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Abstract

In this paper we are interested in a nonlinear parabolic evolution equation occurring
in rheology. We give a probabilistic interpretation to this equation by associating a
nonlinear martingale problem with it. We prove the existence of a unique solution, P ,
to this martingale problem. For any t , the time marginal of P at time t admits a density
ρ(t, x) with respect to the Lebesgue measure, where the function ρ is the unique weak
solution to the evolution equation in a well-chosen energy space. Next we introduce a
simulable system of n interacting particles and prove that the empirical measure of this
system converges to P as n tends to ∞. This propagation-of-chaos result ensures that
the solution to the equation of interest can be approximated using a Monte Carlo method.
Finally, we illustrate the convergence in some numerical experiments.

Keywords: Nonlinear martingale problem; propagation of chaos; stochastic particle
method
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1. Introduction

In rheology, modeling the flow of complex fluids is a very intricate problem which to date is
far from being solved. Hébraux and Lequeux [4] presented a model which aims at describing
the behavior of very concentrated suspensions of soft particles, known as soft glassy materials,
under a simple shear flow. This model is obtained by dividing the material into a large number
of mesoscopic elements (‘blocks’) with a given shear stress. From a mathematical point of
view, the probability density, p(t, x), for a block to undergo stress x at time t is supposed to
satisfy the following evolution equation: for all (t, x) ∈ [0, T ] × R,

∂p

∂t
(t, x) = −b(t)∂p

∂x
(t, x)+D(p(t))

∂2p

∂x2 (t, x)− 1[−1,1]c(x)p(t, x)+ 2

σ 2D(p(t))δ0(x),

p ≥ 0, p(0, x) = ρ0(x).

(1)
Here, for f ∈ L1(R), we define

D(f ) := σ 2

2

∫
|x|>1

f (x) dx, σ > 0,
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1[−1,1]c denotes the characteristic function of the open set [−1, 1]c = (−∞,−1) ∪ (1,∞), δ0
denotes the Dirac delta distribution on R, and ρ0 is a probability density on the real line. Let
us make precise the physical interpretation of the above equation. When a block is sheared,
the stress of this block evolves with a variation rate b(t). This variation rate is proportional to
the shear rate but does not depend on the value of the stress. In our study, the function b is
assumed to be inL2([0, T ]). When the modulus of the stress overcomes the critical value of the
stress, chosen to equal 1 here, the block becomes unstable and may relax into a state with zero
stress after a characteristic relaxation time also chosen to equal 1. This phenomenon induces a
rearrangement of the blocks modeled through the diffusion term D(p(t))∂2p(t, x)/∂x2.

Motivated by the physical interest of this model, Cancès et al. [2] have studied the existence
and uniqueness of solutions to (1). From an analytic point of view, the difficulty of this study
comes from the possibility that the coefficient, D(p(t)), of the second-order spatial derivative
might vanish. In the case in which the initial densityρ0 satisfiesD(ρ0) > 0 (and under regularity
assumptions made precise in Theorem 1, below), Cancès et al. [2] were able to control the time
evolution to this multiplicative coefficient and prove that (1) admits a unique weak solution ρ
in a well-chosen energy space, this solution being such that

inf
t∈[0,T ]D(ρ(t)) > 0. (2)

By a weak solution we mean an integrable function p : [0, T ]×R → R such that, for any C1,2

function ψ with compact support on [0, T ] × R, for all t ∈ [0, T ],
∫

R

ψ(t, x)p(t, x) dx =
∫

R

ψ(0, x)ρ0(x) dx

+
∫

[0,t]×R

(
p
∂ψ

∂s
+ bp

∂ψ

∂x
+D(p)p

∂2ψ

∂x2

)
(s, x) ds dx

+
∫

[0,t]×R

1{|x|>1}p(s, x)(ψ(s, 0)− ψ(s, x)) ds dx.

For a mathematical study of the full model obtained by coupling (1) at the microscopic level
with the conservation of the momentum at the macroscopic level, we refer the reader to
Cancès et al. [3].

In this paper we are interested in constructing and proving the convergence of some Monte
Carlo approximations of the solution ρ. For this purpose, we first associate a nonlinear
martingale problem with (1). LetD([0, T ],R) be the space of functions on [0, T ] that are right
continuous and have left-hand limits. We denote by X the canonical process on D([0, T ],R).
Definition 1. We say that a probability measure P on D([0, T ],R) with time marginals
(Pt )0≤t≤T solves the nonlinear martingale problem (MP) if P0(dx) = ρ0(x) dx and, for all
φ ∈ C2

b (R),

φ(Xt )− φ(X0)−
∫ t

0

(
b(s)φ′(Xs)+ σ 2

2
Ps([−1, 1]c)φ′′(Xs)

)
ds

−
∫ t

0
(φ(0)− φ(Xs))1{|Xs |>1} ds

is a P -martingale on the time interval [0, T ].
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This problem is nonlinear since (σ 2/2)Ps([−1, 1]c), the diffusion coefficient at time s,
involves the time marginal Ps of the solution.

IfP solves problem (MP) then, according to Lemma 2(i) below, for allψ ∈ C1,2
b ([0, T ]×R),

ψ(t,Xt )− ψ(0, X0)−
∫ t

0

(
∂ψ

∂s
(s,Xs)+ b(s)

∂ψ

∂x
(s,Xs)+ σ 2

2
Ps([−1, 1]c)

∂2ψ

∂x2 (s,Xs)

)
ds

−
∫ t

0
(ψ(s, 0)− ψ(s,Xs))1{|Xs |>1} ds

is a P -martingale on the time interval [0, T ]. From the constancy of the expectation of this
martingale, we deduce the following link between problem (MP) and (1).

Lemma 1. If P is a solution to the nonlinear martingale problem (MP), then t 	→ Pt is a weak
solution to the partial differential equation (1).

In the first section of the paper we prove that problem (MP) admits a unique solution P and
that, for any t ∈ [0, T ], Pt(dx) = ρ(t, x) dx, where ρ is the solution to (1) obtained by Cancès
et al. [2]. Then, in the second section, we introduce the following system of n interacting
particles obtained by replacing the nonlinearity by an interaction in the stochastic dynamics
associated with the nonlinear martingale problem:

Y
i,n
t = Y i0 + σ

∫ t

0

√√√√1

n

n∑
j=1

1{|Y j,ns |>1} ∨1

n
dWi

s +
∫ t

0
b(s) ds −

∫ t

0
Y
i,n

s− 1{|Y i,n
s− |>1} dNi

s ,

1 ≤ i ≤ n.

