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Abstract

This paper constructs a minimal faithful representation of a semilattice of groups by partial
transformations. The solution is expressed in terms of join irreducible elements of the semilat-
tice and minimal faithful representations of groups with respect to certain normal subgroups.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 20, 20 M 30.

1. Introduction

It is natural to ask, for a given semigroup S, what is the least size of a set X
for which 5 may be faithfully represented by partial transformations of X. This
question, among others, was posed by Schein in [10, Problem 45]. In this paper,
the problem is solved for any given finite semilattice of groups. The solution is
expressed in terms of joint irreducible elements of the semilattice and a slight
generalization of a well-known result for groups. In the final section an example
is given which illustrates the construction embodied in the proof of the main
theorem.
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2. Preliminaries

Standard terminology and basic results relating to inverse semigroups, and
representations by the symmetric inverse semigroup in particular, as given by
Howie [4], Petrich [8] or Clifford and Preston [9] will be assumed.

The symmetric group, symmetric inverse semigroup and semigroup of partial
mappings on a set X will be denoted by 3?x, <^x and £P!7x respectively. The
identity relation on X, {(x,x)\x € X}, will be denoted by id*.

If ip: S —• T is a homomorphism between semigroups S and T, denote the
congruence

by ip o ip~l. If further S is a group with identity e, denote the congruence class
containing e by ker ip. Both ipoip~l and ker ip are known in the literature as the
kernel of ip, and are related by

rPox/j-1 = {{x,y) G S x Slxy-1 ekeri/>}.

If ip: S —• &!9x and x : S —• &>&Y are representations of a semigroup S,
where X and Y are disjoint sets, define the direct sum ip © x of V* a nd X to De

the representation

where, for x G. S,

x(xp®x) = {xip)

Clearly,
(ip®x)°(ip® x)"1 = (V> o ip-1) n (x o x"1),

so, if S is a group,
ker(V> © x) = ker ip n ker x-

If ip: S -+ £%9x is a representation, call |X| the degree of ^, and write |X| =
degree(V'). Call ip effective if each element of X is in the domain or range of sip
for some s € S.

If 5 is a finite semigroup, define the minimal faithful degree fj,(S) of S to be
the least non-negative integer n such that S can be embedded in tPSTx where
|X| = n. Further, if <j>: S —> &!Tx is an embedding, say <p realizes n(S) and call
<j> a minimal faithful representation. Note, because of the extended right regular
representation, fi(S) exists and is bounded by |S| + 1. Note also n(S) = 0 if and
only if \S\ = 1.

The following theorem shows that for a given finite inverse semigroup S, n(S)
may always be realized by a representation into LJ*X> where |X| = fi(S), so in
that case there is no advantage in using partial transformations which are not
one-one.
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THEOREM 1 ([8, I V . 5 . 9 ] , [7, I I . 8 . 4 ] , [11], [9]). Let S be an inverse
semigroup and ip: S —» &9x a faithful representation. For s E S, define

Then ip: S ~* J*x is a faithful representation.

PROPOSITION 2. Any effective representation of a group by partial one-one
mappings is by permutations.

PROOF. Let G be a group with identity e, and ip: G —> J x an effective
representation. Then eip = id^, so for each g € G, X is both the domain and
range of gxp. Thus each gtp is a permutation.

COROLLARY 3. Any minimal faithful representation of a finite group is by
permutations.

PROOF. Let V be a minimal faithful representation of a finite group G. By
Theorem 1, t/> is also faithful and gijj is one-one for each g € G. But V> must be
effective, for otherwise ip would not be minimal. Hence, by Proposition 2, each
g4> is a permutation, so ip = i/>. This complete the proof.

If H is a subgroup of a group G, define the core of H, core(H), to be the
largest normal subgroup of G contained in H. Thus core(H) is the kernel of the
representation of G induced by right multiplication of cosets of H in G. Denote
the index of H in G by \G: H\. The following solution is well known (see, for
example, [5]).

THEOREM 4. Let G be a finite non-trivial group with identity e. Then n{G)
is the least positive integer n such that, for some subgroups Hi,..., Hm of G,

m

f] core(//,) = {e}

and

The following definition will be useful later. If G is a finite group with normal
subgroup TV and identity e, let /J.(G\N), the minimal degree of G with respect to
N, be the least non-negative integer n such that there exists a representation
ip: G —• &x satisfying |X| = n and ker^ D N — {e}. We say tp realizes fj,(G\N).
Thus, for example, //(G) = n(G\G) and fi(G\{e}) = 0.

