
Forum of Mathematics, Pi (2022), Vol. 10:e19 1–53
doi:10.1017/fmp.2022.13

RESEARCH ARTICLE

On genus one mirror symmetry in higher dimensions and the
BCOV conjectures
Dennis Eriksson1, Gerard Freixas i Montplet2 and Christophe Mourougane3

1Chalmers University of Technology and University of Gothenburg, Department of Mathematics, Sweden;
E-mail: dener@chalmers.se.
2CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, France; E-mail: gerard.freixas@imj-prg.fr.
3Université de Rennes 1, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France;
E-mail: christophe.mourougane@univ-rennes1.fr.

Received: 16 June 2020; Revised: 11 May 2022; Accepted: 18 June 2022

2020 Mathematics Subject Classification: Primary – 14J32, 14J33, 58J52; Secondary – 32G20

Abstract
The mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (BCOV) proposed, in a seminal article from 1994,
a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of
the Grothendieck–Riemann–Roch theorem, we offer a mathematical description of the BCOV conjecture at genus
one. As an application of the arithmetic Riemann–Roch theorem of Gillet–Soulé and our previous results on the
BCOV invariant, we establish this conjecture for Calabi–Yau hypersurfaces in projective spaces. Our contribution
takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples
of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang–Lu–
Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a
Chowla–Selberg type theorem expressing it in terms of special Γ-values for certain Calabi–Yau manifolds with
complex multiplication.

To Jean-Pierre Demailly, in memoriam.
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1. Introduction

The purpose of this article is to establish higher-dimensional cases of genus one mirror symmetry,
as envisioned by mathematical physicists Bershadsky–Cecotti–Ooguri–Vafa (henceforth abbreviated
BCOV) in their influential paper [BCOV94]. We relate the generating series of genus one Gromov–
Witten invariants on Calabi–Yau hypersurfaces to an invariant of a mirror family built out of holomorphic
analytic torsions. The invariant, whose existence was conjectured in [BCOV94], was mathematically
defined and studied in our previous paper [EFiMM21]. We refer to it as the BCOV invariant 𝜏BCOV.
In dimension 3, the construction of the BCOV invariant and its relation to mirror symmetry were
established by Fang–Lu–Yoshikawa [FLY08], relying on previous results by [Zin08, Zin09].

Our approach parallels the Kodaira–Spencer formulation of the Yukawa coupling in genus zero and
can be recast as a refined version of the Grothendieck–Riemann–Roch theorem à la Deligne [Del87].
We hope this point of view will also be inspiring to study higher genus Gromov–Witten invariants and
the B-side of mirror symmetry in dimension 3. In this setting, the A-side has received a lot of attention
recently.

1.1. The classical BCOV conjecture at genus one

Let X be a Calabi–Yau manifold of dimension n. In this article, this will mean a complex projective
connected manifold with trivial canonical sheaf. We now briefly recall the BCOV program at genus one.

On the one hand, on what is referred to as the A-side, we consider enumerative invariants associated
to X. For this, recall first that for every curve class 𝛽 in 𝐻2(𝑋,Z), there is a proper Deligne–Mumford
stack of stable maps from genus g curves to X, whose fundamental class is 𝛽:

M𝑔 (𝑋, 𝛽) = { 𝑓 : 𝐶 → 𝑋 | 𝑔(𝐶) = 𝑔, 𝑓 stable and 𝑓∗ [𝐶] = 𝛽} .

The virtual dimension of this stack can be computed to be (see [Beh97], in particular the introduction)∫
𝛽
𝑐1 (𝑋) + (dim(𝑋) − 3) (1 − 𝑔) = (dim(𝑋) − 3) (1 − 𝑔).
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Whenever dim(𝑋) = 3 or 𝑔 = 1, this is of virtual dimension 0, and one can consider the Gromov–Witten
invariants

GW𝑔 (𝑋, 𝛽) = deg [M𝑔 (𝑋, 𝛽)]
vir ∈ Q.

Since the main focus of our paper is higher dimensions, we henceforth impose 𝑔 = 1. One then defines
the formal power series

𝐹𝐴
1 (𝜏) =

−1
24

∫
𝑋

c𝑛−1 (𝑋) ∩ 2𝜋𝑖𝜏 +
∑
𝛽>0

GW1(𝑋, 𝛽)𝑒
2𝜋𝑖 〈𝜏,𝛽〉 , (1.1)

where 𝜏 belongs to the complexified Kähler cone1 H𝑋 , and 𝛽 runs over the nonzero effective curve
classes.

On the other hand, on what is referred to as the B-side, BCOV introduced a spectral quantity F𝐵
1

built out of holomorphic Ray–Singer analytic torsions of a mirror Calabi–Yau manifold 𝑋∨. It depends
on an auxiliary choice of a Kähler structure 𝜔 on 𝑋∨ and can be recast as

F𝐵
1 (𝑋∨, 𝜔) =

∏
0≤𝑝,𝑞≤𝑛

(detΔ 𝑝,𝑞

𝜕
) (−1) 𝑝+𝑞 𝑝𝑞 ,

where detΔ 𝑝,𝑞

𝜕
is the 𝜁-regularised determinant of the Dolbeault Laplacian acting on 𝐴𝑝,𝑞 (𝑋∨). In

our previous work [EFiMM21], we normalised this quantity to make it independent of the choice
of 𝜔:

𝜏BCOV(𝑋
∨) = 𝐶 (𝑋∨, 𝜔) · F𝐵

1 (𝑋∨, 𝜔),

for some explicit constant 𝐶 (𝑋∨, 𝜔). Thus 𝜏BCOV(𝑋
∨) only depends on the complex structure of the

Calabi–Yau manifold, in accordance with the philosophy that the B-model only depends on variations
of the complex structure on 𝑋∨.

Mirror symmetry predicts that given X, there is a mirror family of Calabi–Yau manifolds over a
punctured multi-disc around the origin 𝜑 : X ∨ → D× = (D×)𝑑 , with maximally unipotent monodromies
and 𝑑 = ℎ1,1 (𝑋) = ℎ1 (𝑇𝑋∨).2 Here we denoted by 𝑋∨ any member of the mirror family. The A-side and
B-side should be related by a distinguished biholomorphism onto its image D× → H𝑋 , which is referred
to as the mirror map and is denoted 𝑞 ↦→ 𝜏(𝑞). The mirror map sends the origin of the multi-disc to
infinity. Fixing a basis of ample classes on X, we can think of it as a change of coordinates on D×. In
the special case of 𝑑 = 1, one such a map is constructed as a quotient of carefully selected periods in
[Mor93].

BCOV conjecture at genus one. Let X be a Calabi–Yau manifold and 𝜑 : X ∨ → D× a mirror family
as above:

1. There is a procedure called passing to the holomorphic limit to extract from 𝜏BCOV(X ∨
𝑞 ) as 𝑞 → 0 a

holomorphic function 𝐹𝐵
1 (𝑞).

2. The functions 𝐹𝐴
1 and 𝐹𝐵

1 are related via the mirror map by

𝐹𝐵
1 (𝑞) = 𝐹𝐴

1 (𝜏(𝑞)).

Passing to the holomorphic limit is often interpreted as considering a Taylor expansion of 𝜏BCOV(X ∨
𝑞 )

in 𝜏(𝑞) and 𝜏(𝑞) and keeping the holomorphic part. In this article, we will instead use a procedure
based on degenerations of Hodge structures.

1If K𝑋 denotes the Kähler cone of X, we define H𝑋 as 𝐻 1,1
R

(𝑋 )/𝐻 1,1
Z

(𝑋 ) + 𝑖K𝑋 .
2Such families are also called large complex structure limits of Calabi–Yau manifolds.
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1.2. Grothendieck–Riemann–Roch formulation of the BCOV conjecture at genus one

The purpose of this subsection is to formulate a version of the BCOV conjecture producing the holo-
morphic function 𝐹𝐵

1 without any reference to spectral theory, holomorphic anomaly equations or
holomorphic limits. Our formulation parallels the Hodge theoretic approach to the Yukawa coupling
in 3-dimensional genus zero mirror symmetry: the key ingredients going into its construction are the
Kodaira–Spencer mappings between Hodge bundles and canonical trivialisations of those.

To state a simplified form of our conjecture, we need to introduce the BCOV line bundle
𝜆BCOV(X ∨/D×) of the mirror family 𝜑 : X ∨ → D×. The BCOV line of a Calabi–Yau manifold 𝑋∨

is defined to be

𝜆BCOV(𝑋
∨) =

⊗
0≤𝑝,𝑞≤𝑛

det𝐻𝑞 (𝑋∨,Ω𝑝
𝑋∨)

(−1) 𝑝+𝑞 𝑝 .

For a family of Calabi–Yau manifolds, it glues together into a holomorphic line bundle on the base.
Also, we denote by 𝜒 the Euler characteristic of any fibre of 𝜑 and by 𝐾X ∨/D× the relative canonical
bundle.

Refined BCOV conjecture at genus one. Let X be a Calabi–Yau manifold and 𝜑 : X ∨ → D× a mirror
family as in §1.1:

1. There exists a natural isomorphism of line bundles,

GRR : 𝜆BCOV(X ∨/D×)⊗12𝜅 ∼
−→ 𝜑∗(𝐾X ∨/D×)⊗𝜒𝜅 , (1.2)

together with natural trivialising sections of both sides. Here 𝜅 is a nonzero integer that only depends
on the relative dimension of 𝜑.

2. In the natural trivialisations, the isomorphism GRR can be expressed as a holomorphic function,
which when written as exp

(
(−1)𝑛𝐹𝐵

1 (𝑞)
)24𝜅 satisfies

𝐹𝐵
1 (𝑞) = 𝐹𝐴

1 (𝜏(𝑞)).

The existence of some isomorphism as in (1.2) is provided by the Grothendieck–Riemann–Roch
theorem in Chow theory, the key point of the conjecture being the naturality requirement. In fact, an in-
fluential program by Deligne [Del87] suggests that the codimension one part of the usual Grothendieck–
Riemann–Roch equality can be lifted to a base change invariant isometry of line bundles when equipped
with natural metrics. An intermediate version of this exists via the arithmetic Riemann–Roch theorem of
Gillet–Soulé [GS92], which provides an equality of isometry classes of hermitian line bundles. Properly
interpreted, this establishes a link between the BCOV invariant and a metric evaluation of (1.2).

A more detailed treatment of the formulation of the conjecture is given in Section 6, and examples
related to the existing literature are also discussed. We focus on mirror families with a strong degeneration
property formalised by Deligne in [Del] and expressed as a Hodge–Tate condition on the limiting
Hodge structures of all the cohomology groups. In this case, from general principles in the theory of
degenerations of Hodge structures, we can indeed construct natural trivialisations of the line bundles
in (1.2).