Here (Wi)1≤i≤n are n independent Brownian motions, (Ni)1≤i≤n are n independent Poisson
processes with (common) intensity 1 and (Y i0)1≤i≤n are n independent random variables with
(common) density ρ0(dx). We assume that (Wi)1≤i≤n, (Ni)1≤i≤n, and (Y i0)1≤i≤n are indepen-
dent. We now face the probabilistic counterpart of the possibility that D(p(t)) might vanish:
the empirical probability (1/n)

∑n
j=1 1{|Y j,ns |>1} of the set [−1, 1]c may be equal to 0. This is

why we take the supremum of this empirical probability with 1/n in the diffusion coefficient of
each particle in order to ensure the existence of a unique weak solution to this n-dimensional
stochastic differential equation. We prove a propagation-of-chaos result which ensures that
ρ(t, ·), the solution to (1), can be approximated by (1/n)

∑n
i=1 δY i,nt

; indeed, we prove that the
P (D([0, T ],R))-valued empirical measure (1/n)

∑n
i=1 δY i,n converges in probability toP , the

unique solution to problem (MP). In the mathematical analysis of the convergence, the main
difficulty is that 1/n, the lower bound of the diffusion coefficient in the system with n particles,
vanishes as n → ∞. To overcome this difficulty, we first prove convergence on a small time
interval. Then, to iterate the argument, we take advantage of (2), which holds for the solution
to (1) given that D(ρ0) > 0.

In the third section we present some numerical results obtained by simulation of the system
with n particles.

We use the following notation.

• For τ > 0, let L∞
t ([0, τ ], L1

x ∩ L2
x) denote the space of real-valued functions f defined

on [0, τ ] × R and satisfying

sup
t∈[0,τ ]

∫
R

|f (t, x)| dx < ∞ and sup
t∈[0,τ ]

∫
R

|f (t, x)|2 dx < ∞.
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• By L2
t ([0, τ ], H 1

x ), we denote the space of functions f on [0, τ ] × R such that the
distribution derivative ∂f/∂x is a function and

∫ τ

0

∫
R

(
|f (t, x)|2 +

∣∣∣∣∂f∂x (t, x)
∣∣∣∣
2)

dx dt < ∞.

• We say that a probability density ρ0 satisfies the condition (H) if

ρ0 ∈ L∞(R),
∫

R

|x|ρ0(x) dx < ∞, and D(ρ0) > 0.

• Let C be a constant which may change from line to line.

• For a topological space E, P (E) denotes the set of probability measures on E endowed
with its Borel σ -field.

2. Existence and uniqueness of the martingale problem

2.1. On equation (1)

We now recall existence and uniqueness results for (1) established in Theorem 1.1 of [2].

Theorem 1. Let the initial density ρ0 satisfy the condition (H). Then, for every T > 0, there
exists a unique weak solution ρ to the system (1) in L∞

t ([0, T ], L1
x ∩ L2

x) ∩ L2
t ([0, T ], H 1

x ).
Moreover, for all t ∈ [0, T ], ∫

R
ρ(t, x) dx = 1 and there exists a positive constant ν such that

2

σ 2D(ρ(t)) ≥ ν for all t ∈ [0, T ]. (3)

In addition,

sup
t∈[0,T ]

∫
R

|x|ρ(t, x) dx < ∞. (4)

Since, for α > 1, denoting ‖f ‖L2
x

= (
∫

R
f 2(x) dx)1/2 for all square integrable real func-

tions f, ∫
[−α,−1]∪[1,α]

ρ(t, x) dx ≤ 2
√
α − 1 sup

t≤T
‖ρ(t, ·)‖L2

x
,

we easily deduce the following corollary.

Corollary 1. There exists an α > 1 satisfying

∫
|x|>α

ρ(t, x) dx ≥ ν

2
for all t ∈ [0, T ].

2.2. Main results

Theorem 2. Assume that ρ0 satisfies condition (H). The nonlinear martingale problem (MP)
admits a unique solution P . In addition, for all t ∈ [0, T ], ρ(t, ·) is a density of the time
marginal Pt with respect to the Lebesgue measure on R.

For the reader’s convenience, the rather technical proof of the following proposition, which
ensures that the last statement holds, is postponed to Section 2.3.
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Proposition 1. Assume that ρ0 satisfies condition (H). If P solves the martingale prob-
lem (MP), then, for all t ∈ [0, T ], Pt admits ρ(t, ·) as a density with respect to the Lebesgue
measure.

In order to deduce Theorem 2 from Proposition 1, we need to introduce a linear martingale
problem.

Definition 2. Let a be a nonnegative function. We say that a probability measure P on
D([0, T ],R) solves the linear martingale problem (LMP) starting at λ ∈ P (R) if P0 = λ

and, for all φ ∈ C2
b (R),

φ(Xt )− φ(X0)−
∫ t

0
(b(s)φ′(Xs)+ a(s)φ′′(Xs)) ds −

∫ t

0
(φ(0)− φ(Xs))1{|Xs |>1} ds

is a P -martingale on [0, T ].
On a probability space (�,A,P), let (Wt )t≥0 be a Brownian motion and (Nt )t≥0 an

independent Poisson process with intensity 1. The stochastic differential equation associated
with the linear martingale problem (LMP) starting at λ is

Yt = Y0 +
∫ t

0
γ (s) dWs +

∫ t

0
b(s) ds −

∫ t

0
Ys− 1{|Ys−|>1} dNs (5)

where γ (s) = √
2a(s), Y0 is distributed according to λ, and Y0, (Wt )t≥0, and (Nt )t≥0 are

independent. It is clear that existence and trajectorial uniqueness results hold for this stochastic
differential equation.

From [6, Theorems II9 and II13 and Corollary II13], we deduce the first assertion in the
following lemma.

Lemma 2. (i) For any λ ∈ P (R), the distribution of the unique solution to (5) is the unique
solution to the linear martingale problem (LMP) starting at λ, say P .

(ii) If, in addition, λ(dx) = f (x) dx with f ∈ L2(R) and there exists an interval [0, τ ], τ > 0,
such that on [0, τ ] the function a is bounded from below by a positive constant, then, for all
t ∈ [0, τ ], Pt has a density p(t, x) with respect to the Lebesgue measure and the function p
belongs to L∞

t ([0, τ ], L1
x ∩ L2

x) ∩ L2
t ([0, τ ], H 1

x ).

The proof of the remaining assertion is postponed to Section 2.3.

Proof of Theorem 2. Let us suppose that Proposition 1 holds, and let P and Q denote two
solutions to the nonlinear martingale problem (MP). Then both P and Q solve the linear
martingale problem (LMP) with diffusion coefficient a(s) = D(ρ(s)), starting at λ(dx) =
ρ0(x) dx. Since uniqueness holds for this linear martingale problem, P = Q, and uniqueness
holds for the nonlinear martingale problem (MP).

