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EPIS ARE ONTO FOR FINITE REGULAR SEMIGROUPS

by T. E. HALL and P. R. JONES
(Received 11th March 1981)

After preliminary results and definitions in Section 1, we show in Section 2 that any
finite regular semigroup is saturated, in the sense of Howie and Isbell [8] (that is, the
dominion of a finite regular semigroup U in a strictly containing semigroup S is never
S). This is equivalent of course to showing that in the category of semigroups any epi
from a finite regular semigroup is in fact onto. Note for inverse semigroups the stronger
result, that any inverse semigroup is absolutely closed [11, Theorem VIL 2.14] or [8,
Theorem 2.3]. Further, any inverse semigroup is in fact an amalgamation base in the
class of semigroups [10], in the sense of [5]. These stronger results are known to be
false for finite regular semigroups [8, Theorem 2.9] and [5, Theorem 25]. Whether or
not every regular semigroup is saturated is an open problem.

In Section 3 we show that if a regular semigroup has a full subsemigroup (one
containing all the idempotents) which is a band of groups, then it has a maximum such
subsemigroup. This is to enable us to prove later an amalgamation result for bands of
groups.

In Section 4 we show that epis are onto in the categories consisting of the finite
members from the following classes, together with all semigroup homomorphisms as
morphisms (we note that it is not known if Isbell’s Zigzag Theorem also determines
dominions in these categories other than that in (i)):; (i) regular semigroups; (ii) orthodox
semigroups; (iii) unions of groups; (iv) orthodox unions of groups; (v) quasi-orthodox
semigroups; (vi) bands of groups; and (vii) orthodox bands of groups.

In Section 5 we show that epis are onto in the category consisting of the finite
members from each of the varieties of bands; for the variety of all bands this is due to
H. E. Scheiblich [14, Corollary 3.4].

We note at this point that a proof of P. G. Trotter [15, Theorem 1.1] that monos are
one-to-one in the category of all regular semigroups is also valid for each of the
categories considered in Sections 4 and 5. Hence these categories are balanced, in the
usual sense of [13].

1. Preliminaries

Let € be any class of semigroups and take any U,Se® with U a subsemigroup of S.
We say that U dominates an element de S within € if, for every semigroup W e% and all
homomorphisms )

¢:S-W, y:S-W, Pwy=y(u) forall uelU
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implies ¢(d)=y/(d). The set of all elements of § dominated within € by U is called the
dominion of U in § within €; it is obviously a subsemigroup of S containing U. We call
U closed in S within € if the dominion of U in § within € is just U.

A semigroup U e ¥ is called absolutely closed within € if U is closed within € in every
containing semigroup Se®. A semigroup U e¥ is called saturated within € if for every
semigroup Se¥ having U as a proper subsemigroup, the dominion of U in § within €
is not all of §.

When € is the class of all semigroups we allow ourselves to omit the phrase “within
%”, and then our definitions are precisely those of Howie and Isbell [8].

We may regard ¥ as a category by taking morphisms to be all semigroup
homomorphisms between members of ¥. The epis of ¥ are of course the right
cancellable morphisms in €, as in [13].

For any U, Se%, we say that U is epimorphically embedded in S within € if U is a
subsemigroup of § with dominion equal to S within €. The insertion of U in § is then
an epi in the category €; in fact, obviously a morphism ¢:T—S in € is an epi if and
only if the dominion of T¢ in S within € is all of S.

The following result is of basic importance.

Result 1. (Isbell’s Zigzag Theorem [12, Theorem 2.3] or [11, Theorem VIL
2.13]) Let U be any subsemigroup of any semigroup S and let d be any element of S.
Then d is in the dominion of U in S if and only if either de U or there are elements

Uy, Ulau29 UZ’ ceny Uy, Uy, un+1EU,S1$S25 cees Sy tla t25“-, tnES
such that
d=syuy, uy=0vity, Ui =0 1tivy, SU=Sip Uiy
SpUn=Up11, i=12,...,n—1.
The equations in Result 1 are called a zigzag of length n over U with value d, and with
Spine Uy, Uy, Uy, Ugyovy Upy Upy Uy 11 .
We will see below that Isbell’s Zigzag Theorem is also valid for € the class of finite

semigroups, of regular semigroups, and of finite regular semigroups (Theorem 2). It is
still an open problem whether it is valid for € the class of bands (raised by Scheiblich

[14]).