1.3. Main results

In this subsection, we discuss the framework and statements of our results. For Calabi–Yau hypersurfaces
in projective space, our main theorem settles the BCOV conjecture and its refinement.

Let X be a Calabi–Yau hypersurface in P𝑛
C

, with 𝑛 ≥ 4. Its complexified Kähler cone is one-
dimensional, induced by restriction from that of the ambient projective space. The mirror family
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𝑓 : Z → 𝑈 can be realised using a crepant resolution of the quotient of the Dwork pencil

𝑥𝑛+1
0 + . . . + 𝑥𝑛+1

𝑛 − (𝑛 + 1)𝜓𝑥0 . . . 𝑥𝑛 = 0, 𝜓 ∈ 𝑈 = C \ 𝜇𝑛+1 (1.3)

by the subgroup of GL𝑛+1 (C) given by 𝐺 =
{
𝑔 · (𝑥0, . . . , 𝑥𝑛) = (𝜉0𝑥0, . . . , 𝜉𝑛𝑥𝑛), 𝜉

𝑛+1
𝑖 = 1,

∏
𝜉𝑖 = 1

}
.

Moreover, 𝑓 : Z → 𝑈 can be naturally extended across 𝜇𝑛+1 to a degeneration with ordinary double
point singularities, sometimes referred to as a conifold degeneration.

The monodromy around 𝜓 = ∞ is maximally unipotent, and the properties of the limiting Hodge
structure can be used to define a natural flag of homology cycles. Using this, we can produce natural
holomorphic trivialisations 𝜂𝑘 , in a neighbourhood of𝜓 = ∞, of the determinants of the primitive Hodge
bundles det(𝑅𝑘 𝑓∗Ω𝑛−1−𝑘

Z/𝑈
)prim.3 These holomorphic trivialisations have unipotent lower triangular period

matrices. These sections have natural 𝐿2 norms given by Hodge theory. The product ⊗𝑛−1
𝑘=0𝜂

(𝑛−1−𝑘) (−1)𝑛−1

𝑘
is the essential building block of a natural frame 𝜂BCOV of 𝜆BCOV(Z/𝑈).

Finally, let𝐹𝐴
1 (𝜏(𝜓)) be the generating series defined as in (1.1) for a general Calabi–Yau hypersurface

𝑋 ⊂ P𝑛
C

. Here 𝜓 ↦→ 𝜏(𝜓) is the mirror map. Then our main result (Theorem 5.9 and Theorem 6.13) can
be stated as follows:4

Main Theorem. Let 𝑛 ≥ 4. Consider a Calabi–Yau hypersurface 𝑋 ⊂ P𝑛
C

and the mirror family
𝑓 : Z → 𝑈 above.

1. In a neighbourhood of infinity, the BCOV invariant of 𝑍𝜓 factors as

𝜏BCOV(𝑍𝜓) = 𝐶
���exp

(
(−1)𝑛−1𝐹𝐵

1 (𝜓)
)��� 4 ���

‖𝜂0‖
𝜒 (𝑍𝜓)/12
L2

‖𝜂BCOV‖L2

���
2

,

where 𝐹𝐵
1 (𝜓) is a multivalued holomorphic function with 𝐹𝐵

1 (𝜓) = 𝐹𝐴
1 (𝜏(𝜓)) as formal series in 𝜓,

and C is a positive constant;
2. Up to a constant, the refined BCOV conjecture at genus one is true for X and its mirror family, with

the choices of trivialising sections 𝜂BCOV and 𝜂0.

Actually, the theorem also holds in the case of cubic curves (as follows from §1.5) and quartic
surfaces. We also show, more generally, in Proposition 6.14 that the refined BCOV conjecture holds, up
to a constant, for 𝐾3 surfaces.

The first part of the theorem extends to arbitrary dimensions previous work of Fang–Lu–Yoshikawa
[FLY08, Thm. 1.3] in dimension 3. In their approach, all the Hodge bundles have geometric meaning in
terms of Weil–Petersson geometry and Kuranishi families. The lack thereof is an additional complication
in our setting.

To our knowledge, our theorem is the first complete example of higher-dimensional mirror symmetry,
of BCOV type at genus one, established in the mathematics literature. It confirms various instances that
had informally been utilised for computational purposes, such as [KP08, Sec. 6] in dimension 4.

We remark that there is an alternative approach to the BCOV theory, in arbitrary genera, provided
by Costello and Li, described in their preprint [CL12]. It would be interesting to compare the results in
this article with their program.

1.4. Overview of proof of the main theorem

Arithmetic Riemann–Roch
In the algebro-geometric setting, the arithmetic Riemann–Roch theorem from Arakelov theory allows
us to compute the BCOV invariant of a family of Calabi–Yau varieties in terms of 𝐿2 norms of auxiliary

3The primitive Hodge bundle (𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/𝑈

)prim is actually of rank one if 2𝑘 ≠ 𝑛 − 1.
4To facilitate the comparison with the BCOV conjecture, notice that X now has dimension 𝑛 − 1 instead of n.
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sections of Hodge bundles. This bypasses some arguments in former approaches, such as [FLY08],
based on the holomorphic anomaly equation (see [EFiMM21, Prop. 5.9]). It determines the BCOV
invariant up to a meromorphic function – in fact, a rational function.5 The divisor of this rational
function is encapsulated in the asymptotics of the 𝐿2 norms and the BCOV invariant. In the special
case when the base is a Zariski open set of P1

C
, as for the Dwork pencil (1.3) and the mirror family, this

divisor is determined by all but one point. Hence so is the function itself, up to constant. The arithmetic
Riemann–Roch theorem simultaneously allows us to establish the existence of an isomorphism GRR
as in (1.2).

Hodge bundles of the mirror family
The construction of the auxiliary sections is first of all based on a comparison of the Hodge bundles
of the mirror family with the G-invariant part of the Hodge bundles on the Dwork pencil in (1.3),
explained in Section 3. Using the residue method of Griffiths, we construct algebraic sections of the
latter. These are then transported into sections 𝜂𝑘 of the Hodge bundles of the crepant resolution: that
is, the mirror family. This leads us to a systematic geometric study of these sections in connection with
Deligne extensions and limiting Hodge structures at various key points, notably at 𝜇𝑛+1, where ordinary
double point singularities arise. We rely heavily on knowledge of the Yukawa coupling and our previous
work in [EFiMM21, Sec. 2] on logarithmic Hodge bundles and semi-stable reduction. The arguments
are elaborated in Section 4.

Asymptotics of 𝑳2 norms and the BCOV invariant
The above arithmetic Riemann–Roch reduction leads us to study the norm of the auxiliary sec-
tions outside of the maximally unipotent monodromy point, enabling us to focus on ordinary dou-
ble points. Applying our previous result [EFiMM21, Thm. 4.4] to the auxiliary sections, we find that
the behaviour of their 𝐿2 norms is expressed in terms of monodromy eigenvalues and the possible
zeros or poles as determined by the geometric considerations of the preceding paragraph. The
monodromy is characterised by the Picard–Lefschetz theorem. As for the asymptotics for the
BCOV invariant, they were already accomplished in [EFiMM21, Thm. B]. This endeavor results in
Theorem 5.1, which is a description of the rational function occurring in the arithmetic Riemann–Roch
theorem.

Connection to enumerative geometry
The BCOV conjecture suggests that we need to study the BCOV invariant close to 𝜓 = ∞. However, the
formula in Theorem 5.1 is not adapted to the mirror symmetry setting: for example, the sections 𝜂𝑘 do
not make any reference to 𝐻𝑛−1

lim . We proceed to normalise the 𝜂𝑘 by dividing by holomorphic periods,
for a fixed basis of the weight filtration on the homology (𝐻𝑛−1)lim, to obtain the sections 𝜂𝑘 of the main
theorem. Rephrasing Theorem 5.1 with these sections, we thus arrive at an expression for the 𝐹𝐵

1 in
the theorem. Combined with results of Zinger [Zin08, Zin09], this yields the relation to the generating
series of Gromov–Witten invariants in the mirror coordinate. Lastly, the refined BCOV conjecture is
deduced in this case through a reinterpretation of the BCOV invariant and the arithmetic Riemann–Roch
theorem.

1.5. Applications to Kronecker limit formulas

Classical first Kronecker limit formula
The simplest Calabi–Yau varieties are elliptic curves, which can conveniently be presented asC/(Z+𝜏Z),
for 𝜏 in the Poincaré upper half-plane. The generating series in (1.1) of Gromov–Witten invariants is
then given by − 1

24 logΔ (𝜏), where Δ (𝜏) = 𝑞
∏
(1 − 𝑞𝑛)24 and 𝑞 = 𝑒2𝜋𝑖𝜏 . The corresponding function

5This rational function compares to the so-called holomorphic ambiguity in the physics literature.
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F𝐵
1 is computed as exp(𝜁 ′𝜏 (0)), where

𝜁𝜏 (𝑠) = (2𝜋)−2𝑠
∑

(𝑚,𝑛)≠(0,0)

(Im 𝜏)𝑠

|𝑚 + 𝑛𝜏 |2𝑠
.

The BCOV conjecture at genus one is deduced from the equality

exp(−𝜁 ′𝜏 (0)) =
1

(2𝜋)2 Im(𝜏) |Δ (𝜏) |1/6. (1.4)

This is a formulation of the first Kronecker limit formula; see, for example, [Yos99, Intro.]. In the
mirror symmetry interpretation, the correspondence 𝜏 ↦→ 𝑞 is the (inverse) mirror map. Equation
(1.4) can be recovered from a standard application of the arithmetic Riemann–Roch theorem. In this
vein, we will interpret all results of this shape as generalisations of the Kronecker limit formula. This
includes the Theorem 5.1 cited above, as well as a Theorem 2.6 for Calabi–Yau hypersurfaces in Fano
manifolds.

Chowla–Selberg formula
While being applicable to algebraic varieties over C, the Riemann–Roch theorem in Arakelov geometry
has the further advantage of providing arithmetic information when the varieties are defined overQ. The
arithmetic Riemann–Roch theorem is suited to evaluating the BCOV invariant of certain arithmetically
defined Calabi–Yau varieties with additional automorphisms. As an example, for the special fibre 𝑍0 of
our mirror family in (1.3), Theorem 7.2 computes the BCOV invariant as a product of special values
of the Γ-function. This is reminiscent of the Chowla–Selberg theorem [SC67], which derives from
(1.4) an expression of the periods of a CM elliptic curve as a product of special Γ-values. Assuming
deep conjectures of Gross–Deligne [Gro78], we would be able to write any BCOV invariant of a CM
Calabi–Yau manifold in such terms.

