU{oo} are closed (i.e., lower semicontinuous) convex 
functions and £/, V and H are real Hilbert spaces. Proto-derivatives have also 
been used by King [3] to establish a generalized "delta theorem" of statistical 
nature for random sets. 

When applied to a subgradient mapping, proto-differentiation gives rise to a 
second-order theory. As we will see, for convex functions the proto-derivative 
of the subgradient mapping is related to the following second-order difference 
quotient: for/ : Rn —• RU {oo} a closed function, x in the effective domain of 
/ i.e., x G dom/ = {x :f(x) < oo}, and vGR" let 

, ^ _ / C * + f Q - / ( * ) - ' ( v , 0 

where (v,£) is the usual dot product on Rn. We say that / is twice epi-
differentiable at x relative to v if 

lim sup epi <px v t = lim inf epi u)x v t 

and the set 0 x R is not included in the limiting set (epi ipx,v,t is the set of all 
points lying on or above the graph of ipx,v,t)- The second-order epi-derivative is 
the function/^, : R " - ^ R U {oo} whose graph is the limiting set. 

Rockafellar has used second-order epi-derivatives to obtain second-order nec­
essary and sufficient conditions for optimality; see [14]. These conditions are 
quite simple in nature: if/ has a local minimum at je, then//0(£) à 0 for all 
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£; if 0 is a subgradient to / at x and f£0(0 > 0 for all £, then / has a local 
minimum at x (in the strong sense). 

For convex functions, the notions of proto-differentiability of the subgradients 
and second-order epi-differentiability of the function are equivalent. Essentially, 
the proto-derivative of the subgradients is the subgradient of the second-order 
epi-derivative. 

THEOREM 2.2. (Rockafellar [15]) Let g :R"-^RU {oo} be a closed proper 
(i.e., domg is nonempty) convex function and v G dg(x). The function g is twice 
epi-differentiable at x relative to v if and only if dg is proto-differentiable at 
x relative to v. Moreover the subdifferential of the function (l/2)g"v is the 
proto-derivative ofdg at x relative to v i.e., 

3((l/2)g;)V)(0 = (dg)'x>v(0 M all Ç. 

3. Amenable functions. To introduce amenable functions, we need to first 
introduce piecewise linear-quadratic functions and the basic constraint qualifi­
cation. 

Definition 3.1. A function g :Rn —> RU{oo} is said to be piecewise linear-
quadratic if D, the domain of g, is the union of finitely many polyhedra and g 
restricted to each polyhedron is quadratic (with linear as a special case). 

Definition 3.2. For F : Rn -> Rm, g : Rm —• RU{oo} and x G domg of, we 
say that the basic constraint qualification (b.c.q.) is satisfied at x if there does 
not exist y in N^omg(F(x)) (the normal cone to domg at F(x)), with y ^ 0, and 
yVF(x) = 0. Here we think of y as a row vector and VF(Jc) as the matrix of 
partial derivatives. 

When domg is the non-negative orthant, the basic constraint qualification 
turns into the dual statement of the familiar Mangasarian-Fromovitz constraint 
qualification [4]. The basic constraint qualification is a local notion i.e., if the 
b.c.q. holds at x then it holds on a neighborhood of x; see [13], Proposition 
4.9. There are two main purposes for the basic constraint qualification. On the 
one hand it guarantees that the generalized subgradients to g o F at x can be 
evaluated using the generalized subgradients of g at F(x) and the derivative of 
F at x, i.e., 

d(goF)(x) = dg(F(x))VF(x); 

see Rockafellar [9] and [12]. On the other hand, it ensures that for all v, the set 
{w G dg(F(x)) : wVF(x) = v} is bounded (hence compact). (Suppose wn G 
dg(F(x)), with ||ww|| Î oo and wnVF(x) = v. Assuming that vt̂ /Hu^H —• w, it 
follows that w G A^dom (̂̂ (̂ )), with ||w|| = 1 and wVF(x) = 0; this contradicts 
the b.c.q. at x.) 