Result 2. ({1, Proposition 2] or [11, Proposition II. 4.5]) Let U be any regular
subsemigroup of any semigroup S. For any elements u,ve U, u%v if and only if u%v
in S.

Result 3. ([3] or [11, Chapter II, Exercise 15]) For any regular semigroup S, the
subsemigroup {E) generated by the set E of idempotents of S is also regular. Further
V(EY=E"*!, forn=1,2,3,....

Result 4. [4, Theorem 5] The maximum congruence contained in # on any regular
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semigroup S, u=u(S) say, is given by

u=1{(a, b)eS x S: for some inverses a’ of a and b’ of b, aa’ =bb’, a'a=b'b
and a'ea=b'eb for each idempotent e <aa'}.

Result 5. [4, Corollary 6] Let U be any regular subsemigroup of a regular
semigroup S such that U is full in S, ie. contains all the idempotents of S. Then p(U)
=u(S)n (U x V).

Result 6. [4, Theorem 14] Let E be any set of idempotents of any semigroup S.

(i) There is a regular subsemigroup of S with E as its set of all idempotents if (and only
if) (E), the subsemigroup generated by E, is such a semigroup, i.e., a regular semigroup
with E as its set of idempotents.

(i) If <E) is a regular subsemigroup with E as its set of idempotents then

E€={aeS: for some d eV(a), ad, da, dea, afad €E for all e, f € E such that
e<ad,f<da}

is the maximum regular subsemigroup of S with E as its set of idempotents.

Result 7. Let U be any regular subsemigroup of any regular semigroup S. If U
contains elements from each #-class and each %-class of S then U is full in S.

Proof. Take any idempotent ee S. Then there exist u, ve U such that u¥eZv, whence
uZuvZv in S [2, Theorem 2.17] and hence in U, by Result 2 and its dual, so again by
[2, Theorem 2.17] there is an idempotent f e U such that u f v, i.e. such that f#e.
Hence e=f e U and U is full in S.

We use, whenever possible, and often without- comment, the notations and
conventions of Clifford and Preston [2] or Howie [11].

2. Epis from finite regular semigroups

Theorem 1. Any completely semisimple semigroup with a finite number of §-classes is
saturated. In particular, any finite regular semigroup is saturated.

Proof. For the moment, let us just take any completely semisimple semigroup U and
any properly containing semigroup S such that the dominion of U in S is all of S.
Henceforth, the symbol J, shall mean a #-class of S (rather than of U) and 5, &, %,
2, ¢ shall mean Green'’s relations on S.

For any element seS\U let s=s,u, and u,=v,t, be the first two equations of a
zigzag of least possible length over U with value s. Then

J,.=J, and u,eU, t,eS\U.

uy =Y
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Hence the set {J,eS/#:ueU, J,<J, for some teS\U} is nonempty. Thus, if S
satisfies the ascending chain condition on #-classes, or if U has only finitely many _¢-
classes, there is a maximal member in the above set of #-classes, say J.

Take any J'eS/# such that J<J'. We show that J'= U. Suppose to the contrary that
there is an element se J' N (S\U). Then

J<J=12J, <),

for some u, eU, t,eS\U as above, contradicting the maximality of J; hence J'c U as
required. It follows also that J contains elements of S\U (since J < J, for some te S\U).

Let D be any 9-class (or equivalently #-class) of U contained in J. Now D is not a
complete Z-class of S, since otherwise, containing idempotents minimal among its set of
idempotents, it would be a complete #-class of S by [4, proof of Result 6], a
contradiction. Hence there are elements ue D, se S\U such that u%s in S. Thus u#t¥Ls
for some teS. Now either te S\U or te UnR,= D so we have either

ut for some uebD, te S\U

or
t¥s for some teD, seS\U.

