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Abstract

A classical result of M. Zorn states that a finite group is nilpotent if and only if it satisfies an Engel
condition. If this is the case, it satisfies almost all Engel conditions. We shall give a similar
description of the class of ^-soluble groups of /"-length one by a sequence of commutator identities.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 10, 20 F 12, 20 F 45.

1. Introduction

The classical result of Zorn (1936) characterizes the class of finite nilpotent
groups by commutator identities. Indeed, a finite group is nilpotent if and only
if it satisfies for almost all positive integers k the kih Engel condition, that is for
all elements x,y of the group we have [x, ky] = 1. The purpose of this note is to
characterize the class of /^-soluble groups of /^-length one in a similar way. All
groups considered in this paper are finite, all unexplained notation is standard
and can be found in Huppert (1967) or Gorenstein (1968). This paper is part of
the author's Ph. D. Thesis (Dissertation zur Erlangung des naturwissenschaft-
lichen Doktorgrades) written under supervision of Professor H. Heineken.

2. Preliminaries

In order to describe/?'-groups by identities, we firstly introduce a sequence of
positive integers such that any p '-number divides almost all of these numbers.
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DEFINITION. Let p be a prime and let {/>i,/>2> • • • } be the set of all primes
different from/;. For each positive integer k we define mkj> = (Pi • • • />*)*. W it is
clear, for which prime p the sequence is defined, we shall write mk instead of

We are now able to give a sequence of laws in two variables which turn out to
hold identically in groups having/^-length one.

DEFINITION. Let x, y be variables andp be a prime. For any positive integer k
let

We have the following easy observation:

LEMMA 1. Let G be a p-soluble group having p-length one. Then Xk(x,y) = 1 is
a law in G for almost all k.

PROOF. Let M and N be normal subgroups of G such that N and G/M are
/^'-groups and M/N is a/?-group.

Select k such that exp(AT) and exp(G/M) both divide mk. Then for ally G G
we get_y"* G M, hence [y™*, x] e M as M is a normal subgroup of G.

If we increase k such that exp(M/N) divides pk then we get [ym, xY* £ # .
The result now follows readily.

The purpose of this paper is the proof of the converse of Lemma 1. To do this,
we shall firstly examine the structure of minimal non />-length one groups.

LEMMA 2. Let H be a p-soluble group which does not have p-length one, but all
of whose proper subgroups and factor groups have p-length one. Then:

(a) H has a unique minimal normal subgroup N which has a complement Q,
(b) H hasp-length two, indeed H = Oppp(H),
(c) Q = AB, A is a normal q-subgroup of Q and B acts irreducibly on A/$(A).

Moreover \B\ = p and A is elementary abelian or extraspecial.

PROOF, (a) and (b) follow immediately from Huppert (1967), p. 693. (c) If
\B\ =£p, we select a maximal subgroup X of H with OpJ),(H) < X < H. So X is
normal in H and lp(X) = 1 by minimality. Moreover Op.(X) < Op-(H) = 1, so A"
is /^-closed. But Op(X) < Op(H) and we arrive at the contradiction | Op(H)\ <

\x\, = \op(X)\p.
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By (a) and (b) the group Q is a semidirect product of Op.(Q) with B e
Sylp(Q). B operates nontrivially on Op.(Q) because otherwise B < Op(H) and H
would be/>-closed.

Let A < Op(Q) be a group of least possible order which is normalized but not
centralized by B. By Gorenstein (1968), Theorem 6.2.2, A is a ^-group for some
prime q ¥=p. By Huppert (1967), p. 351, A is special.

We claim H = NAB. Let X = NAB. Then we have [Op,(X), N] = 1. So
(^(JO < CW(AO = N which implies that C^AT) = 1. Suppose that X is a proper
subgroup of H. Then ^,(Ar) = 1 and so X is/(-closed. But then the subgroup AB
of X is p-closed which implies [B, A] = 1 contradicting the choice of A. So we
have H = X = NAB.

Assume that A is not elementary abelian. Then, by minimality, we have
[Z(A), B] = 1 and so Z{A) < Z(Q). By (a) the group Q acts faithfully and
irreducibly on N, so Z{Q) is cyclic. In particular, |Z(^4)| = q and the result
follows.

3. The main result

This section is devoted to give a proof of the following result

THEOREM. Let G be a finite p-soluble group. Then the following conditions are
equivalent:

(i) G has p-length one,
(ii) \(x, y) = 1 is a law in G for almost all positive integers k.

We have shown in Lemma 1 that condition (i) implies (ii). To prove the
converse, let H be a counterexample of least possible order. Then every proper
subgroup and factor group of H has ̂ -length one. These groups have been dealt
with in Lemma 2. We divide the proof of the Theorem into two parts according
to whether A is elementary abelian or A is extraspecial.

LEMMA 3. Let H be as in Lemma 2. Let furthermore A be elementary abelian.
Then \k(H) ¥= 1 for infinitely many k.

PROOF. We choose k such that pk = 1 (mod(exp(y4))). Furthermore, select
60 e B = <Z>> such that bg* = b. Finally, let 1 ¥= n G CN(b). Such elements
exist because ./V is a/?-group and b is a/>-element.
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For an element M a G ^ w e calculate \k(na, b0). We have

= [[b, a]p ,na, na

= [b, a, na, na]m",

since [n, b] = 1 and/?* = 1 (mod o([b, a])).
Suppose \(H) = 1. As [b, a, na, na] E TV and N is a /?-group, we conclude

[b, a, na, na] = 1. Hence

1 = [Z>, a, na, na]

= [[b, a, a][b, a, n]a, na]

= [[b,a,n]a,a][[b,a,n]a,n]a

= [b, a, n,a]a.
This means

(1) [n, [b,a],a] = 1.