2. The BCOV invariant and the arithmetic Riemann–Roch theorem

In this section, we describe a general method to express the BCOV invariant of a family of Calabi–Yau
varieties in terms of 𝐿2 norms of rational sections of determinants of Hodge bundles. The approach is
based on the arithmetic Riemann–Roch theorem. As an application, we consider the case of the universal
family of Calabi–Yau hypersurfaces in the projective space.

2.1. Kähler manifolds and 𝑳2 norms

Let X be a compact complex manifold. In this article, a hermitian metric on X means a smooth hermitian
metric on the holomorphic vector bundle 𝑇𝑋 . Let h be a hermitian metric on X. The Arakelov theoretic
Kähler form attached to h is given in local holomorphic coordinates by

𝜔 =
𝑖

2𝜋

∑
𝑗 ,𝑘

ℎ

(
𝜕

𝜕𝑧 𝑗
,
𝜕

𝜕𝑧𝑘

)
𝑑𝑧 𝑗 ∧ 𝑑𝑧𝑘 . (2.1)

We assume that the complex hermitian manifold (𝑋, ℎ) is Kähler: that is, the differential form 𝜔
is closed. The hermitian metric h induces hermitian metrics on the C∞ vector bundles of differential
forms of type (𝑝, 𝑞), which we still denote h. Then the spaces 𝐴𝑝,𝑞 (𝑋) of global sections inherit a 𝐿2

hermitian inner product

ℎL2 (𝛼, 𝛽) =
∫
𝑋
ℎ(𝛼, 𝛽)

𝜔𝑛

𝑛!
. (2.2)
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The coherent cohomology groups 𝐻𝑞 (𝑋,Ω𝑝
𝑋 ) can be computed as Dolbeault cohomology, which

in turn can be computed in 𝐴𝑝,𝑞 (𝑋) by taking 𝜕-harmonic representatives. Via this identification,
𝐻𝑞 (𝑋,Ω𝑝

𝑋 ) inherits a 𝐿2 inner product. Similarly, the hermitian metric h also induces hermitian metrics
on the vector bundles and spaces of complex differential forms of degree k. The complex de Rham
cohomology 𝐻𝑘 (𝑋,C) has an induced 𝐿2 inner product by taking d-harmonic representatives. The
canonical Hodge decomposition

𝐻𝑘 (𝑋,C) �
⊥⊕
𝑝,𝑞

𝐻𝑞 (𝑋,Ω𝑝
𝑋 )

is an isometry for the 𝐿2 metrics.

2.2. The BCOV invariant

We briefly recall the construction of the BCOV invariant [EFiMM21, Sec. 5]. Let X be a Calabi–Yau
manifold of dimension n. Fix a Kähler metric h on X, with Kähler form 𝜔 as in (2.1). Let 𝑇 (Ω𝑝

𝑋 , 𝜔)
be the holomorphic analytic torsion of the vector bundle Ω𝑝

𝑋 of holomorphic differential p-forms
endowed with the metric induced by h and with respect to the Kähler form 𝜔 on X. The BCOV torsion
of (𝑋, 𝜔) is

𝑇 (𝑋, 𝜔) =
∏

0≤𝑝≤𝑛

𝑇 (Ω𝑝
𝑋 , 𝜔)

(−1) 𝑝 𝑝 .

Let Δ 𝑝,𝑞

𝜕
be the Dolbeault Laplacian acting on 𝐴𝑝,𝑞 (𝑋) and detΔ 𝑝,𝑞

𝜕
its 𝜁-regularised determinant

(excluding the zero eigenvalue). Unraveling the definition of holomorphic analytic torsion, we find for
the BCOV torsion

𝑇 (𝑋, 𝜔) =
∏

0≤𝑝,𝑞≤𝑛

(detΔ 𝑝,𝑞

𝜕
) (−1) 𝑝+𝑞 𝑝𝑞 .

It depends on the choice of the Kähler metric. A suitable normalisation makes it independent of choices.
For this purpose, we introduce two real-valued quantities. For the first one, let 𝜂 be a basis of 𝐻0(𝑋, 𝐾𝑋 ),
and define as in [FLY08, Sec. 4]:

𝐴(𝑋, 𝜔) = exp
(
−

1
12

∫
𝑋
(log 𝜑)c𝑛 (𝑇𝑋 , ℎ)

)
, with 𝜑 =

𝑖𝑛
2
𝜂 ∧ 𝜂

‖𝜂‖2
L2

𝑛!
(2𝜋𝜔)𝑛

. (2.3)

For the second one, we consider the largest torsion-free quotient of the cohomology groups 𝐻𝑘 (𝑋,Z),
denoted by 𝐻𝑘 (𝑋,Z)nt. These are lattices in the real cohomology groups 𝐻𝑘 (𝑋,R). The latter have
euclidean structures induced from the 𝐿2 inner products on the 𝐻𝑘 (𝑋,C). We define volL2 (𝐻𝑘 (𝑋,Z), 𝜔)
to be the square of the covolume of the lattice 𝐻𝑘 (𝑋,Z)nt with respect to this euclidean structure, and
we put

𝐵(𝑋, 𝜔) =
∏

0≤𝑘≤2𝑛
volL2 (𝐻𝑘 (𝑋,Z), 𝜔) (−1)𝑘+1𝑘/2. (2.4)

The BCOV invariant of X is then defined to be

𝜏BCOV(𝑋) =
𝐴(𝑋, 𝜔)

𝐵(𝑋, 𝜔)
𝑇 (𝑋, 𝜔) ∈ R>0. (2.5)
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The BCOV invariant depends only on the complex structure of X [EFiMM21, Prop. 5.8]. The definition
in (2.5) differs from that of [EFiMM21, Def. 5.7] by a factor (2𝜋)𝑛2𝜒 (𝑋 )/2 due to the different choice of
normalisation of the 𝐿2 metric:

〈𝛼, 𝛽〉 =
∫
𝑋
ℎ(𝛼, 𝛽)

(2𝜋𝜔)𝑛

𝑛!
.

2.3. The arithmetic Riemann–Roch theorem

In this subsection, we work over an arithmetic ring. This means an excellent regular domain A together
with a finite set Σ of embeddings 𝜎 : 𝐴 ↩→ C, closed under complex conjugation. For example, A could
be a number field with the set of all its complex embeddings, or the complex field C. Denote by K the
field of fractions of A.

Let X be an arithmetic variety: that is, a regular, integral, flat and quasi-projective scheme over A.
For every embedding 𝜎 : 𝐴 ↩→ C, the base change 𝑋𝜎 = 𝑋 ×𝐴,𝜎 C is a quasi-projective and smooth
complex variety whose associated analytic space 𝑋an

𝜎 is therefore a quasi-projective complex manifold.
It is convenient to define 𝑋an as the disjoint union of the 𝑋an

𝜎 , indexed by 𝜎. For instance, when A is a
number field, then 𝑋an is the complex analytic space associated to X as an arithmetic variety over Q.
Differential geometric objects on 𝑋an such as line bundles, differential forms, metrics and so on may
equivalently be seen as collections of corresponding objects on the 𝑋an

𝜎 . The complex conjugation
induces an anti-holomorphic involution on 𝑋an, and it is customary in Arakelov geometry to impose
some compatibility of the analytic data with this action. Let us now recall the definitions of the arithmetic
Picard and first Chow groups of X.

Definition 2.1. A smooth hermitian line bundle on X consists in a pair (𝐿, ℎ), where

• L is a line bundle on X.
• h is a smooth hermitian metric on the holomorphic line bundle 𝐿an on 𝑋an deduced from L, in-

variant under the action of the complex conjugation. Hence, h is a conjugation invariant collection
{ℎ𝜎}𝜎 : 𝐴→C, where ℎ𝜎 is a smooth hermitian metric on the holomorphic line bundle 𝐿an

𝜎 on 𝑋an
𝜎

deduced from L by base change and analytification.

The set of isomorphism classes of hermitian line bundles (𝐿, ℎ), with the natural tensor product
operation, is a commutative group denoted by P̂ic(𝑋) and called the arithmetic Picard group of X.

Definition 2.2. The first arithmetic Chow group ĈH
1
(𝑋) of X is the commutative group

• generated by arithmetic divisors – that is, couples (𝐷, 𝑔𝐷) – where D is a Weil divisor on X and 𝑔𝐷
is a Green current for the divisor 𝐷an, compatible with complex conjugation. Hence, by definition,
𝑔𝐷 is a degree 0 current on 𝑋an that is a 𝑑𝑑𝑐-potential for the current of integration 𝛿𝐷an

𝑑𝑑𝑐 𝑔𝐷 + 𝛿𝐷an = [𝜔𝐷],

up to some smooth differential (1, 1) form 𝜔𝐷 on 𝑋an.
• with relations

(
div(𝜙), [− log |𝜙|2]

)
for nonzero rational functions 𝜙 on X.

The arithmetic Picard and first Chow groups are related via the first arithmetic Chern class

ĉ1 : P̂ic(𝑋) → ĈH
1
(𝑋),

which maps a hermitian line bundle (𝐿, ℎ) to the class of the arithmetic divisor
(
div(ℓ), [− log ‖ℓ‖2

ℎ]
)
,

where ℓ is any nonzero rational section of L. This is in fact an isomorphism. We refer the reader to
[GS90b, Sec. 2] for a complete discussion.

More generally, Gillet–Soulé developed a theory of arithmetic cycles and Chow rings [GS90a],
an arithmetic K-theory and characteristic classes [GS90b, GS90c] and an arithmetic Riemann–Roch
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theorem [GS92]. While for the comprehension of the theorem below only ĈH
1
, P̂ic and ĉ1 are needed,

the proof uses all this background, for which we refer to the above references.
Let now 𝑓 : X → 𝑆 be a smooth projective morphism of arithmetic varieties of relative dimension n,

with generic fibre 𝑋∞. To simplify the exposition, we assume that 𝑆 → Spec 𝐴 is surjective and has
geometrically connected fibres. In particular, we assume that 𝑆an

𝜎 is connected for every embedding 𝜎.
More importantly, we suppose that the fibres 𝑋𝑠 are Calabi–Yau, and hence they satisfy 𝐾𝑋𝑠 = O𝑋𝑠 .
We define the BCOV line bundle on S as the determinant of cohomology of the virtual vector bundle∑

𝑝 (−1) 𝑝𝑝Ω𝑝
X /𝑆

: that is, in additive notation for the Picard group of S

𝜆BCOV(X /𝑆) =
𝑛∑

𝑝=0
(−1) 𝑝𝑝𝜆(Ω𝑝

X /𝑆
) =

∑
𝑝,𝑞

(−1) 𝑝+𝑞 𝑝 det 𝑅𝑞 𝑓∗Ω
𝑝
X /𝑆

. (2.6)

If there is no possible ambiguity, we will sometimes write 𝜆BCOV instead of 𝜆BCOV(X /𝑆).
For the following statement, we fix an auxiliary conjugation invariant Kähler metric h on 𝑇X an . We

denote by 𝜔 the associated Kähler form, normalised according to the conventions in Arakelov theory
as in (2.1). We assume that the restriction of 𝜔 to fibres (still denoted by 𝜔) has a rational cohomology
class. All the 𝐿2 metrics below are computed with respect to 𝜔 as in (2.2). Depending on the Kähler
metric, the line bundle 𝜆BCOV carries a Quillen metric ℎQ

ℎQ,𝑠 = 𝑇 (𝑋𝑠 , 𝜔) · ℎL2 ,𝑠 .