Since these two situations are dual to each other, we may assume without loss of
generality that uZt for some ueD, te S\U. We show further that ¢ can be taken to be
an idempotent. Take any idempotent ¢ in U such that eZu and let

t=Sily, U;=0yl1, Uie ;=04 1lisy
SiVi=Sis1Uiv 15 Saln=Uy41, i=1,2,...,n—1,

be any zigzag over U with value t of least possible length, so that t,,s,eS\U. Since
eRudkt we have et =t so we can assume without loss of generality that

€5;=S;, eU,,q=U, q, i=1,2,...,n,

(since otherwise each s; can be replaced by es;, and u,,,; by eu,,,). Since also t=s;v;t;
=u, 1L, We have eBtRs,Ru, ., i=1,2,...,n

Now Upy | =SpUp=8Uplly+ 1Un+1 =50,  where U1 €V, )nU and o,
=0Up4 Uy 1 Llyy,. From 0, Lu, . Rs, and u,,,=s,0, we have by [2, Theorem 2.17]
that L, nR; contains an idempotent, f say.

We show that f€S\U. Suppose to the contrary that feU. Then u,, , %5,Zf=f? so
there is a unique element xe R, . N L,;NU such that x5,=u,,;, by Green’s Lemma [11,
Lemma II. 2.1] for U and Result 2. Now s,eR, . nL, and s,0,=u,,,, so again by
Green’s lemma, this time for S, we have s,=xe U, a contradiction; thus feS\U, and
fRv, e D, so without loss of generality we may in fact assume that the element ¢ above
is an idempotent.

First, from t>*=t%u, ., we have tu,,,=u,,, and from t=t>=s,u,t we have t%u,t, so
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that, since .% is a right congruence on S, we also have
Ugthy oy = Uy (U )L MUy 4y = Uy
Since u, =v;t, and t, e S\U, from

J=Jl=Jslu1§Ju1§Jtl
we have that J, =J, by the maximality of J, i.e. u,eJ.

So far D has been an arbitrary ¢-class of U in J, but we shall henceforth assume that
it is in fact maximal among the #-classes of U in J (let us assume, say, that U satisfies
the ascending chain condition on #-classes).

From u,eJ and wu,, ;€D (uu,, Lu,. ,%e in S and hence in U) we have u,eD
also, by the maximality of D. From u,, u,,,, u;u,.,€D we have that L, nR, U
contains an idempotent, g say (since the principal factor Du{0} of U is of course
completely 0-simple).

From t=s,u, we have L, <L, =L, whence tg=t, and from t®u,, Ag we have ig=g,
giving that t=ge U, a contradiction. Thus the dominion of U in § is not S, as required,
under the assumption that the completely semisimple semigroup U has only a finite
number of its own _#-classes, or that both S and U satisfy the ascending chain condition
on their own _#-classes. This completes the proof.

An amalgam of semigroups is a list (S;,iel; U) of semigroups such that U is a
subsemigroup of S; iel. The amalgam (S; iel; U) is strongly embeddable in a
semigroup W if there exist monomorphisms ¢,:S;— W, i€, such that (i) ¢,|JU=¢;|U for
all i,jel and (ii) (S;¢) N (S;¢) = U, for all distinct i,jel.

Theorem 2. Let € denote any one of the following categories, where morphisms are
taken to be semigroup homomorphisms:
(i) finite semigroups;
(i) regular semigroups;
(iil) finite regular semigroups.
Take any semigroups U, S in € with U a subsemigroup of S. Then the dominion of U in S

within € is the same as within the category of all semigroups.

Proof. We denote by D the dominion of U in § within the category of all
semigroups.

(i) From [6, Remark 1] we see that the amalgam (S, S; D) is strongly embeddable in a
finite semigroup (not just a semigroup).

(i) Since any semigroup is embeddable in a regular semigroup, we have that the
amalgam (S, S; D) is strongly embeddable in a regular semigroup.