We now define amenable functions. 
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Definition 3.3. A function/ : R" —> R U {00} is amenable at x G dom / , 
if in a neighborhood of x, we have / = g o F where g : Rm —> R U {00} is a 
piecewise linear-quadratic convex function and F : R" —• Rm is a C2 mapping. 
In addition the basic constraint qualification is satisfied at x. 

An example of an amenable function is the max of finitely many C2 func­
tions. As we mentioned in the introduction, most common types of optimization 
problems can be reformulated in terms of amenable functions; see [13] for the 
details. Rockafellar has also shown, see [13], that an amenable function is twice 
epi-differentiable with respect to any subgradient. It is even possible to write 
down a formula for the second-order epi-derivative. 

THEOREM 3.4. (Rockafellar [13]) Let F : R" —• Rm be a C2 mapping, 
g : R" —> R U {00} be a piecewise linear-quadratic convex proper function, 
f — g o F, x G dom / and the basic constraint qualification is satisfied at x. 
Under these assumptions, f is twice epi-differentiable at x relative to any vector 

dg(F(x))VF(x) = {wVF(x) : w G dg(F(x))} 

and 

where 

[ 7F(JE)(VF(*)0 + max (w, £V2F(x)0 if £ G E,(x) 

loo if£f£Ev(x) 

E,(x) = Ndm(v) = {C : g'FmCVF(x)0 = (v, 0 } = d o m ^ , 
Wy(x) = {we dg(F(x)) : wVF(x) = v}, 

and 

Note. The symbol VF(x) refers to the (mxri) matrix of first partial derivatives, 
and when we write wVF(x) we think of w as a row vector. The (m x n x n) 
matrix of second partial derivatives is denoted by V2F(Jc), and £V2F(x)£ is the 
vector in Rm obtained by multiplying each of the Hessians, both on the left and 
on the right, by £. 

We know that for convex functions, proto-differentiability of the subgradient 
mapping is equivalent to second-order epi-differentiability; see Theorem 2.2. 
The obvious question is whether such a result holds for amenable functions; 
this is the main result of this paper and is presented in Theorem 4.6. 
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4. Proto-differentiability of the subgradient mapping of an amenable 
function. In this section / is an amenable function at x with the following rep­
resentation: g : R" —> R U {00} is a piecewise linear-quadratic proper convex 
function, see Definition 3.1, with D = domg, F : Rn —> Rw is a twice contin­
uously differentiate mapping,/ = g o F, x G dom/ and the basic constraint 
qualification, see Definition 3.2, is satisfied at x. 

The goal is to show that df is proto-differentiable at x relative to v in 

df(x) = dg(F(x))VF(x). 

Since this is a local notion, we assume that D (the effective domain of g) is a 
bounded polyhedron (hence compact). 

The proof is divided into two major parts. In the first part, we prove the result 
assuming that F(x) G int domg. This is fairly straightforward. In the general 
case, the trick is to convert the problem to the previous case. To do so, we 
need to develop a technique for extending piecewise linear-quadratic convex 
functions, i.e., take a piecewise linear-quadratic convex function whose domain 
is not the whole space and modify it to have full domain. In extending the 
function, we also need to preserve the piecewise linear-quadratic convex nature 
of the function. 

Hence, the first case we study is when F(x) G int(D). To prove the result in 
this case we need the following lemma. The lemma proves that under certain 
conditions the generalized subgradient mapping of a "lower-C2" function (lo­
cally the sum of the function and a multiple of the norm square is convex) is 
proto-differentiable. These functions were introduced by Rockafellar; for more 
details see [11]. In the lemma Sc(x) refers to the indicator of C i.e., 0 if x is in 
the set C and 00 otherwise and || • || is the usual norm on R". 

LEMMA 4.1. Let h : Rn —* R U {+00} be lower-C2 at x G int(dom/j) i.e., 
there exist À > 0 and p > 0, such that h(-) + (p/2)|| • ||2 +<5i+AflO) is a convex 
function. If h is twice epi-differentiable at x relative to v in df(x), then dh is 
proto-differentiable at x relative to v. Moreover 

3((1/2)A^)(0 = Oft£,v(0 for all £, 

and h" $(-) + p\\ • \\2 is a convex function. 

Proof. Let 

g(x) = h(x) + (p/2)\\x\\2+6j(+XB(x). 