We still have to prove existence for the nonlinear martingale problem (MP). Let P be the
solution to the linear martingale problem introduced above. By (3) and Lemma 2(ii) above, for
all t in [0, T ] the probability distributionPt admits a densityp(t, ·)with respect to the Lebesgue
measure and the function p belongs to L∞

t ([0, T ], L1
x ∩ L2

x) ∩ L2
t ([0, T ], H 1

x ). Moreover, by
reasoning as in the proof of Lemma 1, we find that p is a weak solution to the linear partial
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differential equation

∂p

∂t
(t, x) = −b(t)∂p

∂x
(t, x)+ a(t)

∂2p

∂x2 (t, x)− 1[−1,1]c(x)p(t, x)+ 2

σ 2D(p(t))δ0(x),

p(0, x) = ρ0(x).

As ρ satisfies (1) and a(t) = D(ρ(t)), ρ also satisfies the above linear partial differential
equation. Now, by adapting the ideas of Cancès et al. [2] in the proof of uniqueness for (1),
we shall prove that p = ρ. By subtracting the equation satisfied by ρ from the one satisfied
by p, we find that q = p − ρ satisfies the same equation with initial condition q(0, x) = 0.
Multiplying this equation by q and integrating over R with respect to x, we formally obtain

1

2

d

dt

∫
R

q2(t, x) dx+ a(t)
∫

R

(
∂q

∂x
(t, x)

)2

dx+
∫

|x|>1
q2(t, x) dx = 2

σ 2D(q(t))q(t, 0). (6)

Because of the regularity of the functions p and ρ, this formal computation is rigorous. We
next remark that, since

∫
R
p(t, x) dx = ∫

R
ρ(t, x) dx = 1, we obtain

∣∣∣∣ 2

σ 2D(q(t))

∣∣∣∣ =
∣∣∣∣
∫

|x|≤1
q(t, x) dx

∣∣∣∣ ≤ √
2‖q(t, ·)‖L2

x
,

from the Cauchy–Schwarz inequality. Let H 1(R) denote the space of functions f on the
real line square integrable together with their distribution derivative f ′, endowed with norm

‖f ‖H 1
x

=
√∫

R
(f 2(x)+ (f ′)2(x)) dx. Moreover, using the Sobolev embedding of H 1(R)

into the space of continuous, bounded functions on R endowed with the supremum norm, we
bound the term on the right-hand side of (6) from above in the following way, for any positive
constant ε:∣∣∣∣ 2

σ 2D(q(t))q(t, 0)

∣∣∣∣ ≤ C‖q(t, ·)‖L2
x
‖q(t, ·)‖H 1

x

≤
C2‖q(t, ·)‖2

L2
x

2ε
+ ε

2
‖q(t, ·)‖2

L2
x
+ ε

2

∥∥∥∥ ∂∂x q(t, ·)
∥∥∥∥

2

L2
x

.

Since, by Theorem 1, inf0≤t≤T a(t) > 0, we may choose ε/2 ≤ inf0≤t≤T a(t) and deduce
from (6) that

1

2

d

dt
‖q(t, ·)‖2

L2
x

≤
(
C2

2ε
+ ε

2

)
‖q(t, ·)‖2

L2
x
.

Finally, by applying Gronwall’s lemma, we find that ‖q(t, ·)‖2
L2
x

= 0, for all t ∈ [0, T ] and, thus,
that q = 0. This ensures that a(t) = D(p(t)). Therefore, P solves the nonlinear martingale
problem (MP).

2.3. Proofs of technical results

Proof of Lemma 2(ii). By Lemma 2(i), it is enough to consider the stochastic differential
equation (5). For n ∈ N∗, let Tn = inf{t > 0 : Nt = n}. The conditional distribution of
(T1, . . . , Tn) given {Nt = n} is uniform on the n-dimensional simplex �n = {0 < t1 < · · · <
tn < t}. Let Qs,t be the density of the random variable

∫ t
s
γ (r) dWr + ∫ t

s
b(r) dr . Since N is

independent of (Y0,W), for n ∈ N the conditional density, pn(t, y), of Yt given {Nt = n} may
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be computed by induction on n. For t > 0 and y ∈ R, we have p0(t, y) = f ∗Q0,t (y) and,
for all n ≥ 1,

pn(t, y) =
∫ t

0

∫
R

nsn−1

tn
pn−1(s, x)[1{|x|≤1}Qs,t (y − x)+ 1{|x|>1}Qs,t (y)] dx ds.

In order to bound the norm of

p(t, y) =
∞∑
n=0

e−t tn

n!pn(t, y)

in H 1
x and, in particular, to estimate the norm of ∂p/∂y in L2

x , the Fourier transform is a very
convenient tool.

Setting p̂n(t, ζ ) = ∫
R

eiζypn(t, y) dy, we have p̂0(t, ζ ) = f̂ (ζ )Q̂0,t (ζ ) and, for all n ≥ 1,

p̂n(t, ζ ) =
∫ t

0

∫
R

nsn−1

tn
pn−1(s, x)[1{|x|≤1} eiζxQ̂s,t (ζ )+ 1{|x|>1} Q̂s,t (ζ )] dx ds.

Assume that the function γ 2 is bounded from below by ε > 0. Since, for s ≤ t , |Q̂s,t (ζ )| ≤
exp{−(ζ 2/2)ε(t − s)}, we have

|p̂0(t, ζ )| ≤ |f̂ (ζ )| exp

{
−ζ

2

2
εt

}
,

|p̂n(t, ζ )| ≤ n

t

∫ t

0

∫
R

pn−1(s, x)|Q̂s,t (ζ )| dx ds ≤ 2n(1 − exp{−(ζ 2/2)εt})
tζ 2ε

, n ≥ 1.

To check that p belongs to L∞
t ([0, τ ], L2

x), we combine the Parseval–Plancherel theorem with
the bounds on the modulus of the Fourier transform given before, obtaining

2π
∫

R

p2(t, y) dy ≤
∞∑
n=0

e−t tn

n!
∫

R

|p̂n(t, ζ )|2 dζ

≤ e−t
∫

R

|f̂ (ζ )|2 dζ +
∞∑
n=1

e−t tn

n!
∫

R

4n2(1 − exp{−(ζ 2/2)εt})2
t2ζ 4ε2 dζ

≤ 2πe−t‖f ‖2
L2 +

∞∑
n=1

e−t tn

n!
4n2

√
εt

∫
R

(1 − e−x2/2)2

x4 dx.