(ii)) Since any finite semigroup is embeddable in a finite regular semigroup, we have
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from the proof of (i) that the amalgam (S, S; D) is strongly embeddable in a finite regular
semigroup.

It follows that in each case D is also the dominion of U in § within . From
Theorems 1 and 2 we have the following corollaries.

Corollary 3. In the categories of semigroups, regular semigroups and finite semigroups,
epis from completely semisimple semigroups with a finite number of #-classes are onto.

Corollary 4. In the category of finite regular semigroups, epis are onto.

Remark 1. The proof of Theorem 1 can be greatly shortened when one assumes that
the semigroup S is finite, and such a proof appears in [7]. This weaker result is
sufficient to yield Corollary 4, and also Corollary 3 for the category of finite semigroups.

Example 1. This example, due to Isbell [12, Example 3.1], shows that epis are not
onto in the category of finite semigroups. Let S={0, e, £, a, a'} be the combinatorial
Brandt semigroup with five elements, where a and a~! denote the nonidempotent
elements. The subsemigroup U={0, e, f, a} is easily seen to be epimorphically
embedded in S within the category of [finite] semigroups. )

Whether or not epis are onto in the category of regular semigroups is an open
problem.

3. The maximum full band-of-groups subsemigroup

For an amalgamation result proved in Section 4 for bands of groups, we require the
main result of this section, namely that if a regular semigroup has a full subsemigroup
which is a band of groups, then it has a maximum such subsemigroup.

Lemma 5. Let S be any regular semigroup, E its sets of idempotents, and u= u(S) its
maximum idempotent-separating congruence. There is a full band-of-groups subsemigroup
of S if and only if {E), the subsemigroup generated by E, is a band of groups, and this is
the case if and only if S/u is orthodox. In this case, there is a maximum full band-of-groups
subsemigroup of S, namely.

keru=u{eueS/u:ec E}
={aeS: for some d €V(a), ad’=d'a and a'ea=e
Jor each idempotent e < aa'}.

Proof. Suppose there is a full band-of-groups subsemigroup T of S. The
subsemigroup <E)> of T is regular, by Result 3, and V{{E))={E) also by Result 3, so
{E) is a union of groups and hence a band of groups (of course Vy({E)) denotes the set
of inverses in T of all elements in {E}). This proves the first “if and only if” statement.

To prove the second such statement, let us suppose first that S/u is orthodox. From
Lallement’s Lemma [11, Lemma II. 4.6] the band of idempotents of S/u is {eu:ecE}.
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Since p< ., each ep is a group and {ep:ecE} is a set of disjoint groups, and thus
v {eu:e€ E} =ker p, for example, is a full band-of-groups subsemigroup of S, as required.

Conversely, suppose that (E) is a band of groups and let B be any full subsemigroup
of S which is also a band of groups; we wish to show that S/u is orthodox and that
B<ker u. From Result 5 we have that

H(B)=u(S)N(B x B),

i.e. that the function ¢: B/u(B)—S/u(S) mapping xu(B) to xu(S), for each xeB, is well-
defined and one-to-one, and hence is a monomorphism, and by Lallement’s Lemma, is
onto a full subsemigroup of S/u(S). But B/u(B) is a band, so S/u(S) is orthodox as
required.

Now (B/u(B))$, the range of ¢, is the band of S/u(S), namely {eueS/u:ec E}. But
(B/u(B))¢=Bu(B)* ¢ =Bu(S)*, whence, for each be B, we have bebu(S)e {eu(S):ec E}.
Thus B< U {eu(S):ee E} =ker u(S). We have already seen that ker u is a band of groups,
and so it is the maximum full subsemigroup of S which is a band of groups. The
alternative description of ker u follows routinely from Result 4.

Corollary 6. Let S be any semigroup and E any set of idempotents of S. There is a
subsemigroup of S which is a band of groups with E as its set of all idempotents if and only
if (E) is such a subsemigroup. In this case, there is a maximum such subsemigroup, namely

EP={aeS: for some a €V(a),ad’ =a'acE and dea=e

for each idempotent e <aa'}.
Proof. This follows quite easily from Result 6 and the lemma above.