It follows that dg(x) — dh(x) + px on int(l + A#). Since h is twice epi-
differentiable at x relative to v, the function g is twice epi-differentiable at 
x relative to v + px and 

g'l,+P,(0 = hlf(0 + pU\\2; 
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see Rockafellar [13]. By Theorem 2.2, the set-valued mapping dg is proto-
differentiable at x relative to v + px and for all £ 

9C(l/2)^',v+fli)(0 = 0 * ) W « ) . 

We now show that these two facts imply that dh is proto-differentiable at x 
relative to v and that 

To see this, let 

,c ^r-v gph3/*-(x,v) 
(ç,«) G limsup , 

t[0 t 

i.e., there exist tn { 0 and vn G d/z(*/z) with 

( l /0 (v„-v)—>w and (l/tn)(xn-x)-> £. 

But 

(1 A«)[(v„ + pxn) - (v + px)] —> « + p£; 

and eventually, (vw + px„) G 9g(x:w). Therefore, 

/ t ^ t x ^ r gph3g- (x ,v + /ax) 
(£, w + pt ) G lim sup 

= liminf ë P h a g - ( ^ v + p x ) 
r|0 r 

i.e.,(u + pO€Og)^+pje(0-
Hence, for all on \ 0 there exists wj, G dg(x'n), such that 

( l /a n ) (4 - x ) - * £ and (1/<7„)[H/ - (v + px)] -+ u + p£. 

Eventually, w'n — v'n + px^, where v̂  G dh(x'n). Hence, 

(l/(Tn)(x'n-x)-+£ and (l/<7w)(v£ - v) —> w, 

i.e., 

ft \ r-v • e gphdh-(x,v) 
(Ç, w) G lim inf . 

t[o t 
To establish the last part of the lemma, notice that 

0 / 0 ^ ( 0 = [QgïïwiO - PO = 9((i/2)gi,,v+Px)(0 - PC 

= 3((l/2A)^)(0. 
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We now look at the case where F(x) G int(D). 

PROPOSITION 4.2. Let v G df(x). If F(x) G int(D), thenf is lower-C2 at x and 
df is proto-differentiable at x relative to v. Moreover, 

3 ( ( l / 2 ^ ) ( 0 = 0/)^v(0 for all i, 

andf"ïf is a lower-C2 function i.e., there exists p > 0, such that f "-(') + p\\ ' \\2 

is a convex function. 

Proof Since / is twice epi-differentiable at x relative to v, see Rockafellar 
[13], by Lemma 4.1 we need only show that/ is lower-C2 at x. 

Let W be a compact neighborhood of Jt, such that F(x) G int(D) for all x G W. 
Let 

S = (J dg(F(x)). 

The set S is compact and for all x in W 

fQc) = sup{(F(x),y)-g*(y)}, 
yes 

where ^* is the convex conjugate of g; see [8]. Since g* is continuous on S,f 
is lower-C2 at Jc; see Rockafellar [11] (this is actually the original définition of 
lower-C2 functions i.e., in terms of a supremum representation). 

To prove our main result, the trick is to modify the function g in order to have 
F{x) in the interior of the modified function (then we can use Proposition 4.2). 
To do this we need to extend the domain of g, and still preserve the piecewise 
linear-quadratic property; for a > 0, let 

(4.1) ga(y) = (g D(\/a)\\ • ||,)(y) - inf{(l/a)||y - z | | , +g(z)}. 

(llzlll = X ^ Z / I ' W h e r e Z = ( z b z 2, . . . ,Z m ) . ] 

This operation is called inf-convolution; see Rockafellar [8]. There is consider­
able reference in the literature to this type of operation. In Wets [19], the set of 
functions {A|| • || : A > 0} is an example of what is called a cast. Casts have 
been used by Wets to characterize epi-convergence. By far the most common 
operation, in the literature, is inf-convolution with (1/2)|| • ||2; this is called the 
Moreau-Yosida approximation. The technique, developed in (4.1), can be used 
to extend any convex function; it is employed in [1] to generate second-order 
optimality conditions in nonfinite composite convex optimization. 