Following [EFiMM18, Def. 4.1] and [EFiMM21, Def. 5.2], the Quillen-BCOV metric on 𝜆BCOV is defined
by multiplying ℎQ by the correcting factor A in (2.3): for every 𝑠 ∈ 𝑆an, we put

ℎQ,BCOV,𝑠 = 𝐴(𝑋𝑠 , 𝜔) · ℎQ,𝑠 .

It is shown in [EFiMM18, Sec. 4.1] and [EFiMM21, Sec. 5.2] that the Quillen-BCOV metric is actually
a smooth hermitian metric, independent of the choice of 𝜔. Besides, according to [EFiMM21, Def. 5.4],
one defines the 𝐿2-BCOV metric on 𝜆BCOV by

ℎL2 ,BCOV,𝑠 = 𝐵(𝑋𝑠 , 𝜔) · ℎL2 ,𝑠 , (2.7)

where ℎL2 stands for the combination of 𝐿2-metrics on the Hodge bundles and B was introduced in
(2.4). In [EFiMM21, Prop. 4.2], we showed that the function 𝑠 ↦→ 𝐵(𝑋𝑠 , 𝜔) is actually locally constant
and that ℎL2 ,BCOV is a smooth hermitian metric, independent of the choice of 𝜔. Notice that the BCOV
invariant defined in (2.5) can then be written as the quotient of the Quillen-BCOV and 𝐿2-BCOV
metrics:

𝜏BCOV(𝑋𝑠) =
ℎQ,BCOV,𝑠

ℎL2 ,BCOV,𝑠
. (2.8)

Theorem 2.3. Under the above assumptions, there is an equality in ĈH
1
(𝑆)Q = ĈH

1
(𝑆) ⊗ Q

ĉ1(𝜆BCOV, ℎQ,BCOV) =
𝜒(𝑋∞)

12
ĉ1 ( 𝑓∗𝐾X /𝑆 , ℎL2 ). (2.9)

Hence, for any complex embedding 𝜎, any rational section 𝜂 of 𝑓∗𝐾X /𝑆 , any rational section 𝜂𝑝,𝑞 of
det 𝑅𝑞 𝑓∗Ω

𝑝
X /𝑆

, we have an equality of functions on 𝑆an
𝜎

log 𝜏BCOV,𝜎 = log |Δ |2𝜎 +
𝜒(𝑋∞)

12
log ‖𝜂‖2

L2 ,𝜎
−

∑
0≤𝑝,𝑞≤𝑛

(−1) 𝑝+𝑞 𝑝 log ‖𝜂𝑝,𝑞 ‖
2
L2 ,𝜎

+ log𝐶𝜎 , (2.10)
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where

• Δ ∈ 𝐾 (𝑆)× ⊗Z Q.
• 𝐶𝜎 ∈ 𝜋𝑟Q>0, where 𝑟 = 1

2
∑
(−1)𝑘+1𝑘2𝑏𝑘 and 𝑏𝑘 is the kth Betti number of 𝑋∞.

Proof. The proof is a routine application of the arithmetic Riemann–Roch theorem of Gillet–Soulé
[GS92, Thm. 7]. We give the details for the convenience of the reader. Consider the virtual vector
bundle

∑
(−1) 𝑝𝑝Ω𝑝

X /𝑆
, with virtual hermitian structure deduced from the metric h and denoted ℎ•. Its

determinant of cohomology 𝜆BCOV carries the Quillen metric ℎQ. The theorem of Gillet–Soulé provides
an equality in ĈH

1
(𝑆)Q

ĉ1(𝜆BCOV, ℎQ) = 𝑓∗

(
ĉh(

∑
(−1) 𝑝𝑝Ω𝑝

X /𝑆
), ℎ•)T̂d(𝑇X /𝑆 , ℎ)

) (1)
− 𝑎

(
ch(

∑
(−1) 𝑝𝑝Ω𝑝

X an/𝑆an) Td(𝑇X an/𝑆an )𝑅(𝑇X an/𝑆an )
) (1)

=
1
12

𝑓∗
(̂
c1(𝐾X /𝑆 , ℎ

∗)̂c𝑛 (𝑇X /𝑆 , ℎ)
)
, (2.11)

where ℎ∗ = (det ℎ)−1 is the hermitian metric on 𝐾X /𝑆 induced from h. Notice that the topological factor
containing the R-genus in (2.11) vanishes in our situation since

ch
(∑

(−1) 𝑝𝑝Ω𝑝
X an/𝑆an

)
Td(𝑇X an/𝑆an ) = −c𝑛−1 +

𝑛

2
c𝑛 −

1
12

c1c𝑛 + higher-degree terms,

and R has only odd degree terms and c1 (𝑇X an/𝑆an) = 0. Now the evaluation map 𝑓 ∗ 𝑓∗𝐾X /𝑆 → 𝐾X /𝑆 is
an isomorphism, but it is in general not an isometry if we equip 𝑓∗𝐾X /𝑆 with the 𝐿2 metric and 𝐾X /𝑆

with the metric ℎ∗. Comparing both metrics yields a relation in ĈH
1
(X )

ĉ1(𝐾X /𝑆 , ℎ
∗) = 𝑓 ∗ĉ1 ( 𝑓∗𝐾X /𝑆 , ℎL2) + [(0,− log 𝜑)] . (2.12)

Here 𝜑 is the smooth function on 𝑋an given by

𝜑 =
𝑖𝑛

2
𝜂 ∧ 𝜂

‖𝜂‖2
L2

𝑛!
(2𝜋𝜔)𝑛

,

where 𝜂 denotes a local trivialisation of 𝑓∗𝐾X an/𝑆an , thought of as a section of 𝐾X an/𝑆an via the evaluation
map. Multiplying (2.12) by ĉ𝑛 (𝑇X /𝑆 , ℎ) and applying 𝑓∗ and the projection formula for arithmetic Chow
groups, we find

𝑓∗
(̂
c1 (𝐾X /𝑆 , ℎ

∗)̂c𝑛 (𝑇X /𝑆 , ℎ)
)
= 𝑓∗

(
𝑓 ∗ĉ1( 𝑓∗𝐾X /𝑆 , ℎL2 )̂c𝑛 (𝑇X /𝑆 , ℎ)

)
+ 𝑓∗

(
[(0,− log 𝜑)]̂c𝑛 (𝑇X /𝑆 , ℎ)

)
= 𝜒(𝑋∞)̂c1( 𝑓∗𝐾X /𝑆 , ℎL2 ) +

[(
0,−

∫
X an/𝑆an

(log 𝜑)c𝑛 (𝑇X an/𝑆an , ℎ)

)]
,

where c𝑛 (𝑇X /𝑆 , ℎ) is the nth Chern–Weil differential form of (𝑇X an/𝑆an , ℎ). Together with (2.11), this
shows that the metric

ℎQ,BCOV = ℎQ · exp
(
−

1
12

∫
X an/𝑆an

(log 𝜑)c𝑛 (𝑇X an/𝑆an , ℎ)

)
indeed satisfies (2.9).

The outcome of (2.10) is a translation of the meaning of the equality in (2.9) in ĈH
1
(𝑆)Q in terms of

the constructions in (2.8) and (2.7).
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By [EFiMM21, Prop. 4.2], the normalising factor B is constant on each connected manifold 𝑆an
𝜎 and

would be rational if the 𝐿2 inner products on cohomology groups were computed with ℎ/2𝜋.
With this understood, we find

volL2 (𝐻𝑘 (𝑋𝑠 ,Z), 𝜔) ∈ (2𝜋)−𝑘𝑏𝑘Q×
>0 (2.13)

for any 𝑠 ∈ 𝑆an
𝜎 . Together with the definition of B in (2.4), this is responsible for the

constants 𝐶𝜎 . �

Remark 2.4.
1. The use of the arithmetic Riemann–Roch theorem requires an algebraic setting but directly yields the

existence of the rational function Δ . By contrast, previous techniques (see, e.g., [FLY08, Sections
7 & 10]) rely on subtle integrability estimates of the functions in (2.10) to ensure that the a priori
pluriharmonic function log |Δ |2𝜎 is indeed the logarithm of a rational function. The arithmetic
Riemann–Roch theorem further provides the field of definition of Δ and the constants 𝐶𝜎 .

2. In the case of a Calabi–Yau 3-fold defined over a number field, similar computations were done by
Maillot–Rössler [MR12, Sec. 2].

2.4. Kronecker limit formulas for families of Calabi–Yau hypersurfaces

In this section, we give an example of the use of Theorem 2.3, and we determine the BCOV invariant
for families of Calabi–Yau hypersurfaces in Fano manifolds. The argument provides a simplified model
for the later computation of the BCOV invariant of the mirror family of Calabi–Yau hypersurfaces.