An analogous result for unions-of-groups subsemigroups is Theorem 10 of [6].

4. Epis in some categories of finite regular semigroups

In this section, we will show that epis are onto in certain categories of finite regular
semigroups. . ,

We note that (see the appendix in [16] due to Hall) quasi-orthodox semigroups are
precisely those regular semigroups such that for all idempotents e, f, g such that
e fRg there exists an idempotent h such that eZhLg.

Theorem 7. Let € be any one of the following classes of semigroups: (i) regular
semigroups; (ii) orthodox semigroups; (iii) unions of groups; (iv) orthodox unions of groups;
(v) quasi-orthodox semigroups; (vi) bands of groups; and (vii) orthodox bands of groups.

Let (S;,iel; U) be any amalgam from € such that U’ is full in each S;, iel. Then the
amalgam is strongly embeddable in some semigroup W from €, with finiigness being
preserved.

Proof. By [6, Theorem 8] the amalgam (S;, iel; U) is strongly embeddable in a
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regular semigroup W such that U and each S; (or isomorphic copies) are full in W, with
W finite if I and each §; is finite. Immediately then, for € one of the classes in (i), (ii) or
(v), we have We % and the required result. For € either of the classes in (iii) or (iv), the
result is part of [6, Corollary 12]. For € either of the classes in (vi) or (vii) the result
follows from [6, Theorem 8] and Lemma 5.

Corollary 8. Take any semigroups U, S in € with U a full subsemigroup of S. Then the
amalgam (S, S; U) is strongly embeddable in some semigroup W from €, with finiteness
being preserved. In particular U is closed in S within €.

Theorem 9. Let € be any one of the classes listed above in Theorem 7 and let F be
the category consisting of all the finite semigroups of € together with all morphisms
between these semigroups. Then in &, epis are onto.

Proof. Take any semigroups U, S in &, with U being a proper subsemigroup of S.
To prove the theorem it suffices to show that the insertion 1,;: U—S§ is not an epi (for if
«:T—S is an epi and Ta=U then 1,:U—S is also an epi). Suppose then, to the
contrary, that U is epimorphically embedded in §.

Take a maximal _#-class of S among those _#-classes of S containing elements of S\U,
J say; then of course for any #-class J’ of S such that J'>J we have J'c U. Put

I=u{J"eS/ #£:J"£J},

an ideal of S, when nonempty. For the convenience of having I nonempty, let us
assume, without loss of generality, that S=S° and 0e U (since we can adjoin a (further)
zero if necessary).

Let B denote the canonical morphism from S onto S/I. Then Up is a proper
subsemigroup of Sf and Up is epimorphically embedded in Sf (i.e. 155:UB—SB is an epi
in &). Thus by replacing U and S by Up and S respectively if necessary, we can
assume without loss of generality that J is the minimum nonzero _#-class of S, whence
S\UcJ.

If U is full in S, then by Corollary 8, U is closed in S within & (as well as in %), so
1;,:U—S is not an epi.

We can assume therefore that U is not full in S, so from Result 7 we have that either
U does not meet every Z-class of § or that U does not meet every #-class of S. By
duality considerations, we can assume without loss of generality that there is an #-class
class L of S such that Un L=]. Put

V=u{L,eS/%:uecU}.
Clearly V#8S, since VnL=[]. We show that V is a subsemigroup of S. Take any
vy, v, € V. Then v, Lu,, v,£u,, for some u,,u,eU. If v,e U, then (from &£ being a right

congruence) we have

v 0, Luv,eU,
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giving that v,0,e V. lf v,e V\U < J, then

L,.,=L,, (in S and in JU{0})
so either v,0,=0eU<SV or v,v,%v,%u,eU (since JU{0} is a completely O-simple
ideal of S), whence v,v, € V. In either case then v,v,€V so V is a subsemigroup.