The following is an immediate generalization of Theorem 4.
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THEOREM 5. Let G be a finite group with identity e and non-trivial normal
subgroup N. Then fi(G\N) is the least positive integer n such that, for some
subgroups Hi,...,Hm of G,

m
Nnf)core{Hi) = {e}

»=i

and

In describing semilattices of groups, the notation and basic results (originally
due to Clifford [1]) as described in any of [4, IV], [8, II.2] or [2, 4.2] will be
assumed, except that, if S is the semilattice of groups U(^ek e ^}> the identity
of each group Ge will be identified with e. Thus if e, f £ E and f < e, then

is the homomorphism defined by, for g € Ge,

9<t>e,f = gf,

where gf is the product in S.
If E is a semilattice, the symbol V denotes the supremum, when it exists, with

respect to the partial order < of E. If e, f 6 E, then e < f means e < f and
e ^ / . If E has a least element e, which exists when E is finite, then e is called
the zero of E. Call an element e of E join irreducible if e is non-zero and, for
f,geE,

e = / V g implies e = f or e = g.

It is easy to see that, for a finite semilattice E, an element e is joint irreducible
if and only if e has a unique immediate predecessor, that is, element / for which
/ < e, and g < e implies g < / .

The following is a trivial but useful observation.

LEMMA 6. Let P be a finite partially ordered set with n elements. Then
P — {Pii • • • ,Pn} may be listed so that

Pi < Pj implies i < j .

3. Semilattices of groups

The main aim of this paper is to prove the following:
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THEOREM 7. Let S be a finite semilattice of groups, so there is a semilattice
E and collection of groups {Ge\e e E} for which S — |J{Ge|e € E}. For each
eeE, put

!

Ge if e is the zero of E,

P | ker <f>ej if e is nonzero.
f<e

Let J(S) — {e € E\e is join irreducible and ker<^e,/ — {e} where f is the unique
immediate predecessor of e}. Then

For example, if S is a group then the s ta tement of the theorem reduces to the
triviality fj.(S) = n(S\S). If S is a semilattice, then fi(S) is the number of join
irreducible elements of S, a result obtained in [3].

The proof of Theorem 7 will be by induction. Firs t a sequence of lemmas
is proven, in which it is assumed S — \J{Gf\f € E} is a finite semilatt ice of
groups, and e is a non-zero maximal element of E, t h a t is, e < f implies e = f.
P u t T — S\Ge. By the maximali ty of e, T is an ideal of 5 , so the following two
lemmas follow immediately.

LEMMA 8. Define f: S -+ J\ey by, for x&S,

ifxeGe,

0 ifxGT.

Then £ is a representation of S and
•Me

LEMMA 9. Letg: Ge —» S?x be a representation ofGe which realizes(x(Ge\Ne).
Define ft : S -> J"x by, for xeS,

xf ifx€Ge,

0 ifxeT.

Then f is a representation of S and

ft off1 = {(x,y)eGe xGelxy'1 € kerf} U (T x T).

LEMMA 10. Let ip: S —> £PZFx be a representation such that ip\r is faithful
and effective. Put ipi = T/>|G,- Then ker^i = Ne (where Ne is defined in
Theorem 7).

PROOF. Suppose g € keripi, so gip = etp. Hence, if / < e, g(<j>ejip) —
(ff/)V> = #/V> = expfip = (e/)i/> = e(4>e,/V>), so g e ker(tf>e,/V>) = ker4>ej, since
i/>|r is faithful. This shows keripi C Ne.
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Conversely, suppose g G Ne, so gf = ef = / for all / < e. Let a G
domain(eV>), so, since ip\r is effective, there is some e' € E, e' ^ e, for which
a G domain(e'V>)- Hence a € domain(ee'V') and ee' < e. Thus

a{gxj}) = a(ee'ip)(gtp) = a(ee'gip) = a{ee'xj)) = a.

This shows gtp = eip, so g G ker^ i . Hence 7Ve C ker^ i , and the proof is
complete.