Replacing bby b' for a positive integer i yields the following

(2) [n,[b',a],a] = \

We claim
(3) [n, [b, a],ab~'] = 1 for all /.

Indeed, for / = 0 this is equation (1). Proceeding by induction on /, assume (3)
to be true for some / — 1.

Then (2) implies

\=[n,[bi+\a],a]

-[ny[b,a]b'[b',a],a\

= [n,[b>,a],a][[n,[b,a]b'f-\a]

= [n,[b,a] ,a\ .

This implies 1 = [n, [b, a], ab~'] as n commutes with b.
Application of (3) now gives immediately

[ n , [ b , a ] ] £ C N { ( a " ' \ i - 1 , 2 , • • • > ) - C N ( A ) .

As Q acts faithfully and irreducibly on N this gives [n, [b, a]] = 1. So

This contradicts Lemma 2.
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The second part of the proof deals with the case when A is extraspecial. We
have

LEMMA 4. Let H be as in Lemma 2. Furthermore let A be extraspecial. Then
\k(H) =£ 1 for infinitely many k.

PROOF. AS in the proof of Lemma 3, let k be such that
pk = 1 (mod(expy4)).

Furthermore let a G A \ Z(A) and 1 ¥= n G CN(B). By Lemma 2(c) we can
select b G B such that [a, ab\ =fc 1. As p and mk are coprime, we can find
bo<E B = (b) with bg* = b.

Then

l= | [b, na^p , na,

= [b,a,na,na]m",

as [n, b] = 1 and/?* = 1 (mod o([b, a])).
Suppose \ ( / / ) = 1. As \(H) < Af and N is a />-group, we can conclude

[b, a, na, na] = 1, because/? and mA are coprime. Hence
1 =[b, a, na, «a]

= [[b,a,a][b,a,n]a,na]

= [z[b, a, n]a, na] (settingz = [b, a, a] G Z(A))

= [znt, na] (setting n, = [b, a, n]a)

= [ZH,, a] [zn,, n]°

= [ n , , a ] [ z , n ] a

= [b,a,n,a]a[z,n]a.

This implies
(4) [ n ' z ] = [ * ' a> ">a]-

Now we evaluate \{naz, b0). We have

[b^, naz] =[b, naz]

= [b,z][b,na]z
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as z G Z(A) and B centralizes Z(A). So

= [[b, a]"\

= [b,a, naz, naz]m\ &spk = 1 (mod o([b, a])).

This implies

\k(naz,b0) =[[b, a, z][b, a, na]z,naz]mk

= [[b,a,a]z[b,a,n]a2,naz]mk

= [z*n2,naz]m>,

where we have defined n2 = [b, a, nf",
Finally

Xk(naz, b0) = ([zn2, az][zn2, n]02)1""

= ([n2,az][z,n]-r

= ([b,a,n,az]a*[z,n]a*)m\

As above, this implies

(5) [n ' z ] =[*»a» n,az].

Comparing (4) with (5) yields

[b, a, n,a] =[b, a, n, az]

= [b, a,n,za]

= [b, a, n, a][b, a, n, z]a, a s z 6 Z ( 4

So [b, a, n, z] = 1. But z = [b, a, a] ¥= 1 and so z acts fixedpointfreely on TV. So
we have [n, [b, a]] = 1, i.e. n e CN([b, a]). As n and b commute, we arrive at

\ *n e CN((b, [b, a])) = CN(Q).

This clearly contradicts Lemma 2.
The proof of the Theorem is now complete. As a corollary we obtain the

(well-known) result

COROLLARY. Let G be a p-soluble group. If every subgroup of G which can be
generated by two elements has p-length one then G has p-length one.

PROOF. This follows easily, as in the sequence of laws there are only two
variables.
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4. An example

One might ask why we have taken the particular sequence \k. Should we not
rather look for a simpler sequence such as for example

ak(x,y)=[x,ky'*]m">

Again, a result similar to Lemma 1 holds. The proof of this is virtually the same.
But, unfortunately, there are ^-soluble groups of /^-length two which satisfy
almost all laws ak(x,y) = 1. For/? = 2 the symmetric group of degree four is an
example. We shall now construct a series of examples for each prime p.

EXAMPLE. Let q be a prime with q = 1 (mod/>) and let X be the nonabelian
group of order pq. Then X has a faithful and irreducible representation over
GF(p). Let G be the splitting extension of this module M by X. By construction,
CM(Oq(X)) = 1. Hence Opq(G) is a Frobenius group and all elements different
from 1 in Opq(G) have orderp or q.

Now let x,y e G be given. If 1 ¥=yM is a />-element in G/M then all
y^M ¥= 1 and so all elements [x, ky

1^]^ M or [x.^"*] G M. In the first case
the above remark shows that the order of [x, ky "*] is q. So ak(x, y) = 1 for all k.
In the second case [x, y™*} and^"* both lie in ap-Sylow subgroup and for large
enough k we have [x, ky

m*] — 1.
If 1 ¥=yM is a ^-element in G/M we get y™* G M for almost all k. Then we

have [x, y1"*] G M and finally [x, 2y
m*] = 1. This shows that G satisfies almost

all laws ak(x,y) = 1. But lp(G) = 2.
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