As the right-hand side is bounded uniformly if t belongs to [0, τ ], it follows thatp ∈ L∞
t ([0, τ ],

L2
x). To check that p belongs to L2

t ([0, τ ], H 1
x ), we note that ̂(∂p/∂y)(t, ζ ) = iζ p̂(t, ζ ) and

we write

2π
∫ τ

0

∫
R

∣∣∣∣∂p∂y (t, y)
∣∣∣∣
2

dt dy =
∫ τ

0

∫
R

ζ 2|p̂(t, ζ )|2 dt dζ

≤
∞∑
n=0

∫ τ

0

∫
R

e−t tn

n!ζ
2|p̂n(t, ζ )|2 dt dζ

≤
∫ τ

0

∫
R

ζ 2e−te−ζ 2εt |f̂ (ζ )|2 dt dζ

+
∞∑
n=1

∫ τ

0

∫
R

e−t tn

n!
4n2

t2

(1 − exp{−(ζ 2/2)εt})2
ζ 2ε2 dζ dt.
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Setting C = ∫
R
((1 − e−x2/2)/x)2 dx, the change of variable x = ζ

√
εt yields

2π
∫ τ

0

∫
R

∣∣∣∣∂p∂y (t, y)
∣∣∣∣
2

dt dy ≤
∫

R

∫ τ

0
ζ 2e−ζ 2εt dt |f̂ (ζ )|2 dζ

+
∞∑
n=1

4Cn

ε3/2(n− 1)!
∫ τ

0
e−t tn−3/2 dt.

Using the fact that
∫ τ

0 e−t tn−3/2 dt ≤ τn−1/2/(n− 1/2), we conclude that p ∈ L2
t ([0, τ ], H 1

x ).

We are now ready to prove Proposition 1.

Proof of Proposition 1. To obtain this result we proceed by inductive reasoning. The idea is
to build a positive, increasing sequence 0 ≤ t1 ≤ · · · ≤ tK = T such that, for k ∈ {1, . . . , K},
we are able to prove the following property: for all t ∈ [0, tk], the marginal distribution Pt has a
probability densityp(t, ·), and (p(t, ·))0≤t≤tk belongs toL∞

t ([0, tk], L1
x∩L2

x)∩L2
t ([0, tk], H 1

x ).
Since, by Lemma 1, p is a weak solution to (1), by the uniqueness result in Theorem 1,
(p(t, ·))0≤t≤tk can then be identified with the restriction of ρ to the time interval [0, tk].

Let α be such that the conclusion of Corollary 1 holds, and let K ∈ N∗ be such that
T/K ≤ ((α − 1)/2‖b‖L2)2. We set tk = kT /K, k ∈ {1, . . . , K}.

• As a first step, we use the fact that if Y0 is distributed according to the density ρ0, then,
by Lemma 2(i), P is the distribution of the solution to the stochastic differential equation

Yt = Y0 +
∫ t

0
σ
√
Ps([−1, 1]c) dWs +

∫ t

0
b(s) ds −

∫ t

0
Ys− 1{|Ys−|>1} dNs.

Let t ∈ [0, t1]. Since t1 ≤ ((α − 1)/2‖b‖L2)2, we have
∫ t

0 |b(s)| ds ≤ ‖b‖L2
√
t ≤

(α − 1)/2. Therefore,

Pt([−1, 1]c)

≥ P

(
|Y0| > α, Nt = 0,

∣∣∣∣Y0 + σ

∫ t

0

√
Ps([−1, 1]c) dWs +

∫ t

0
b(s) ds

∣∣∣∣ > 1

)

≥ e−t
∫

|x|>α
ρ0(x) dx P

(∣∣∣∣σ
∫ t

0

√
Ps([−1, 1]c) dWs

∣∣∣∣ < α − 1 −
∫ t

0
|b(s)| ds

)

≥ νe−t
√

2π

∫ (α−1)/2σ
√
t

0
e−x2/2 dx, (7)

by Corollary 1.
Therefore, the diffusion coefficient, a(t) = (σ 2/2)Pt ([−1, 1]c), of the martingale

problem satisfied by P is bounded from below by a positive constant on the time
interval [0, t1]. From Lemma 2(ii), we deduce that, for all t ∈ [0, t1], Pt has a density
p(t, ·) with respect to the Lebesgue measure on R and that the function p belongs to
L∞
t ([0, t1], L1

x ∩ L2
x) ∩ L2

t ([0, t1], H 1
x ). On the other hand, by Lemma 1, p is a weak

solution to (1). From Theorem 1 we deduce that, for t ∈ [0, t1], p(t, ·) = ρ(t, ·).
• Now we assume that the inductive assumption is true at order k−1, k ∈ {2, . . . , K}, and

show that this property remains true at order k. The image, P̃ , of P under the mapping
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x ∈ D([0, T ],R) 	→ (xt+tk−1)t∈[0,tk−tk−1] solves the nonlinear martingale problem on
the time interval [0, tk − tk−1] with the initial probability distribution P̃0 = Ptk−1 . Now,

P̃0([−1, 1]c) ≥
∫

|x|>α
p(tk−1, x) dx =

∫
|x|>α

ρ(tk−1, x) dx ≥ ν

2
,

by Corollary 1. From computations similar to the ones made in the first step, we find
that, for t ∈ [0, tk − tk−1], P̃t ([−1, 1]c) is greater than the right-hand side of (7). Again
we deduce from Lemma 2(ii) that, for t ∈ [0, tk − tk−1], P̃t has a density p̃(t, ·)
and the function p̃ belongs to L∞

t ([0, tk − tk−1], L1
x ∩ L2

x) ∩ L2
t ([0, tk − tk−1], H 1

x ).
By putting all this material together, we conclude that, for all t ∈ [0, tk], Pt has a
density p(t, ·), and (p(t, ·))0≤t≤tk belongs to L∞

t ([0, tk], L1
x ∩ L2

x) ∩ L2
t ([0, tk], H 1

x ).
Moreover, (p(t, ·))0≤t≤tk can be identified with the restriction of ρ to the interval [0, tk].

This concludes the proof.