Let V be a complex Fano manifold with very ample anti-canonical bundle −𝐾𝑉 . We consider the anti-
canonical embedding of V into |−𝐾𝑉 | = P(𝐻0 (𝑉,−𝐾𝑉 )) � P

𝑁 , whose smooth hyperplane sections are
Calabi–Yau manifolds. The dual projective space P̌ = P(𝐻0 (𝑉,−𝐾𝑉 )

∨) � P̌𝑁 parametrises hyperplane
sections and contains an irreducible subvariety Δ ⊆ P̌ that corresponds to singular such sections
[GKZ08, Chap. 1, Prop. 1.3]. We assume that Δ is a hypersurface in P̌. This is in general not true,
and a necessary condition is proven in [GKZ08, Chap. 1, Cor. 1.2]. Denote by U the quasi-projective
complement 𝑈 := P̌ \ Δ . Denote by 𝑓 : X → P̌ the universal family of hyperplane sections. Therefore f
is smooth on U, and the corresponding BCOV line bundle 𝜆BCOV is thus defined on U.
Lemma 2.5. For some positive integer m, the line bundles ( 𝑓∗𝐾X /𝑈 )⊗𝑚 and 𝜆⊗𝑚

BCOV have trivialising
sections. These are unique up to constants.
Proof. A standard computation shows that Pic(𝑈) = Z/degΔ , providing the first claim of the lemma.
For the second assertion, for any of the line bundles under consideration, let 𝜃 and 𝜃 ′ be two trivialisations
on U. Therefore, 𝜃 = ℎ𝜃 ′ for some invertible function h on U. The previous description of Pic(𝑈) shows
that the divisor of h, as a rational function on P̌, is supported on Δ . As Δ is irreducible, in the projective
space P̌ this is only possible if the divisor vanishes. We conclude that h is necessarily constant. �

For the following statement, we need a choice of auxiliary Kähler metric on X (restricted to U),
whose Arakelov theoretic Kähler form has fibrewise rational cohomology class. We compute 𝐿2 norms
on Hodge bundles and on 𝜆BCOV with respect to this choice.
Theorem 2.6. For some integer 𝑚 > 0 as in the lemma, let 𝛽 be a trivialisation of 𝜆⊗𝑚

BCOV and 𝜂
a trivialisation of ( 𝑓∗𝐾X /𝑈 )⊗𝑚. Then there is a global constant C such that, for any Calabi–Yau
hyperplane section 𝑋𝐻 = 𝑉 ∩ 𝐻, we have

𝜏BCOV(𝑋𝐻 ) = 𝐶‖𝜂‖
𝜒/6𝑚
L2 ‖𝛽‖−2/𝑚

L2 .

Proof. We apply Theorem 2.3 to 𝑓 : X → 𝑈 (over C), which in terms of 𝛽 and 𝜂 becomes

𝑚 log 𝜏BCOV(𝑋𝐻 ) = log |𝑔 |2 +
𝜒

12
log ‖𝜂‖2

L2 − log ‖𝛽‖2
L2 + log𝐶
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for some regular invertible function g on U and some constant C. By construction, as a rational function
on P̌, g must have its zeros or poles along Δ . Since Δ is irreducible, this forces g to be constant. �

Remark 2.7.

1. When V is a toric variety with very ample anti-canonical class, all of the constructions can
be done over the rational numbers. The sections 𝛽 and 𝜂 can be taken to be defined over Q
and unique up to a rational number. With this choice, the constant C takes the form stated in
Theorem 2.3.

2. In the case when the discriminant Δ has higher codimension, we have Pic(𝑈) � Pic(P̌). In particular,
𝜆BCOV uniquely extends to a line bundle P̌. The existence of the canonical (up to constant) trivialisations
𝛽 and 𝜂 is no longer true. However, one can propose a variant of the theorem where 𝛽 and 𝜂 are
trivialisations outside a chosen ample divisor in P̌.

3. The Dwork and mirror families, and their Hodge bundles

The main object of interest in this section is the mirror family of Calabi–Yau hypersurfaces. It is obtained
from the Dwork pencil of Calabi–Yau varieties by first modding out by a group of generic symmetries
and then performing a crepant resolution. We study the structure of the Hodge bundles of the mirror
family. In the even dimension, we show that the primitive Hodge bundles in the middle degree can
be decomposed into two direct factors. One will be seen to be constant in Section 4, and the other
one is called the minimal part. For the latter, we construct explicit trivialisations via Griffiths’ residue
method.

Throughout, our arguments combine analytic and algebraic aspects of the same geometric objects.
Except when there is a risk of confusion, we won’t make any distinction in the notations between an
algebro-geometric object and its analytification. Likewise, we won’t specify the field of definition of
various algebraic varieties and schemes. However, we will precisely indicate the category where the
statements take place.

3.1. The geometry of the Dwork family

We review general facts on the Dwork pencil of Calabi–Yau hypersurfaces and the construction of an
equivariant normal crossings model. Initially, we work with algebraic varieties over the field of complex
numbers. Rationality refinements will be made along the way.

Let 𝑛 ≥ 4 be an integer. The Dwork pencil X → P1 is defined by the hypersurface of P𝑛 × P1 of the
equation

𝐹𝜓 (𝑥0, . . . , 𝑥𝑛) :=
𝑛∑
𝑗=0

𝑥𝑛+1
𝑗 − (𝑛 + 1)𝜓𝑥0 . . . 𝑥𝑛 = 0, [𝑥0 : 𝑥1 : . . . : 𝑥𝑛] ∈ P𝑛, 𝜓 ∈ P1.

The smooth fibres of this family are Calabi–Yau manifolds of dimension 𝑛 − 1. The singular
fibres are

• Fibre at 𝜓 = ∞, given by the divisor with normal crossings 𝑥0 · . . . · 𝑥𝑛 = 0.
• The fibres where 𝜓𝑛+1 = 1. These fibres have ordinary double point singularities. The singular points

have projective coordinates (𝑥0, . . . , 𝑥𝑛) with 𝑥0 = 1 and 𝑥𝑛+1
𝑗 = 1 for all 𝑗 ≥ 1, and

∏
𝑗 𝑥 𝑗 = 𝜓−1.

Denote by 𝜇𝑛+1 the group of the (𝑛 + 1)th roots of unity. Let K be the kernel of the multiplication
map 𝜇𝑛+1

𝑛+1 → 𝜇𝑛+1. Let also Δ be the diagonal embedding of 𝜇𝑛+1 in K and 𝐺 := 𝐾/Δ . The group G
acts naturally on the fibres 𝑋𝜓 of X → P1 by multiplication of the projective coordinates.

The above constructions can be realised as schemes over Q. Indeed, 𝐹𝜓 is already defined over Q,
and the groups K, Δ are finite algebraic groups over Q, and hence so does the quotient G. The action
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of G on 𝐹𝜓 is defined over Q as well, as one can see by examining the compatibility with the action of
Aut(C/Q) on the C points of X or alternatively by writing the coaction at the level of algebras.

The following argument was provided to us by Nicholas Shepherd-Barron, whom we warmly thank
for letting us include it in our article.

Proposition 3.1. The family X → P1 admits a G-equivariant projective normal crossings model
X ′ → P1, with X ′ nonsingular, which is semi-stable at 𝜓 = ∞ and defined over Q.

Proof. Outside of the singular points, there is nothing to modify. The points corresponding to or-
dinary double point singularities are provided by the affine equations 𝑥0 = 1 and 𝑥𝑛+1

𝑗 = 1 for
𝑗 ≥ 1, and blowing up along the corresponding locus of X provides a normal crossings model.
The locus of ordinary double points is defined over Q and is G-equivariant and thus so is also the
blowup.

We next consider our family at the point at infinity. Introduce the divisor𝐷0 inP𝑛 given by
∑

𝑗 𝑥
𝑛+1
𝑗 = 0

and the divisor 𝐷∞ =
∑

𝑗 𝐻 𝑗 , where 𝐻 𝑗 is the hyperplane cut out by 𝑥 𝑗 = 0. The axis of the pencil
X → P1 is 𝐷0 ∩ 𝐷∞ and hence X = Bl𝐷0∩𝐷∞

(P𝑛). We construct another model by blowing up P𝑛
in 𝐷0 ∩ 𝐻0 to get X1. Continue to blow up the strict transform of 𝐷0 in X1 intersected by the strict
transform of 𝐻1, and so on. Each such blowup is a blowup in a smooth centre that is G-equivariant.
The final result is a G-equivariant X̃ projective manifold with an equivariant morphism 𝜈 : X̃ → P𝑛.
Denote by 𝐷0 (respectively, 𝐷∞) the strict transforms of 𝐷0 (respectively, 𝐷∞). By construction they are
disjoint, and computation shows that 𝜈∗𝐷0 ∼ 𝐷0 +

∑
𝐸𝑖 and 𝜈∗(𝐷∞) ∼ 𝐷∞ +

∑
𝐸𝑖 , where the 𝐸𝑖 denote

the strict transforms of the exceptional divisors. Since 𝐷0 − 𝐷∞ is the divisor of a rational function,
hence linearly equivalent to zero, and 𝐷∞ is disjoint from 𝐷0, we find a morphism 𝑝 : X̃ → P1 such
that 𝑝−1 (∞) = 𝐷∞ and 𝑝−1 (0) = 𝐷0. This is the searched for semi-stable model at infinity. From the
local description, we also see that 𝜈−1(𝐷0 ∩ 𝐷∞) =

∑
𝐸𝑖 that is principal, so that X̃ → P1 factors over

X → P1.
All of the above constructions can be defined over Q, and taking them together with the previous

considerations with the ordinary double points provides a model X ′ → P1 as in the statement of the
proposition. �

3.2. The mirror family

The first step towards the construction of a mirror family is the formation of the quotient Y = X /𝐺. As
the action of G on X is defined over Q, the space Y and projection map Y → P1 are also. The following
lemma shows that except for the fibre at infinity, this is a family of singular Calabi–Yau varieties with
mild singularities.

Lemma 3.2. The total space of the restricted family Y → A1 has rational Gorenstein singularities. It
has a relative canonical line bundle 𝐾Y/A1 obtained by descent from 𝐾X /A1 .

Proof. To lighten notations, let us write in this proof X and Y for the corresponding restrictions to A1.
The total space X is nonsingular, and Y is a quotient of it by the action of a finite group. Therefore, Y
has rational singularities. In particular, it is normal and Cohen–Macaulay. Consequently, if Y 𝑛𝑠 is the
nonsingular locus of Y and 𝑗 : Y 𝑛𝑠 ↩→ Y the open immersion, then we have a relation between relative
dualising sheaves 𝑗∗𝜔Y𝑛𝑠/A1 = 𝜔Y/A1 . We will use this below.

Now for the Gorenstein property and the descent claim. Notice that since A1 is nonsingular, Y is
Gorenstein if and only if the fibres of Y → A1 are Gorenstein. We will implicitly confound both the
absolute and relative points of view. We introduce X ◦ the complement of the fixed locus of G and X ∗

the smooth locus of X → A1. These are G-invariant open subschemes of X and constitute an open
cover because the ordinary double points in the fibres of X → A1 are disjoint from the fixed point locus
of G. Then Y◦ = X ◦/𝐺 and Y∗ = X ∗/𝐺 form an open cover of Y , and it is enough to proceed for each
one separately.
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Since G acts freely on X ◦, the quotient Y◦ is nonsingular and is therefore Gorenstein. The morphism
X ◦ → Y◦ is étale, and hence 𝐾X ◦/A1 descends to 𝐾Y◦/A1 .