LEMMA 1 1 . Let %I>:T—* ^x be a faithful and effective representation. De-
fine x- S -><J5r by

!

xip ifxeT,

\J(zf)xl> ifxeGe.
f<e

Then x is a well-defined representation. If e is not join irreducible then

X ° X - 1 = {(x,y)eGexGe\xy-1 e7V e }Uid T .

/ / e is join irreducible with unique immediate predecessor e' then

X ° X " ' = {(x,y)eGe xGe\xy~l 6 ker0e,e-} U idT U{{x,xe')\x € Ge}.PROOF. We first show x is well defined. If x € T, then xx — xip € J x .
Suppose x € Ge. We show xx is a partial mapping. Suppose (a, 0) and
(a,7) € U/<e(

2;/)V', so for some / i , / 2 < e, a{xfiip) = /? and a(xf2ip) - 7-
Hence a € domah^/j^) ndomain(/2V

)) = domain(fi f2ip) Thus, /? = a(xfiip) =
ot{fiM)(xfiip) = a{fif2xtp) = a(fif2ip){xf2ip) = a{xf2tp) = 7, so xx is a
partial mapping.

We shown xx is one-one. Suppose (a, 7) and (j3,7) G xx, so for some fi,f2 <
e, a{xfi%j)) = 7 and P{xf2tp) = 7, so 7(x~1/iV)) = " and 7(z~1 /2VO = /?•
Applying the previous argument, we get a = 0. This shows xx S J x -

We show x is a homomorphism. Suppose x,y £ Ge, so xy E Ge. Let a G
domain(xj/x)> so a G doma.\n(xyftp) for some f < e. Hence

a(xyx) = a(xyfip) = a{xftp)(yfip) = a{xx){yx)-

Conversely, suppose a G domain(xxj/x)> so a G domain(x/V>) for some f < e and
a(xf)ip G dom&m(ygip) for some g < e. But /(? < e, and a G domain(z/T/>2/</V) =
domain(x2//3V)i which shows a G domain(xyx)- This shows {xy)x = xxyx- The
case when one of x, y lies in Ge and the other in T is similar, and the case both
x, y lie in T is covered since x | r = ii>- Thus x is a homomorphism.

Now we calculate x ° X"1- Suppose xx = yx- If x, ?/ G T then x = y, since
x | r = V* and ^ is faithful.

If x,?/ G Ge then xy~* G A ê, by Lemma 10'. If e has a unique immediate
predecessor e\ then Ne = ker (/><,,,,/, since if / < e then / < e', so
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Suppose now x e Ge and y 6 T, so \Jf<e(xf)ip = yip. For some g e E, y lies
in Gg, so

domain(?/?/>) = domain(gt/)) = M domain(/V>)-

Hence, if / < e then / < g, so / < eg. Bu t e ^ eg, since e is maximal in £ , so
eg is the unique immediate predecessor of e, which shows e is join irreducible.
Thus \Jf<e{xf)ip = (xeg)ip, so y — xeg, since V is faithful. This completes the
proof of the lemma.

We now re turn to the more general hypotheses of Theorem 7.

PROOF OF THEOREM 7 . By Lemma 6 we may suppose E — {ei,...,en}
where e^ < e3 implies i < j . For ejt € E, p u t Sk = U ^ f e ^ i ' so S = Sn and
each Sk is a subsemigroup of 5 with semilattice { e i , . . . , e/t}, of which e^ is a
maximal element.

Put Mk = E*=i f*(Ge, \Nei)+\J(Sk)\- We show by induction that n{Sk) = Mk

for k — 1 to n.
Observe that Si = Gei and Nei = Gei, so M(Si) = /i(Gei) = / i ( G e i | ^ e J =

Mi, which starts the induction.
Suppose now k < n and /i(Sfc) = Mk, so there is some faithful representation

i>:Sk-*Jrx where \X\ = Mfc. Define X : Sfc+i -»^Sf by

f
U ( X / ) ^ i f x € G

eit+1.

By Lemma 11, \ is a representation. We extend \ to a faithful representation
of 5fc+i of the appropriate degree, but the argument splits into two cases.