3. Propagation of chaos

We define a system of n interacting particles using the following stochastic differential
equation:

Y
i,n
t = Y i0 + σ

∫ t

0

√√√√1

n

n∑
j=1

1{|Y j,ns |>1} ∨1

n
dWi

s +
∫ t

0
b(s) ds −

∫ t

0
Y
i,n

s− 1{|Y i,n
s− |>1} dNi

s ,

1 ≤ i ≤ n. (8)

Here (Wi)1≤i≤n are independent Brownian motions, (Ni)1≤i≤n are independent Poisson pro-
cesses with (common) intensity 1, and (Y i0)1≤i≤n are independent random variables distributed
according to ρ0(x) dx. We assume that (Wi)1≤i≤n, (Ni)1≤i≤n, and (Y i0)1≤i≤n are independent.
Between the jump times of the Poisson processes, (Y 1,n, . . . , Y n,n) evolves as an n-dimensional
diffusion process with a piecewise-constant (in the n-dimensional spatial variable) and non-
degenerate diffusion matrix. Hence, according to [1] and [9, Exercise 7.3.2], existence and
uniqueness in law hold for (8).

Let µn = (1/n)
∑n
i=1 δY i,n denote the empirical measure of the particle system. We are

going to prove the following law of large numbers.

Theorem 3. Assume that ρ0 satisfies condition (H). As n tends to ∞, the P (D([0, T ],R))-
valued random variables µn converge in probability to P , the unique solution to the nonlinear
martingale problem (MP).

Since the particles Y i,n, 1 ≤ i ≤ n, are exchangeable, according to [10, Proposition 2.2],
this result is equivalent to the propagation of chaos: for any fixed k ∈ N∗, as n goes to ∞,
the joint distribution of the processes (Y 1,n

t , . . . , Y
k,n
t )t∈[0,T ] converges to P⊗k . In order to

establish the theorem we need to control the possibility of the diffusion coefficient vanishing.
This is why, for ε > 0, we introduce the stopping time

τ εn := inf

{
t > 0 : 1

n

n∑
j=1

1{|Y j,nt |>1} < ε

}
.

Letπn denote the probability distribution of the empirical measureµn. We will denote byQ the
canonical variable on P (D([0, T ],R)). The next lemma implies that if P(τ εn ≤ t) converges
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to 0 as n tends to ∞ then any weak limit π∞ of the sequence (πn)n has the following regularity
property, which is desirable when taking the limit in the martingale problem formulation:
π∞(dQ)-almost everywhere, dr-almost everywhere on [0, t], Qr does not weight the set of
discontinuity points, {−1, 1}, of the characteristic function x 	→ 1{|x|>1} which appears in the
nonlinear diffusion coefficient, (σ 2/2)Ps([−1, 1]c) = (σ 2/2)EP (1{|Xs |>1}), in problem (MP).

Lemma 3. There is a constant C > 0 such that, for all t ∈ [0, T ] and all bounded functions f
in L2(R), ∣∣∣∣ Eπ

n

(∫ t

0
〈Qs, f 〉 ds

)∣∣∣∣ ≤ t‖f ‖∞ P(τ εn ≤ t)+ C‖f ‖L2 ,

where 〈·, ·〉 denotes the duality bracket between a measure and a function.

The second technical lemma prepares an inductive argument as to why P(τ εn ≤ T ) tends to 0
as n tends to ∞.

Lemma 4. For all α > 1 and all κ > 0, there exist ε > 0 and K ∈ N∗ such that

lim sup
n→∞

P

(
τ εn ≤ k

T

K

)
≤
k−1∑
�=0

lim sup
n→∞

P(µn�T/K([−α, α]c) ≤ κ) for all k ∈ {1, . . . , K}. (9)

For the reader’s convenience, the proofs of the above technical lemmas are postponed until
after the proof of the theorem.

Proof of Theorem 3. By exchangeability of the particles, the tightness of the sequence
(πn)n≥1 is equivalent to the tightness of the laws of the random variables (Y 1,n)n≥1 (again
see [10, Proposition 2.2]). As the diffusion coefficient and the drift coefficient are uniformly
bounded in n and the intensity of jumps remains smaller than 1, the tightness of the sequence
(Y 1,n)n≥1 holds (using the Aldous criterion, for instance).

Let π∞ be the limit of a convergent subsequence that we still index with n for notational
simplicity. We are going to check thatQπ∞-almost surely solves the martingale problem (MP).
To do so, for p ∈ N∗, φ ∈ C2

b (R), g is a continuous and bounded function on Rp, and
T ≥ S ≥ t ≥ s ≥ s1 ≥ · · · ≥ sp ≥ 0 we associate

F(Q) =
〈
Q,

(
φ(Xt )− φ(Xs)−

∫ t

s

(
b(r)φ′(Xr)+ σ 2

2
Qr([−1, 1]c)φ′′(Xr)

)
dr

−
∫ t

s

(φ(0)− φ(Xr)) 1{|Xr |>1} dr

)
g(Xs1 , . . . , Xsp )

〉
(10)

with any Q ∈ P (D([0, S],R)). We want to prove that Eπ
∞
(|F(Q)|) = 0. By computing

F(µn) using Itô’s formula and then using the independence of the Brownian motions and
Poisson processes, we can easily check that E(F 2(µn)) ≤ C/n. Therefore,

Eπ
n

(|F(Q)|) = E(|F(µn)|) ≤
√

E(F (µn)2) ≤ C√
n
, (11)

where the constantC does not depend onn. Hence, Eπ
n
(|F(Q)|) converges to 0 asn tends to ∞.

Unfortunately, the mapping F is not continuous on P (D([0, T ],R)) and we cannot deduce
that Eπ

∞
(|F(Q)|) = 0. Nevertheless, F is continuous at any Q such that Qr({−1, 1}) = 0

dr-almost surely. Thus, we should first prove that π∞ gives full weight to such probability
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measures. To do so, we need to bound the diffusion coefficient of the particle system from
below. We are only able to obtain such control on a small time interval. For this reason we first
consider the limit on such a time interval. Then, to iterate our reasoning, we take advantage of
the bound

Ps([−α, α]c) ≥ ν

2
, s ∈ [0, T ], (12)

which holds for some α > 1 according to Corollary 1 and Theorem 2. Applying Lemma 4 with
this α and κ = ν/4, we deduce that we can choose ε > 0 and K ∈ N∗ such that

lim sup
n→∞

P

(
τ εn ≤ k

T

K

)
≤
k−1∑
�=0

lim sup
n→∞

P

(
µn�T/K([−α, α]c) ≤ ν

4

)
. (13)

Letπ∞,k be the law of the image ofQ under the restriction mapping (Ys)s≤T ∈ D([0, T ],R) 	→
(Ys)s≤kT /K ∈ D([0, kT /K],R) under π∞, and let P k be the image of P under this mapping.
We are going to prove, by induction on k ∈ {0, . . . , K}, that π∞,k = δP k . Since the initial
variables Y i0 are independent and identically distributed according to ρ0(x) dx, the inductive
property holds for k = 0. We then assume that it holds at order k − 1 and show that it remains
true at order k.