For Y∗, we observe that G preserves a relative holomorphic volume form on X ∗. Indeed, in affine
coordinates 𝑧𝑘 = 𝑥𝑘

𝑥 𝑗
on the open set 𝑥 𝑗 ≠ 0, and where 𝜕𝐹𝜓/𝜕𝑧𝑖 ≠ 0, the expression

𝜃0 =
(−1)𝑖−1𝑑𝑧0 ∧ . . . 𝑑𝑧𝑖 ∧ . . . ∧ 𝑑𝑧 𝑗 ∧ . . . ∧ 𝑑𝑧𝑛

𝜕𝐹𝜓/𝜕𝑧𝑖

���
𝐹𝜓=0

(3.1)

provides such an invariant relative volume form. This entails that 𝐾X ∗/A1 descends to an invertible sheaf
K on Y∗. Now the singular locus of Y∗ is contained in the image of the fixed point set of G on X ∗.
We infer that K is an invertible extension of the relative canonical bundle of (Y∗)𝑛𝑠 → A1. But Y∗ is
normal so that K � 𝑗∗ 𝑗

∗K. Then as mentioned at the beginning of the proof, 𝑗∗𝜔Y𝑛𝑠/A1 = 𝜔Y/A1 , and
we conclude, since K is also an extension of 𝜔Y𝑛𝑠/A1 . �

Because the BCOV invariant has not been fully developed for Calabi–Yau orbifolds (see nevertheless
[Yos17] for some three-dimensional cases), we need crepant resolutions of the varieties 𝑌𝜓 . This needs
to be done in families so that the results of §2.3 apply. The family of crepant resolutions Z → P1 that we
exhibit will be called the mirror family, although it is not unique. We also have to address the rationality
of the construction.

Lemma 3.3. There is a projective birational morphism Z → Y of algebraic varieties over Q, such
that

1. Z is smooth.
2. If 𝜓𝑛+1 = 1, the fibre 𝑍𝜓 has a single ordinary double point singularity.
3. If 𝜓 = ∞, 𝑍∞ is a simple normal crossings divisor in Z .
4. Otherwise, 𝑍𝜓 → 𝑌𝜓 is a crepant resolution of singularities. In particular, 𝑍𝜓 is a smooth Calabi–

Yau variety.
5. The smooth complex fibres 𝑍𝜓 are mirror to the 𝑋𝜓 in that their Hodge numbers satisfy

ℎ𝑝,𝑞 (𝑍𝜓) = ℎ𝑛−1−𝑝,𝑞 (𝑋𝜓). In particular, the smooth 𝑍𝜓 are Calabi–Yau with 𝜒(𝑍𝜓) = (−1)𝑛−1

𝜒(𝑋𝜓).

Proof. The proof of (1)–(4) is based on [DHZ98, Sec. 8 (v)], [DHZ06] and [BG14, Prop. 3.1], together
with Hironaka’s resolution of singularities. We recall the strategy to justify the existence of a model
over Q.

Introduce 𝑊 = P𝑛/𝐺. We claim this is a split toric variety over Q. First of all, it can be realised as
the hypersurface in P𝑛+1

Q
of equation

𝑊 : 𝑦𝑛+1
0 =

𝑛+1∏
𝑗=1

𝑦 𝑗 .

Second, the associated torus is split over Q. It is actually given by Gm Q × T, where T is the kernel of
the multiplication map G𝑛+1

m Q → Gm Q. Finally, the action of the torus on W is defined over Q:

((𝑡0, 𝑡1, . . . , 𝑡𝑛+1), (𝑦0, 𝑦1, . . . , 𝑦𝑛+1)) ↦→ (𝑡0𝑦0, 𝑡0𝑡1𝑦1, . . . , 𝑡0𝑡𝑛+1𝑦𝑛+1).

Once we know that W is a split toric variety over Q with the same equation as in [DHZ06, Application
5.5], the toric and crepant projective resolution exhibited in [DHZ06] automatically works over Q as
well. We write 𝑊 for this resolution of W.

We now consider Y as a closed integral Q-subscheme of 𝑊 × P1. Let Ỹ be the strict transform of Y
in 𝑊 × P1. By [DHZ98, Sec. 8 (v)], the fibres of Ỹ at 𝜓 ∈ C \ 𝜇𝑛+1 are projective crepant resolutions
of the fibres 𝑌𝜓 . In particular, Ỹ is smooth over C \ 𝜇𝑛+1, and in turn this implies smoothness over
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the complement U of the closed subscheme 𝑉 (𝜓𝑛+1 − 1) of A1
Q

. Necessarily, the fibres of Ỹ over U
have trivial canonical bundle as well. For the fibres at 𝜓𝑛+1 = 1, the claim of the lemma requires two
observations:

• The ordinary double points of 𝑋𝜓 are permuted freely and transitively by G and are identified to a
single point in the quotient 𝑌𝜓 . This entails that the total space Y is nonsingular in a neighbourhood
of these points and that they remain ordinary double points of Y → P1.

• The centre of the toric resolution is disjoint from the ordinary double points since it is contained in the
locus of P𝑛/𝐺 where two or more projective coordinates vanish. Therefore, the morphism Ỹ → Y is
an isomorphism in a neighbourhood of these points. Finally, on the complement, Ỹ𝜓 is a resolution
of singularities of 𝑌𝜓 . Indeed, this is a local question in a neighbourhood of the fixed points of G so
that the above references [DHZ98, DHZ06] still apply.

Finally, Ỹ is by construction smooth on the complement of the fibre 𝜓 = ∞. After a resolution
of singularities given by blowups with smooth centres in 𝑌∞ (defined over Q), we obtain a smooth
algebraic variety Z over Q such that 𝑍∞ is a simple normal crossings divisor in Z . This sets
(1–4).

For (5), we refer for instance to [BD96, Thm. 6.9, Conj. 7.5 & Ex. 8.7]. This is specific to
the Dwork pencil. More generally, we can cite work of Yasuda, who proves an invariance prop-
erty of orbifold Hodge structures (and hence orbifold Hodge numbers) under crepant resolutions,
for quotient Gorenstein singularities [Yas04, Thm. 1.5]. Orbifold Hodge numbers coincide with
stringy Hodge numbers of global (finite) quotient orbifolds, whose underlying group respects a
holomorphic volume form [BD96, Thm. 6.14]. Finally, by [BB96, Thm. 4.15], stringy Hodge num-
bers satisfy the expected mirror symmetry property for the mirror pairs constructed by Batyrev
[Bat94]. �

From the proof of Lemma 3.3, we keep the notation𝑈 ⊂ P1 for the smooth locus of the mirror family
𝑓 : Z → P1. For later use, we record the following lemma.

Lemma 3.4. Let ℎ𝑝,𝑞 be the rank of the Hodge bundle 𝑅𝑞 𝑓∗Ω
𝑝
Z/𝑈

. Then

• ℎ𝑝,𝑞 = 1 if 𝑝 + 𝑞 = 𝑛 − 1 and 𝑝 ≠ 𝑞.
• ℎ𝑝,𝑝 =

∑𝑝
𝑗=0 (−1) 𝑗

(𝑛+1
𝑗

) ( (𝑝+1− 𝑗)𝑛+𝑝
𝑛

)
+ 𝛿2𝑝,𝑛−1.

• ℎ𝑝,𝑞 = 0 otherwise.

In particular,

𝜒(𝑍𝜓) = (−1)𝑛−1𝜒(𝑋𝜓) = (−1)𝑛−1
(
(−𝑛)𝑛+1 − 1

𝑛 + 1
+ 𝑛 + 1

)
.

Proof. The items are a consequence of the mirror symmetry property for the Hodge numbers in
Lemma 3.3 and the computation of the cohomology of a hypersurface in projective space (see [BD96,
Ex. 8.7]). �

Definition 3.5. The point ∞ ∈ P1 is called the MUM point of the family 𝑓 : Z → P1. The points 𝜉 ∈ P1

with 𝜉𝑛+1 = 1 are called the ODP points.

The terminology MUM stands for Maximally Unipotent Monodromy, and it will be justified later in
Lemma 4.3. The terminology ODP stands for Ordinary Double Point.
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3.3. Generalities on Hodge bundles

We gather general facts on the Hodge bundles of our families of Calabi–Yau varieties, summarised in
the following diagram:

X
𝜌

�� ℎ

��

Z
crepant

𝜋 ��

𝑓 ��

Y = X /𝐺
𝑔

���
��

��
��

��

P1.

(3.2)

Recall the notation U for the Zariski open subset of P1 where f (respectively, h) is smooth. When it is
clear from the context, we will still write X , Y and Z for the total spaces of the fibrations restricted to
U. Otherwise, we add an index U to mean the restriction to U. We let Y◦ be the nonsingular locus of
Y𝑈 . It is the étale quotient of X ◦, the complement in X𝑈 of the fixed point set of G. They are both open
subsets whose complements have codimension ≥ 2.

In this subsection, most of the arguments take place in the complex analytic category.

Hodge bundles in arbitrary degree
Our discussion is based on a minor adaptation of [Ste77, Sec. 1] to the relative setting. First of
all, we observe that the higher direct images 𝑅𝑘𝑔∗C are locally constant sheaves, and actually
𝑅𝑘𝑔∗C � (𝑅𝑘ℎ∗C)

𝐺 . Indeed, we have the equality CY = (𝜌∗CX )𝐺 . Moreover, since G is finite, so
is 𝜌, and taking G-invariants is an exact functor in the category of sheaves of C[𝐺]-modules. A spectral
sequence argument allows us to conclude. Similarly, one has 𝑅𝑘𝑔∗Q � (𝑅𝑘ℎ∗Q)

𝐺 .
Let now Ω̃•

Y/𝑈
be the relative holomorphic de Rham complex of Y → 𝑈, in the orbifold sense. It

is constructed as follows. If 𝑗 : Y◦ ↩→ Y𝑈 is the open immersion, then we let Ω̃•
Y𝑈

:= 𝑗∗Ω•
Y◦ , and we

derive the relative version Ω̃•
Y/𝑈

out of it in the usual manner. An equivalent presentation is

Ω̃•
Y/𝑈 = (𝜌∗Ω

•
X /𝑈 )𝐺 .

The complex Ω̃•
Y/𝑈

is a resolution of 𝑔−1O𝑈 . Hence its kth relative hypercohomology computes
(𝑅𝑘𝑔∗C) ⊗ O𝑈 and satisfies

𝑅𝑘𝑔∗Ω̃
•
Y/𝑈 � (𝑅𝑘ℎ∗Ω

•
X /𝑈 )𝐺 (3.3)

compatibly with 𝑅𝑘𝑔∗C � (𝑅𝑘ℎ∗C)
𝐺 . It has a Hodge filtration and a Gauss–Manin connection defined

in the usual way, satisfying a relationship analogous to (3.3). Equipped with this extra structure, 𝑅𝑘𝑔∗Q
defines a variation of pure rational Hodge structures of weight k.