We construct now a semigroup We% and two morphisms ¢,y:S— W which agree
only on V (since USV #S then we will have 1y¢p =150, ¢+, and 1, is not an epi).
Take now any two sets §' and S”, each disjoint from S and such that

|S'nSs7|=lV

IS\’ A 87| =|S\V),
IS"\(S' 87| =[S\

whence |§'|=|S"|=]|S|. Let ¢:S—S’ be a bijection of S upon §' such that V is mapped
onto §'nS” and likewise let ¥:S—S” be a bijection of S upon S$” such that V is mapped
onto §'nS” but further such that v¢p=vy for all ve V. For each seS, denote s@, sy by
s', 8" respectively and denote $'nS” by V' and by V”. Note that v'=v" for all ve V. We
make S’ and §” into semigroups isomorphic to S by defining s't' =(st)’ and s"t" =(st)", for
all 5,teS. Now we put W=S§uUS" and we extend the binary operations on S’ and S”
(which of course agree on 'nS"=V'=V") to one on W by defining, for all s,teS\V,

slt/l —_ (st)ﬂ,
5"t =(st).

We show now that this binary operation on W is associative. Take any x,y,ze W. If
x,y,zeS or if x, y,zeS” then clearly (xy)z = x(yz). To cover the remaining cases, because
of the symmetry between S’ and S” in the construction of the groupoid W, we can
assume without loss of generality that precisely one of x,y,z is in §”\V” and that at
least one of x, y, z is in S\ V".

Now there are elements r,s,t€S such that x is ¥ or r”, y is s or s” and z is t’ or t”,
and of course each of (xy)z and x(yz) is one of (rst) and (rst)’. Now if steV then
steVn(Ju{0}) (since seS\UcJ or teS\U<J) whence rsteS[Vn(Ju{0})]=V and
(rsty =(rst)”. Hence, if ste V we have (xy)z =x(yz).

We may assume now that steS\V (whence s or teS\V), and we now find that
entirely routine calculations will complete the verification of associativity, in each of the
following cases: Case I, xeS"\V"; Case Il(a), yeS"\V" and zeS'\V’; Case II(b),
yeS™\V" and ze V'=V"; Case 111, ze S"\V".

Thus W is a semigroup. Easy checking also shows that in fact We %. Since ¢:S— W,
Y:S— W are distinct morphisms in & which agree on U we have that 1,0=1,4 and
that 1, is not an epi, as required, completing the proof of Theorem 9.

Remark 2. The proof also shows that epis are onto in & if & is taken to consist of
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all the completely semisimple semigroups from % satisfying the ascending chain
condition on _#-classes.

A class € of semigroups is said to have the strong amalgamation property if every
amalgam of semigroups from % is strongly embeddable in a semigroup from %, and a
class € of semigroups is said to have the special amalgamation property if each amalgam
of the special form (S, S; U) is strongly embeddable in a semigroup from %.

Theorem 10. The class of finite inverse semigroups has the special amalgamation
property.

Proof. We merely have to combine [6, Remark 1] with the last sentence of [5,
Section 6] to obtain a proof.

Corollary 11. Epis are onto in the category of finite inverse semigroups.

S. Epis in some categories of finite bands

In [14] Scheiblich showed that epis are onto in the category of all bands satisfying
the ascending chain condition on #-classes [14, Corollary 3.3] and in the category of all
finite bands [14, Corollary 3.4]. We show in this section that his construction “preserves
the variety of S” when U meets every #-class of S, and thus we obtain the following
generalisation of his results.

Theorem 12. Let ¥~ be any variety of bands, let # be the category of all finite
members of ¥~ and let M be the category of all members of ¥ satisfying the maximal
condition (or equivalently the ascending chain condition) on #-classes. Then in both & and
A, epis are onto.