From the recurrence assumption at order k − 1, since under P the canonical process is
quasi-left continuous, we can deduce that, for all s ∈ [0, (k− 1)T /K], µns converges weakly to
Ps (see [7, Lemma 4.8]). Let (mn)n≥1 and m be probability measures on R. It is well known
that the weak convergence of (mn)n≥1 to m implies that lim infn→∞mn(O) ≥ m(O) for all
open sets O of R. This proves that {m ∈ P (R) : m([−α, α]c) > ν/4} is an open set for the
topology of weak convergence. Thus, by (12),

lim inf
n→∞ P

(
µn�T/K([−α, α]c) >

ν

4

)

≥ P

(
P�T/K([−α, α]c) >

ν

4

)
= 1 for all � ∈ {0, . . . , k − 1}.

Then, by (13), lim supn→∞ P(τ εn ≤ kT /K) = 0. From Lemma 3, we deduce that, for any
continuous, bounded function f ∈ L2(R),∣∣∣∣ Eπ

∞,k

(∫ kT /K

0
〈Qr, f 〉 dr

)∣∣∣∣ ≤ C‖f ‖L2 .

Now let fη(x) := max(0, 1 − |1 − |x||/η) for 0 < η < 1. As ‖fη‖L2 = √
4η/3, if we

replace f by fη in the equation above and we let η go to 0, we deduce that, π∞,k-almost surely
and dr-almost everywhere, Qr({−1, 1}) = 0.

Let the parameter t in (10) be smaller than kT /K . Since F , considered as a function
on P (D([0, kT /K],R)), is continuous at all points Q dr-almost everywhere satisfying
Qr({−1, 1}) = 0, we deduce from (11) that Eπ

∞,k
(|F(Q)|) = limn→∞ Eπ

n
(|F(Q)|) = 0.

Hence, π∞,k = δP k , which concludes the proof.

Let us now prove Lemma 3.

Proof of Lemma 3. Let f be a nonnegative or nonpositive bounded function on the real line,
and let t ∈ [0, T ]. Then∣∣∣∣ Eπ

n

(∫ t

0
〈Qs, f 〉 ds

)∣∣∣∣ ≤ t‖f ‖∞ P(τ εn ≤ t)+
∣∣∣∣1

n

n∑
i=1

E

(
1{τ εn>t}

∫ t

0
f (Y i,ns ) ds

)∣∣∣∣. (14)
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Setting

σ
n,ε
t := 1{τ εn>t} σ

√√√√1

n

n∑
j=1

1{|Y j,nt |>1} ∨1

n
+ 1{τ εn≤t} σ

√
ε,

we introduce the stochastic differential equation

Y
i,n,ε
0 = Y i0,

dY i,n,εt = σ
n,ε
t dWi

t + b(t) dt − Y
i,n,ε

t− 1{|Y i,n,ε
t− |>1} dNi

t , 1 ≤ i ≤ n.

Up to time τ εn , the processes (Y i,n,εt , 1 ≤ i ≤ n) and (Y i,nt , 1 ≤ i ≤ n) coincide. This result,
combined with the exchangeability of (Y i,n,ε)1≤i≤n, enables us to replace Y i,nt by Y 1,n,ε

t in (14).
We obtain ∣∣∣∣ Eπ

n

(∫ t

0
〈Qs, f 〉 ds

)∣∣∣∣ ≤ t‖f ‖∞ P(τ εn ≤ t)+
∣∣∣∣ E

(∫ t

0
f (Y 1,n,ε

s ) ds

)∣∣∣∣. (15)

Now we are ready to apply the following estimation, which is a consequence of [5, Theorem 2].

Lemma 5. Let t ≤ T , let (ξs)s≥0 be an (Fs)-standard real Brownian motion, and let

xs = x +
∫ s

0
σr dξr +

∫ s

0
β(r) dr, s ∈ [0, t],

where x ∈ R, β is a deterministic function integrable on [0, t], and σr is an Fr -adapted process.
Let us assume that there exist constants σ and σ̄ such that 0 < σ ≤ σ̄ and σ ≤ σr ≤ σ̄ for all
r ∈ [0, t]. Then, for all f ∈ L2(R),∣∣∣∣ E

(∫ t

0
f (xs) ds

)∣∣∣∣ ≤ C‖f ‖L2 ,

where the constant C depends only on σ , σ̄ , and T .

Coming back to our process (Y 1,n,ε
s )0≤s≤t , a simple decomposition of Y 1,n,ε

s on the subsets
{N1

s = k}, k ∈ N, with the use of the conditional distribution of the jump times of N1 given
{N1

s = k} yields

E

(∫ t

0
f (Y 1,n,ε

s ) ds

)
= E

(∫ t

0
e−sf (xn,ε,0s ) ds

)

+
∞∑
k=1

∫
0<s1<···<sk<t

E

(∫ t

sk

e−sf (xn,ε,ks ) ds

)
ds1 · · · dsk,

where

xn,ε,ks = Y 1,n,ε
sk

+
∫ s

sk

σ n,εr dW 1
r +

∫ s

sk

b(r) dr

with the convention that s0 = 0.
Noticing that σ

√
ε ≤ σ

n,ε
r ≤ σ(1 + ε), and applying Lemma 5, we deduce that, for all

f ∈ L2(R), ∣∣∣∣ E

(∫ t

0
f (Y 1,n,ε

s ) ds

)∣∣∣∣ ≤ Cet‖f ‖L2 . (16)

Equations (15) and (16) together conclude the proof.
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Let us now prove Lemma 4.

Proof of Lemma 4. Let α > 1 and κ > 0. As in the proof of Proposition 1, we introduce a
K ∈ N∗ such that T/K ≤ ((α − 1)/2‖b‖L2)2 and set t1 = T/K . Let ε = κβ(t1)/2, where

β(t1) = P

(
sup
s≤t1

|Wi
s | ≤ α − 1

2σ
, Ni

t1
= 0

)
.

Let I denote the set of indexes {i ≤ n : |Y i0 | > α}. If we decompose the event {τ εn ≤ t1} on the
event {card(I ) < κn} and its complement, we obtain

P(τ εn ≤ t1) ≤ P(µn0([−α, α]c) < κ)+ P(card(I ) ≥ κn, τ εn ≤ t1). (17)

We are going to prove that the limit, as n → ∞, of the second term on the right-hand side of (17)
is 0. Since

∫ t1
0 |b(r)| dr ≤ ‖b‖L2

√
t1 = (α − 1)/2, for j ∈ I the existence of an s ∈ [0, t1]

such that |Y j,ns | ≤ 1 implies that either Nj
t1

�= 0 or sups≤t1 | ∫ s0 σnr dWj
r | > (α − 1)/2, where

σnr := σ

√√√√1

n

n∑
j=1

1{|Y j,ns |>1} ∨1

n
.