Case (i). Suppose ek+i <fc J{S). Let <;: Gek+1 - t ^ b e a representation of
Gek+1 which realizes fj,(Gek+1 \Neie+i), and suppose X and Y are disjoint. Define
fi as in Lemma 9, and put Vi = X © fii so

V»i ° ^f1 = (x o x" 1 ) n (ft o f f 1 ) = idSfc+1,

by Lemmas 9 and 11, since kerf D Neie+1 = {efc+1}. Thus %j)X is faithful. Also,

Case (ii). Suppose ek+i 6 J(S), and let e' be the unique immediate pre-
decessor of efc+i. Let £: Sx+i —• Jr{eic+1} be the representation defined in
Lemma 8, where it may be assumed ek+i £ X. Put Vi = X © £• Note that

= ker«?!>e;fc+lie/ = {ek+i}, so by Lemma 11,

x o x " 1 = idG«t+1 U idT U {(x, xe')|a: e Geic+l}.

Hence, "by l e m m a 8, ^j o ̂ J v = ' i 5 S t + ] , so ^ i , "is laifhlul. Also, p i u \
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In both cases a faithful representation of S of degree Mk+i has been exhibited,

so//(Sfc+i) < Affc+i.

Suppose now 0: Sk+i —* ^z is a faithful representation. We show \Z\ >

Mk+i- Let 6\ be the effective par t of 0\sk, so the degree of 0\ is at least Mk, by

the inductive hypothesis.

Case (i). Suppose ek+i £ J{S).

Let W be the set of elements of Z which are deleted when 9\ is formed, and

let $w ad 0z/w D e t he restrictions of 0\oe to W and Z\W respectively, so

Since 0 is faithful, ker 0wHker 6z\w — {ejt+i}- By Lemma 10, ker9z\w = Nek+l.
Hence the degree of 0w, which is |W|, must be at least //(Ge;fc+1|./Ve;t+1). This
shows the degree of 0 is at least M* + (i(Gek+1 |̂ Vefc+i) — Mk+i-

Case (ii). Suppose e^+i £ J(S), so Mfc+1 = Mfc + 1. Hence it suffices to show
degree(#) > degree^).

Suppose degree(0) = degree(^i). Let a G domain(efc+i#), so also a E
domain(/^) for some idempotent / in Sk- But ek+if < ek+i, so ek+if < e',
where e' is the unique immediate predecessor of e. Hence a € domain(e'#).
Thus domain(efc+i#) C domain(e'tf), so e/t+1 < e', which is impossible. Hence
degree(0) > Mk+i-

Thus we have shown fx(Sk+i) = Mk+\, so Theorem 7 follows by induction.

4. Example

The proof of Theorem 7 is algorithmic in the sense that given the appropriate
representations for the groups involved, one is shown how to paste these together
to obtain a minimal faithful representation for the union.

The following example uses only abelian groups, but illustrates the salient
features of the construction. Calculations of minimal faithful degrees of abelian
groups are undertaken in [6] and [5].

Let E be the following semilattice.
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Let S = LK^eJ* = 1 to 5}Denote
where

the cyclic group with

Gei

Ge2

Ge3

Ge4

Ge5

= <x|x4

= (y\y2

= (u>|u/

= (v\v8

= (t,u\t

n elements by Cn

= ei) = G4;

= ea) = G2;

= e^) = G4;

= e4) = G8;

* = u° = e5,tu = u •• G 2 x G 8 .

The multiplication of S is determined by homomorphisms <j>ej where f < e.
Consider the following, which are induced by the given actions on generators,
and from which all the other homomorphisms can be deduced:

0e3,e2: w ~* V'i

4 > e i t e 2 : V - » J/5

<j>Ci e3: t —• w , u —> w;

It is easy to calculate that Nei = Ge,, Ne2 = {e2}, Ne3 = (w2), Nei — {v4),
Nes = (tu2) D (t) = {e5}, /i(Ge i |^e i) = 4, fi{Ge2\Ne2) = 0, /i(Ge3|iVe3) = 4,
At(Ge4|iVe4) = 8 and (i{GeJNei) = 0. Also J(5) = {e2}. By Theorem 7,
fi{S) = 4 + 0 + 4 + 8 + 0 + 1 = 17. Explicitly, 5 is isomorphic to the union of the
following subgroups of ^i, . . . , i7}, where the usual cyclic notation is employed
for a permutation, except that all singleton cycles are included to indicate the
domain. The groups are listed in the order of construction, following the method
of the previous section:

Ge3 = ((13)(24)(5)(6789));

Ge4 = ((13)(24)(5)(1011121314151617));
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