It follows from the properties of inf-convolution that 

g*a(-) = g*(-)+èU«Bj-), 
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where £00 = {x : Ĥ Hoo ^ 1}. 
By a result of J. Sun [18], the functions ga are piecewise linear-quadratic 

convex. Indeed, he proves that a function is piecewise linear-quadratic convex 
if and only if its conjugate function is piecewise linear-quadratic (in our case 
#*(•) and Si/aB^i-) are piecewise linear-quadratic convex functions, since g is a 
piecewise linear-quadratic function and B^ is a polyhedron). 

Since D (= dom g) is a compact set, ga is also a finite function (i.e., 
dom ga = Rm). Let_y G D and suppose there exists u G dg(y) with ||M||OO = l / a -
For all z, g(z) ^ g(y) + (w,z — _y). Since 

||v||i = sup (w,v>, 
IIHIoô l 

we have that for all z 

g(z) + (l/a)\\z-y\\l ^ g(z) - (u,z-y) ^ g(y). 

In other words ga(y) — g(y)- We summarize the previous observations in the 
following proposition. 

PROPOSITION 4.3. (a) If there exist u G dg(y), with ||M||OO = l / a > tnen £<*00 = 

(b) The function ga(
m) is a piecewise linear-quadratic finite convex function 

and for all y in D, there exist A > 0 and à > 0, such that if a ^ â and y 
belongs to (y + \B)C\D, then ga(y) — g(y)-

Proof We need only show the second part of (b). Since g is piecewise linear-
quadratic, there exist Â > 0 and â > 0, such that Vy G (y + \B)C\D, there exists 
uedgiy) with Halloo è l / â . 

Since we are assuming that the domain of g is compact, the infimum in the 
definition of ga is always attained. This is crucial in establishing a formula for 
the subgradients of #«(•)• 

PROPOSITION 4.4. If ga(y) = g(z) + (l/°0ll;y — z||i> where z G D, then u G 
dga(y) if and only if u G dg(z) awd (y - z) G Ni/afloo(M). 

/V00/. => Since g* = g* + <5i/a£oo, we have 

j G 3#*(w) = dg*(u)+Ni/aBoo(u) and \\u\loo ̂  l / a . 

For all z in D 

(4.2) g(z) ^ ga(z) ^ £ a ( j ) + (M, z - y) = £(z) + ( l / a ) | | y - z\\ { + <n, z - y). 

This implies that 

g(z) ^ g(z) + (w, y - z) + (w, z-y)= g(z) +(w,z - z) 

https://doi.org/10.4153/CJM-1990-027-2 Published online by Cambridge University Press

file:////u/loo
https://doi.org/10.4153/CJM-1990-027-2


PROTO-DIFFERENTIATION OF SUBGRADIENT SET-VALUED MAPPINGS 529 

(because (l/or)||j — zjj] ^ (u,y — z)). This shows that u G dg(z). 
In (4.2), if z = z, then 

0 ^ ( l / a ) | | j - z | | 1 + ( W , z - - ^ > . 

But 

( l / a ) | | y - z | | , ^ ( v , j j - z > if llvHoo^ l /a . 

Hence, 0 ^ (w — v, j — z) for all v with ||v||oo ^ 1/a, i.e., 

(y-z)G7Vi/afîoû(w). 

<̂= If u G 3g(z) and (y - z) G N\/aBoQ(u), then 

J = z + (y - z) G dg*(u). 

Therefore, u G 3ga(y)-

COROLLARY 4.5. (a) If ga(y) = g(y), then 

9g«(y) = 9^(y)n(i/a)B0 0 . 

(b) / / j ^ £> a/id w G dga(y), then ||w||oo = I/0'* 

Proof, (a) follows from Proposition 4.4, since ga(y) = gOO- In (b), if 

S<*00 = g(z) + ( l /a) | | :y-z | | i and ||w||oo < l /« , 

then, by Proposition 4.4, (y — z) G Ni/aB^iu). But N\/aBoo(u) = {0}, therefore 
j = z G/X 

We now state our main result. 

THEOREM 4.6. L^ v G 3/(x). The set-valued mapping df is proto-dijferentiable 
at x relative to v and 

d((l/2)f^,)(0 = 0//i ,v(0 for all 6 

Moreover f"- is a low er-C1 function i.e., there exist p > 0, such that f "-{')+p\\'\\2 

is a convex function. 