Therefore, the second term on the right-hand side of (17) is bounded from above by

P

(
card(I ) ≥ κn,

∑
j∈I

1{Njt1 �=0 or sups≤t1 | ∫ s0 σnr dWj
r |>(α−1)/2} > card(I )− nε

)
.

On the other hand, considering the filtration

Gt := σ(Y i0, (N
i
s )s≤T , 1≤i≤n, (Ws = (W 1

s , . . . ,W
n
s ))s≤t ), t ∈ [0, T ]

and the Gt -martingale Mt := ∫ t
0 σ

n
r dWr , with At := ∫ t

0 (σ
n
r )

2 dr and τt := inf{s : As ≥ t}, by
the Dambis and Dubins–Schwarz theorem [8, Theorem 1.6, p. 170] Bt := Mτt = ∫ τt

0 σnr dWr

is an Rn-valued Gτt -Brownian motion and
∫ t

0 σ
n
r dWr = BAt . This implies that P(card(I ) ≥

κn, τ εn ≤ t1) is smaller than

P

(
card(I ) ≥ κn,

∑
j∈I

1{Njt1 �=0 or sups≤t1 |BjAs |>(α−1)/2} > card(I )− nε

)
.

Noting that As ≤ σ 2s, and by using the definition of ε, we can replace the last upper bound by

P

(
card(I ) ≥ κn,

1

card(I )

∑
j∈I

1{Njt1=0, sup
s≤σ2 t1

|Bjs |≤(α−1)/2} ≤ β(t1)

2

)
.

Now, as σ(Y i0, (N
i
s )s≤T , 1 ≤ i ≤ n) = G0 ⊂ Gτt , we deduce that (Ni

s , s ≤ T , 1 ≤ i ≤ n),
(Bis , s ≤ T , 1 ≤ i ≤ n), and (Y i0, 1 ≤ i ≤ n) are independent. With F0 := σ(Y i0, 1 ≤ i ≤ n),
this probability reads

E

(
1{card(I )≥κn} P

(
1

card(I )

∑
j∈I

1{Njt1=0, sups≤t1 |Bjs |≤(α−1)/2σ } ≤ β(t1)

2

∣∣∣∣ F0

))
.
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Using the Bienaymé–Chebyshev inequality, we obtain

P

(
1

card(I )

∑
j∈I

1{Njt1=0, sups≤t1 |Bjs |≤(α−1)/2σ } ≤ β(t1)

2

∣∣∣∣ F0

)
≤ 4

β(t1) card(I )
.

Finally, the second term on the right-hand side of (17) is smaller than 4/κβ(t1)n and converges
to 0.

Next we use induction on k ∈ {1, . . . , N} to establish (9). Since

P(τ εn ≤ kt1) ≤ P(τ εn ≤ (k − 1)t1)+ P(µn(k−1)t1([−α, α]c) ≤ κ)

+ P(µn(k−1)t1([−α, α]c) > κ, (k − 1)t1 < τεn ≤ kt1),

assuming that (9) holds at order k − 1 we have

lim sup
n→∞

P(τ εn ≤ kt1) ≤
k−1∑
�=0

lim sup
n→∞

P(µn�t1([−α, α]c) ≤ κ)

+ lim sup
n→∞

P(µn(k−1)t1([−α, α]c) > κ, (k − 1)t1 < τεn ≤ kt1).

With Ĩ = {i ≤ n : |Y i(k−1)t1
| > α}, by reasoning similar to that above for the time interval [0, t1],

we obtain

P(µn(k−1)t1([−α, α]c) > κ, (k − 1)t1 < τεn ≤ kt1) ≤ E

(
1{card(Ĩ )≥κn}

4

β(t1) card(Ĩ )

)

≤ 4

κβ(t1)n
,

which vanishes as n goes to ∞.

From a physical point of view, the average stress,
∫

R
xρ(t, x) dx, is of particular interest.

From Theorem 3 we can deduce the convergence of the particle approximation (1/n)
∑n
i=1 Y

i,n
t

to this quantity as n tends to ∞.

Corollary 2. Assume that ρ0 satisfies condition (H). Then

lim
n→∞ E

∣∣∣∣1

n

n∑
i=1

Y
i,n
t −

∫
R

xρ(t, x) dx

∣∣∣∣ = 0.

Proof. From Theorem 3, since under P the canonical process is quasi-left continuous, for
any t ∈ [0, T ], µnt converges in probability to Pt = ρ(t, x) dx as n tends to ∞. We have

|Y 1,n
t | ≤ |Y 1

0 | +
∫ T

0
|b(s)| ds + 2σ sup

s≤T

∣∣∣∣
∫ s

0

√√√√1

n

n∑
j=1

1{|Y j,ns |>1} ∨1

n
dW 1

s

∣∣∣∣.

Since the diffusion coefficient is bounded by 1 and the random variable |Y 1
0 | + ∫ T

0 |b(s)| ds is
integrable, the random variables (|Y 1,n

t |)n≥1 are uniformly integrable. Combining this property
with (4) and the convergence in probability ofµnt toPt = ρ(t, x) dx, we easily obtain the result.
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4. Numerical results

To check the validity of the results obtained in the previous section with computer simula-
tions, we consider the example of steady states given in [2]. According to [2, Proposition 5.1],
if the function b(t) = b is constant, then (1) admits a unique stationary solution in the following
two cases.

• If b = 0 and σ 2 > 1, then

p(x) = 1 − |x| + √
D

σ 2 1{x∈[−1,1]} +
√
D

σ 2 exp

{
1 − |x|√

D

}
1{x �∈[−1,1]},

with D = D(p) > 0 given by D + √
D = (σ 2 − 1)/2.

• If b �= 0 and σ 2 �= 0, then

p(x) = a1 exp{βsgn(x)x}1{x �∈[−1,1]}

+
(
a2

(
1 + exp

{
b

D
x

})
− 2D

bσ 2 exp

{
b

D
x+

})
1{x∈[−1,1]},

where sgn(x) denotes the sign of x, with β± = b/2D ∓ 1
2

√
(b2 + 4D)/D2, x+ =

sup(0, x), and

a1 = 2 exp{ 1
2

√
(b2 + 4D/D2)}

σ 2(β− exp{b/2D} − β+ exp{−b/2D}) ,

a2 = 2Dβ− exp{b/2D}
σ 2b(β− exp{b/2D} − β+ exp{−b/2D}) .