In [Ste77, Lemma 1.11], a canonical identification Ω̃•
Y𝑈

= 𝜋∗Ω•
Z𝑈

is established. It induces a natural
morphism

Ω̃•
Y/𝑈 −→ 𝜋∗(Ω

•
Z/𝑈 ). (3.4)

The restriction of (3.4) to Y◦ is given by pulling back differential forms. We derive a natural map

(𝑅𝑘ℎ∗Ω
•
X /𝑈 )𝐺 � 𝑅𝑘𝑔∗Ω̃

•
Y/𝑈 −→ 𝑅𝑘 𝑓∗Ω

•
Z/𝑈 , (3.5)
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which is an injective morphism of variations of pure Hodge structures of weight k (see [Ste77, Cor.
1.5]). It is in particular compatible with restricting to the fibres and remains injective on those. It can be
checked to be compatible with the topological Q-structures, and hence we have an injective morphism
of variations of rational Hodge structures over U

(𝑅𝑘ℎ∗Q)
𝐺 ↩→ 𝑅𝑘 𝑓∗Q. (3.6)

Notice that at this stage, the compatibility of (3.5) with the algebraic geometricQ-structure has not been
addressed. This will be studied in later subsections.

Hodge bundles in the middle degree
In the case 𝑘 = 𝑛 − 1, considering the isotypical components of the action of G on 𝑅𝑛−1ℎ∗C, we have a
direct sum decomposition,

𝑅𝑛−1ℎ∗C = (𝑅𝑛−1ℎ∗C)
𝐺 ⊕ EC, where EC =

⊕
𝜒 : 𝐺→C×

𝜒�1

(𝑅𝑛−1ℎ∗C)𝜒 . (3.7)

This decomposition is easily seen to be orthogonal for the intersection form on 𝑅𝑛−1ℎ∗C. In particular,
the restriction of the intersection form to (𝑅𝑛−1ℎ∗C)

𝐺 is nondegenerate, and Poincaré duality holds
for 𝑅𝑛−1𝑔∗C � (𝑅𝑛−1ℎ∗C)

𝐺 . Notice that the orthogonal of (𝑅𝑛−1ℎ∗Q)
𝐺 in 𝑅𝑛−1ℎ∗Q defines a rational

structure on EC, and hence (3.7) can be refined rationally.
We next relate the intersection forms of (𝑅𝑛−1ℎ∗Q)

𝐺 and 𝑅𝑛−1 𝑓∗Q. Before the first statement in this
direction, we recall from Lemma 3.2 that Y𝑈 is Gorenstein and 𝐾X /𝑈 descends to the relative canonical
bundle 𝐾Y/𝑈 .
Lemma 3.6.
1. Ω̃𝑛−1

Y/𝑈
is the relative canonical bundle 𝐾Y/𝑈 .

2. The natural morphism 𝑅𝑛−1𝑔∗Ω̃•
Y/𝑈

−→ 𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

induces a commutative diagram

𝑅𝑞𝑔∗Ω̃
𝑝
Y/𝑈

⊗ 𝑅𝑛−1−𝑞𝑔∗Ω̃
𝑛−1−𝑝
Y/𝑈

��

��

𝑅𝑛−1𝑔∗𝐾Y/𝑈

tr

���
��

��
��

��
�

O𝑈

𝑅𝑞 𝑓∗Ω
𝑝
Z/𝑈

⊗ 𝑅𝑛−1−𝑞 𝑓∗Ω
𝑛−1−𝑝
Z/𝑈

�� 𝑅𝑛−1 𝑓∗𝐾Z/𝑈

tr

������������

3. The natural isomorphism 𝑅𝑛−1𝑔∗Ω̃•
Y/𝑈

� (𝑅𝑛−1ℎ∗Ω•
X /𝑈

)𝐺 induces a commutative diagram

𝑅𝑞𝑔∗Ω̃
𝑝
Y/𝑈

⊗ 𝑅𝑛−1−𝑞𝑔∗Ω̃
𝑛−1−𝑝
Y/𝑈

��
� �

��

𝑅𝑛−1𝑔∗𝐾Y/𝑈� �

��

tr �� O𝑈

|𝐺 | ·

��

𝑅𝑞ℎ∗Ω
𝑝
X /𝑈

⊗ 𝑅𝑛−1−𝑞ℎ∗Ω
𝑛−1−𝑝
X /𝑈

�� 𝑅𝑛−1ℎ∗𝐾X /𝑈
tr �� O𝑈

Proof. For the first property, we notice that 𝜌∗𝐾Y/𝑈 = 𝐾X /𝑈 , since both coincide outside a codimension
≥ 2 closed subset and X𝑈 is smooth. Then we have the string of equalities

Ω̃𝑛−1
Y/𝑈 = (𝜌∗𝐾X /𝑈 )𝐺 = (𝐾Y/𝑈 ⊗ 𝜌∗OX𝑈 )

𝐺 = 𝐾Y/𝑈 ⊗ (𝜌∗OX𝑈 )
𝐺 = 𝐾Y/𝑈 .

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.13


Forum of Mathematics, Pi 19

For the first diagram, only the commutativity of the triangle requires a justification. For this, we rely
on general facts in duality theory. Our references are stated in the algebraic category. Corresponding
complex analytic properties are obtained by analytification. With this understood, the commutativity of
the triangle is a consequence of the three following facts: i) the transitivity of trace maps with respect
to the composition of morphisms [Har66, Thm. 10.5 (TRA1)], ii) the crepant resolution property
𝜋∗𝐾Y/𝑈 = 𝐾Z/𝑈 and iii) Y𝑈 has rational singularities so that 𝑅𝜋∗OZ𝑈 = OY𝑈 . The argument is
similar for the second diagram. Briefly, one combines i) the transitivity of trace maps, ii) the duality
𝜌∗𝐾X𝑈 /Y𝑈 = HomOY𝑈

(𝜌∗OX𝑈 ,OY𝑈 ) and iii) the trace tr : 𝜌∗𝐾X𝑈/Y𝑈 → OY𝑈 is given by 𝜑 ↦→ 𝜑(1)
[Har66, proof of Prop. 6.5], and the composite map

𝐾Y/𝑈 −→ 𝜌∗𝐾X /𝑈 = 𝐾Y/𝑈 ⊗ 𝜌∗𝐾X𝑈/Y𝑈

id ⊗ tr
−→ 𝐾Y/𝑈

is the multiplication by |𝐺 |. This is clear over Y◦ since it is the étale quotient of X ◦ by G. It is then
necessarily true everywhere. �

Proposition 3.7. Let Q be the intersection form on 𝑅𝑛−1 𝑓∗Q and 𝑄 ′ the intersection form on 𝑅𝑛−1ℎ∗Q.
Then via the injection in (3.6), we have 𝑄 = 1

|𝐺 |
𝑄 ′ on (𝑅𝑛−1ℎ∗Q)

𝐺 .

Proof. It is enough to check the relationship after extending the scalars to C, in which case we can use
the Hodge decomposition. The proposition then follows from Lemma 3.6 and the fact that in the middle
degree, the intersection form is induced by the cohomological cup product and the trace map. We notice
that in dimension 𝑛 − 1, the topological and complex geometric trace maps differ by a factor (2𝜋𝑖)𝑛−1,
but this is inconsequential for the problem at hand. �

Remark 3.8.

1. In the case of direct images of relative canonical sheaves, the discussion in the proof of Lemma 3.6
reduces to the chain of isomorphisms of line bundles

(ℎ∗𝐾X /𝑈 )𝐺
∼

−→ 𝑔∗𝐾Y/𝑈
∼

−→ 𝑓∗𝐾Z/𝑈 . (3.8)

We leave it to the reader to check that these are the natural morphisms already defined in the algebraic
category over Q.

2. Because of Proposition 3.7, and for the purposes of this article, it is natural to scale the intersection
form on (𝑅𝑛−1ℎ∗Q)

𝐺 as 1
|𝐺 |

𝑄 ′. This will be of minor importance below.

3.4. The Kodaira–Spencer maps and the Yukawa coupling

Recall that for a general variation of Hodge structures (H,F •) on a complex manifold X, Grif-
fiths transversality entails that the Gauss–Manin connection factors as an O𝑋 -linear morphism
F 𝑝/F 𝑝+1 →

(
F 𝑝−1/F 𝑝

)
⊗ Ω1

𝑋 . This is the Kodaira–Spencer map, and in the setting of 𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

,
we also write it in the form

KS(𝑞) : 𝑇𝑈 −→ HomO𝑈 (𝑅𝑞 𝑓∗Ω
𝑛−1−𝑞
Z/𝑈

, 𝑅𝑞+1 𝑓∗Ω
𝑛−2−𝑞
Z/𝑈

). (3.9)

A repeated application of the Kodaira–Spencer maps gives a morphism

𝑌 : Sym𝑛−1 𝑇𝑈 −→ HomO𝑈 ( 𝑓∗𝐾Z/𝑈 , 𝑅
𝑛−1 𝑓∗OZ ) � ( 𝑓∗𝐾Z/𝑈 )⊗−2. (3.10)

We can explicitly evaluate the morphism Y in terms of the sections 𝜓𝑑/𝑑𝜓 of 𝑇𝑈 and the section
𝜃0 of (ℎ∗𝐾X /𝑈 )𝐺 � 𝑓∗𝐾Z/𝑈 (see (3.8)) constructed in (3.1). Then the morphism Y identifies with a
rational function on U, denoted 𝑌 (𝜓). This is the definition of the so-called (unnormalised) Yukawa
coupling.
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Working with (𝑅𝑛−1ℎ∗Ω•
X /𝑈

)𝐺 instead, one similarly defines a function 𝑌 (𝜓). Via the morphism
in (3.5), the functions 𝑌 (𝜓) and 𝑌 (𝜓) can be compared. The only subtle point to bear in mind is the
use of Serre duality in the definition of the Yukawa coupling. For Hodge bundles of complementary
bi-degree, Serre duality is induced by the cup-product and the trace morphism. Hence, an application
of Lemma 3.6 shows that 𝑌 (𝜓) and 𝑌 (𝜓) are equal up to the order of G. With this understood,
we can invoke the computation of the Yukawa coupling in [BvS95, Cor. 4.5.6 & Ex. 4.5.7], which
summarises to

𝑌 (𝜓) =
∫
𝑋𝜓

(
𝜃0 ∧ ∇𝑛−1

𝜓𝑑/𝑑𝜓𝜃0

)
= 𝑐

𝜓𝑛−1

1 − 𝜓𝑛+1 , (3.11)

for some irrelevant constant 𝑐 ≠ 0. To ease the comparison with the expression in [BvS95], we make
the following observations. First, their factor 𝜆𝑧 is 1/𝜓𝑛+1. Secondly, their evaluation of Y amounts to
working with the section 𝜓𝜃0 instead of 𝜃0.