Proof. Take any U, S in either & or .# such that U is a proper subband of S. Once
again, we merely have to show that the injection 1,:U~—S is not an epi, in # or ..
Now if U consists only of rectangular bands it is easily seen that ¥', & and 4 =%
have the special amalgamation property, whence epis are onto in & and in .#. We
assume now that ¥~ does not consist entirely of rectangular bands, with the convenience
of having S°e¥  and of having any semilattice as a member of ¥~ also. If U does not
meet every #-class of S and if # ¥ denotes the natural map of S onto S/ #, then U_¢ ¢
is a proper subsemilattice of S,# ¢ =S/ ¢ whence U ¢ is not epimorphically embedded
in S/ # within & or .#, which follows trivially from the fact that the class of semilattices
has the strong and hence the special amalgamation property [9, proof of Theorem 3.1];
it follows that U is not epimorphically embedded in S, so we assume henceforth that U
contains elements from every #-class of S.

Precisely as in the proof of Theorem 9, we can assume without loss of generality that
S=S5%° 0eU and S\U =J, where J is the minimum non-zero #-class of S.

Since U #$§, there is an %-class or an #-class of S not meeting U. First we consider
the case where some #-class of S does not meet U. From the dual of a result proved in
the proof of [14, Theorem 3.2] we have that p=13U(£ ~(J x J)) is a congruence on S,
so, by replacing U and $ by Up*? and Sp?% =S/p if necessary, we can assume without

https://doi.org/10.1017/50013091500016850 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500016850

EPIS ARE ONTO FOR FINITE REGULAR SEMIGROUPS 161

loss of generality that £ n(JxJ)=1, so that J is a single %-class of §. We now
construct W precisely as in the proof of Theorem 9 (replacing V by U), and
acknowledge that it is precisely the band constructed by Scheiblich in proving Theorem

3.2 of [14].
We now show that We¥". Take any identity, in variables x,, x,, ..., x, say, satisfied
by S, say
W(X 1y Xgseevs X)) =W(X 1, X3, - .05 Xi), (1)
where w=w(x, Xp,..., X ) =X; X; ... X; and W=w(xy, X3,..., X)) =X; X;,...X;, and take

any elements w;,w,,...,w, in W; of course we wish to show that w(wg...,w)
=w(wy,...,w,). Now there exist s,,s,,...,5,€S such that w;e{s},s{), i=1,2,...,k, and of
course w(s,,..., Si)=w(sy,...,S)=s, say, and

{Wwy, ..., W), W(wy, ..., w)} {5, s"}.

Suppose, by way of contradiction, that w{w,,..., w)#w(w,,...,w,). By the symmetry
between §’ and §” in W, we can assume without loss of generality that w(wl, L, W )=5"
Then w(w,,...,w,)=s"#s" and se S\U.

We show now that the band obtained by adjoining an identity element to a two-
element right zero semigroup is in ¥7, in fact is a subband of S.

From w;,w, ...w, =s#s5" it is eas1ly seen that for some i,w;=s;eS\U" and

ey ee e Wi eU' U” we show I<m (ie. “w; _,...,w; exist”). Since J contams elements
of U and S\U it is a nontrivial right zero subsemlgroup of S, so the words w and w end
in the same variable; but if w and hence w end in x;, then w(w,,...,w)=s
=w(wy,...,w,), a contradiction, so I<m. Put u=s;  ...s; €U; in fact ue U\(JuU{0})
since s=w(sy,...,8)=s;, ...5;u€S\U. Take any ve UnJ; then B={u,vu,s} is a band
with identity u, and with {vu, s} a two-element right zero subband, as required.

First, since S is not a rectangular band, we have that x; occurs in the word
Ww=x; x; ...x;. Second, since B<S, B also satisfies w=w and then we easily see that in

iz
the word w= x“xJz .x; only the variables x; _,...,x; can follow the last occurrence
of the variable x;. It follows that W(w,..., w,)=s', not s”, a contradiction as required, so

W satisfies w=w, and U is not epimorphically embedded in S in & nor in . (in the
case where an %-class of S does not meet U).

Dually, if some Z-class of S does not meet U then we have again that U is not
epimorphically embedded in S in & nor in .#. Thus epis are onto in & and in .. This
completes the proof.
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