This function always satisfies D = D(p) > 0, and the normalization condition∫
R

p(x) dx = 1

reads
D

b

(1 + β−)+ (β+ − 1) exp{−b/D}
β− − β+ exp{−b/D} +D = σ 2

2
.

For fixedn, we want to simulaten interacting particles described by the stochastic differential
equation (8). In order to discretize time, we assign n particle positions (Ŷ i,nkT /K)1≤i≤n to each
time k(T /K), 0 ≤ k ≤ K , where K is a given integer. Let {Gik, 1 ≤ i ≤ n, 1 ≤ k ≤ K} and
{Uik, 1 ≤ i ≤ n, 1 ≤ k ≤ K} be two independent sequences of independent and identically
distributed random variables respectively distributed according the normal law and the uniform
law on [0, 1]. At k = 0 we simulate n independent particles with initial density ρ0(x). For
k ∈ {1, . . . , K}, the discretized particles evolve as follows: for all i ∈ {1, . . . , n},

Ŷ
i,n
kT /K =

⎧⎨
⎩

0 if |Ŷ i,n(k−1)T /K | > 1 and Uik ≤ T/K,

Ŷ
i,n
(k−1)T /K + σD(k−1)T /K

√
T

K
Gik + b

T

K
otherwise,

with

D(k−1)T /K =
√√√√1

n

n∑
i=1

1{|Ŷ i,n
(k−1)T /K |>1}.
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Table 1: Convergence of εn with respect to n.

εn
n k = 100 k = 1000

1 000 0.0360 0.0369
5 000 0.0158 0.0169

10 000 0.0116 0.0115
20 000 0.0080 0.0081
40 000 0.0058 0.0060
60 000 0.0046 0.0047
80 000 0.0040 0.0044

100 000 0.0036 0.0037

Table 2: Convergence of nvar(τn1 ) with respect to n.

n n var(τn1 )

1 000 0.5022943
5 000 0.4662847

10 000 0.4844257
20 000 0.4435595
40 000 0.4628567
60 000 0.4513587
80 000 0.4543330

100 000 0.4840270

The average stress in the physical model is given by τ(t) = ∫
R
xp(t, x) dx and it is approximated

at the points kT /K, k ∈ {0, . . . , K}, by the empirical mean τnkT /K = (1/n)
∑n
i=1 Ŷ

i,n
kT /K .

The simulation of τnkT /K for k ∈ {0, . . . , K} must therefore confirm the convergence toward∫
R
xp(x) dx as K and n tend to ∞.

4.1. Convergence with respect to n, the number of particles

Here we are interested in an example of the second type, namely steady states with b = 1
and D = 0.5. We start from equilibrium, i.e. we choose ρ0 = p. We have∫

R

xp(x) dx = 1.126 734 8.

We take T = 1 first with K = 100 then with K = 1000. We simulate M = 1000 independent
realizations, (τ j,n1 )1≤j≤M , of the random variable τn1 , with different values of n. We consider
the empirical mean,

εn = 1

M

M∑
j=1

∣∣∣∣τ j,n1 −
∫

R

xp(x) dx

∣∣∣∣,
of the absolute value of the difference between the stress tensor

∫
R
xp(x) dx and its particle

approximation. In Table 1 we display results showing the convergence of the approximation εn
of E(|τn1 − ∫

R
xp(x) dx|) to 0 as n tends to ∞. As is easily seen by comparing ε5000, ε20 000, and

ε100 000, the error decreases like C/
√
n. Therefore, it is natural to try to check experimentally

if the central limit theorem is satisfied in n, the number of particles. To do so, we choose b = 0
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Figure 1: Convergence in distribution of the stress
√
nτ̄n1 with respect to n. From left to right, and top to

bottom we have n = 1000, n = 5000, n = 20 000, and n = 100 000.

and D = 1 − √
2/2, and initialize the particles with the first example of a steady distribution,

which is such that ∫
R

xp(x) dx = 0.

ForK = 100 and different values ofn, in Figure 1 we plot the histogram of
√
nτ

j,n
1 , 1 ≤ j ≤ M ,

on the interval [−2.5Sn, 2.5Sn], where

S2
n =

[
n

(M − 1)

] M∑
j=1

(τ
j,n
1 − τ̄ n1 )

2,

with τ̄ n1 = (1/M)
∑M
j=1 τ

j,n
1 , is an estimator of n var(τn1 ). We compare this histogram with the

centered Gaussian density with variance S2
n . We have n var(τn1 ) = (1/n) var(

∑n
i=1 Ŷ

i,n
1 ), and

Table 2 shows numerical convergence of this quantity as n → ∞, despite the lack of theoretical
proof.

The graphical representation in Figure 1 illustrates the convergence in law of the sequence√
nτn1 towards the Gaussian distribution.

4.2. Convergence with respect to K , the number of time-steps

To investigate the influence of K , we choose b = 0 and D = 1 − √
2/2, and initialize the

particles with the nonequilibrium density of 2|G1|− 3|G2|, whereG1 andG2 are independent,
normal variables. For fixed n = 1000 and for T = 1, we approximate E(τn1 ) by the Monte
Carlo method overM = 100 000 independent trajectories for different values ofK . In Table 3
we display results showing the convergence of the approximation τ̄ n1 = (1/M)

∑M
j=1 τ

j,n
1 of

E(τn1 ) with K .
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Table 3: Convergence of τ̄ n1 with K .

Number of time steps (K) Stress Variance Confidence intervals at 95%

2 −0.2062 0.0018 [−0.2065,−0.2060]
4 −0.2582 0.0022 [−0.2585,−0.2579]
8 −0.2801 0.0023 [−0.2804,−0.2798]

16 −0.2898 0.0024 [−0.2901,−0.2895]
100 −0.2981 40.0025 [−0.2984,−0.2978]

1/K

nτ1

−0.20

−0.21

−0.22

−0.23

−0.24

−0.25

−0.26

−0.27

−0.28

−0.29

−0.30
0.0 0.1 0.2 0.3 0.4 0.5

Figure 2: Convergence of the stress with K .

The graphical representation in Figure 2 shows that, despite the lack of theoretical study of
the weak convergence of the discretization scheme, τ̄ n1 converges like C/K with K .

5. Conclusion

The propagation-of-chaos theorem proved in the present paper provides a theoretical basis
for the practical simulation of the average stress, which is of interest in physics. Some first
numerical tests are completely conclusive with respect to the convergence and seem promising
with respect to the rate of convergence. From a theoretical point of view, the next question is
now to investigate the latter subject.
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