Proof. By the basic constraint qualification and Proposition 4.3, there exist 
â, À, and â positive, such that 

(4.3) gà(y) = g(y) for all y G (F(x) + XB) 

and 

(4.4) if wVF(x)e (v+B\ 
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where w G dg(F(x)) and x G x + GB, then 

||w||00< i/a. 

To produce â, Â and â, first choose â, so that the basic constraint qualification 
holds for all x in x + GB\ see [13]. If no â exists, then there exist xn G x + GB 
and w„ G 3g(F(jcw)), with w^VFfe) G (v +B) and ||ww|| | oo. We may assume 
that 

xn-+xe(x + GB) and T — ^ - • w G ND(F(x)). 

IKII 
This implies that wVF(i) = 0, with ||w|| = 1, contradicting the basic constraint 
qualification at x. 

Let fâ{') = gâ(F(-)). By Proposition 4.3, g& is a finite piecewise linear-
quadratic convex function and by the choice of â, it follows that v G dfâ(x) 
and that if F(x) G (F(x) + A£), then/«(JC) = f(x). By Proposition 4.2, 3/* is 
proto-differentiable at x relative to v and 

3((l/2)(/â)?v)(0 = 0/«)^v(0 for all £. 

The proof will be complete once we show that 

(i) (M"f(0 =f",(0 

((/s)" v ' s lower-C2 by Proposition 4.2) and 

(2) OM,,(0 = 0/).^(0-

To show (1) we first show that the two functions in (1) have the same domain. 
We know by Theorem 3.4 that 

dom(/â)" v = % ^ ) ( v ) . 

By the choice of â, 

[df(x)(l(v+B)] = [dfà(x)n(v+B)l 

(Since if v G [df(x) H (v + £)], then v = wVF(î), where w G dg(F(x)) and 
ll^lloo < 1/â. By Corollary 4.5, w G dgà(F(x)). ) Hence, 

%ô(jf)(v) = %(.v)(v) = dom/^p. 

Therefore, 

(4.5) dome/*)?, = %aCr)(v) = %( j f )(v) = dom/£,. 
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If £ belongs to (4.5), then in particular, by Theorem 3.4, 

VF(x)£ G TD(F(x)). 

For t small, 

g&(F(x) + tVF(x)0 = ^(F(^) + fVF(Jc)0. 

Hence, 

7 f (,)(VF(x)0 - lim ^ 

In addition, 

{w : w G dgâ(F(x)) and wVF(î) = v} 

= {w : H> G dg(F(x)) and wVF(x) = v}. 

By Theorem 3.4, (fjl^f»-. 
To show (2), let 

tt ^ c ^ (gph3/)-(x ?v) (£, w) G lim sup , 

i.e., there exist tn [0, xn—+x and vw —»• v with 

vn € df(xn), (l/tn)(vn - v) —> w and (l/tn)(xn - * ) — • £ . 

For all AZ we have vw = wnVF(xn), where vvw G dg(F(xn)). Eventually, by (4.4), 
Halloo < !/<*» hence v„ G 3/âfe). This shows that 

tt \r-v (gphdfà)-(x,v) (gph3/d)-(x,v) 
(£, w) G lim sup = lim inf . 

40 t 40 t 

So for all an [ 0 there exist x'n—+x and v̂  —• v with 

v'nedfâ(x'n), (l/an)(x'n-x)-+t and (l/a,)(v^ - v) -> K. 

We know that v̂  = w^VF(^), where w'n G 3gâ(^tOX and again, eventually, 
IMIloo < I/**- ^y Corollary 4.5(b), F(x'n) G D. We have shown the existence 
of x'n —> x and v'n —> v, with 

v l G â / d l ) , ( l / a J ( 4 - x ) ^ C and ( l / ^ ) ( v ^ - v ) ^ W . 

Therefore, 

(£, w) G lim inf . 
40 t 
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We conclude that df is proto-differentiable at x relative to v and that 

u e (dfhAO <=> u e (dfâ)f,sXO-
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