3.5. The middle degree Hodge bundles

We now further compare the middle degree Hodge bundles of the Dwork pencil ℎ : X → 𝑈 and that
of the mirror 𝑓 : Z → 𝑈 by drawing on specific features of these families. We introduce primitivity
notions for the relative Hodge bundles induced by any projective factorisation of f and the natural
projective embedding of h. Observe that the latter is G-equivariant and defined over Q. We also require
the polarisation for Z → 𝑈 to be defined over Q. Then the primitive Hodge bundles are defined in the
algebraic category over Q.

Construction of sections
We begin by constructing explicit sections of the middle degree Hodge bundles of ℎ : X → 𝑈 via
Griffiths’ residue method [Gri69].

Our reasoning starts in the complex analytic category. Denote by 𝐻 = 𝑥0 · 𝑥1 · . . . · 𝑥𝑛 and
Ω =

∑
(−1)𝑖𝑥𝑖𝑑𝑥0 ∧ . . . ∧ 𝑑𝑥𝑖 ∧ . . . ∧ 𝑑𝑥𝑛 ∈ 𝐻0(P𝑛,Ω𝑛

P𝑛
(𝑛 + 1)). For 𝜓 ∈ 𝑈, the residue along 𝑋𝜓

𝜃𝑘 = res𝑋𝜓

(
𝑘!𝐻𝑘Ω

𝐹𝑘+1
𝜓

)
defines a G-invariant element of 𝐻𝑛−1(𝑋𝜓), still denoted 𝜃𝑘 . For 𝑘 = 0, this indeed agrees with the
holomorphic volume form in (3.1). Varying 𝜓 gives us sections of 𝑅𝑛−1ℎ∗Ω•

X /𝑈
, also denoted by 𝜃𝑘 .

The constructed sections are primitive by [Gri69, Thm. 8.3].
From the definition of the sections 𝜃𝑘 , one can check the following recurrence:

∇𝑑/𝑑𝜓 𝜃𝑘 = res𝑋𝜓

(
𝜕

𝜕𝜓

(
𝑘!𝐻𝑘Ω

𝐹𝑘+1
𝜓

))
= (𝑛 + 1)𝜃𝑘+1. (3.12)

Lemma 3.9.

1. For 𝑘 = 0, . . . , 𝑛 − 1, we have

𝜃𝑘 ∈ 𝐹𝑛−1−𝑘𝐻𝑛−1(𝑋𝜓)
𝐺
prim.

Moreover, the spaces 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)
𝐺
prim are all one-dimensional, and the image of 𝜃𝑘 in

𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)
𝐺
prim is a basis for 𝜓 ∈ 𝑈. In particular, the local system (𝑅𝑛−1ℎ∗Q)

𝐺
prim is of rank n.

2. The sections 𝜃𝑘 trivialise (𝑅𝑛−1ℎ∗Ω•
X /𝑈

)𝐺prim outside of 0 and are algebraic and defined over Q.
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Proof. For the first item, the spaces 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)
𝐺
prim are necessarily one-dimensional, which follows

from a computation in the case of Fermat hypersurfaces; see [DMOS82, p. 82, Rmk. 7.5]. For the rest
of (1), we use Griffiths’ description of the Hodge filtration of a hypersurface in terms of residues of
rational forms, reviewed in [Voi07, Chap. 6].

By [Voi07, Thm. 6.10], we indeed have for 𝑘 = 0, . . . , 𝑛 − 1, 𝜃𝑘 ∈ 𝐹𝑛−1−𝑘𝐻𝑛−1 (𝑋𝜓)
𝐺
prim. We need

to verify that the projections of the sections 𝜃𝑘 onto 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)
𝐺
prim are everywhere nonzero on U.

The following argument was suggested by the anonymous referee, whom we thank for allowing us to
include it. A detailed study of Griffiths’ residue map – see, for example, [Voi07, Cor. 6.12] – provides
an isomorphism [C[𝑥0, . . . , 𝑥𝑛]/𝐽](𝑛+1) ·𝑘 → 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)prim, where J denotes the Jacobian ideal of
𝑋𝜓 in P𝑛 and the index (𝑛 + 1)𝑘 refers to the homogeneous part of the corresponding degree. Recall the
notation 𝐻 = 𝑥0 · . . . · 𝑥𝑛. Since C[𝑥0, . . . , 𝑥𝑛]

𝐺 = C[𝑥𝑛+1
0 , . . . , 𝑥𝑛+1

𝑛 , 𝐻], we find that[
C[𝑥𝑛+1

0 , . . . , 𝑥𝑛+1
𝑛 , 𝐻]/𝐽𝐺

]
(𝑛+1) ·𝑘 � 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)

𝐺
prim,

where 𝐽𝐺 = 𝐽 ∩ C[𝑥0, . . . , 𝑥𝑛]
𝐺 . A straightforward computation shows that 𝑥𝑛+1

𝑖 ≡
𝜓

𝑛+1𝐻 modulo 𝐽𝐺 ,
so that in fact

C[𝑥𝑛+1
0 , . . . , 𝑥𝑛+1

𝑛 , 𝐻]/𝐽𝐺 � C[𝐻]/𝐽𝐺 .

Now the image of 𝜃𝑘 in 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)
𝐺
prim corresponds to the image of 𝑘!𝐻𝑘 in [C[𝐻]/𝐽𝐺](𝑛+1)𝑘

through the above isomorphisms, and the latter is a generator of [C[𝐻]/𝐽𝐺](𝑛+1)𝑘 , hence nonzero. Thus
the projection of 𝜃𝑘 gives a basis of 𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)

𝐺
prim.

For the second item, we just need to address the second half of the statement. We observe that
the section 𝜃0 of (ℎ∗𝐾X /𝑈 )𝐺 is algebraic and defined over Q. By the algebraic theory of the Gauss–
Manin connection [KO68], we know that the latter preserves the algebraic de Rham cohomology
(𝑅𝑛−1ℎ∗Ω•

X /𝑈
)𝐺prim and is defined over Q. Because the vector field 𝑑/𝑑𝜓 is algebraic and defined over

Q, the claim follows from the recurrence in (3.12). �

Remark 3.10. An alternative approach to the nonvanishing of the projection of the sections 𝜃𝑘 onto
𝐻𝑛−1−𝑘,𝑘 (𝑋𝜓)

𝐺
prim is based on the explicit expression of the Yukawa coupling in (3.11) and the realisation

of the sections 𝜃𝑘 as iterated Gauss–Manin derivatives via (3.12). If either of 𝜃𝑘 have zero projection
for some 𝜓, applying the Kodaira–Spencer map in (3.9) and the recurrence in (3.12), we see that all the
projections of 𝜃𝑘′ with 𝑘 ′ ≥ 𝑘 are also zero at 𝜓. This implies that the Yukawa coupling, divided by
𝜓𝑛−1 to work with the tangent vector 𝑑/𝑑𝜓 instead of 𝜓𝑑/𝑑𝜓, also has a zero at 𝜓. But the expression
in (3.11) divided by 𝜓𝑛−1 has no zeros on U, from which we conclude.

The minimal component of the cohomology
Below, we show that the image of the primitive middle cohomology of the Dwork family under (3.6) is
a direct factor of the cohomology of the mirror. Later, in Lemma 4.2, we will see that the complement
is irrelevant for most considerations.

Lemma 3.11.

1. The natural morphism in (3.6) induces an injective morphism of variations of polarised Hodge
structures over 𝑈an

(𝑅𝑛−1ℎ∗Q)
𝐺
prim↩→(𝑅𝑛−1 𝑓∗Q)prim. (3.13)
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2. The natural morphism

(𝑅𝑛−1ℎ∗Ω
•
X /𝑈 )𝐺prim↩→(𝑅𝑛−1 𝑓∗Ω

•
Z/𝑈 )prim (3.14)

deduced from (3.13) ⊗ O𝑈 an exists in the algebraic category over Q.

Proof. For the proof of (1), it is enough to show that (3.5) restricts to a map between the primitive
cohomologies. It will automatically be compatible with the polarisations, by Proposition 3.7. See
Remark 3.8 (2) regarding the scaling of the intersection forms. By Lemma 3.9, it suffices to check that
the sections 𝜃𝑘 of (𝑅𝑛−1ℎ∗Ω•

X /𝑈
)𝐺prim map into primitive classes. Let 𝜃 ′𝑘 be the image of 𝜃𝑘 under (3.5).

As (3.5) is compatible with Gauss-Manin connections, the 𝜃 ′𝑘 satisfy the analogous recurrence to (3.12).
Because 𝑓∗𝐾Z/𝑈 is primitive and the Gauss–Manin connection preserves primitive cohomology, we see
that the 𝜃 ′𝑘 land in the primitive cohomology.

The claim in (2) is addressed in a similar manner. By Lemma 3.9, we already know that the sections
𝜃𝑘 constitute an algebraic trivialisation of (𝑅𝑛−1ℎ∗Ω•

X /𝑈
)𝐺prim defined over Q. We need to prove that

their images 𝜃 ′𝑘 in (𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

)prim are algebraic and defined over Q as well. This is the case of
𝜃 ′0, because the natural isomorphism (ℎ∗𝐾X /𝑈 )𝐺 � 𝑓∗𝐾Z/𝑈 (see (3.8)) is algebraic and defined over
Q. In this respect, see Remark 3.8 (1). Because the 𝜃 ′𝑘 satisfy the analogous recurrence to (3.12),
and the Gauss–Manin connection and the vector field 𝑑/𝑑𝜓 are algebraic and defined over Q, we
conclude. �

Notice that the image of (𝑅𝑛−1ℎ∗Q)
𝐺
prim under (3.13) is the smallest subvariation of Hodge struc-

tures of 𝑅𝑛−1 𝑓∗Q whose Hodge filtration contains 𝑓∗𝐾Z/𝑈 (see (3.8)). This motivates the following
definition:

Definition 3.12. The image of (𝑅𝑛−1ℎ∗Q)
𝐺
prim in (𝑅𝑛−1 𝑓∗Q)prim under the morphism in (3.13) is denoted

by (𝑅𝑛−1 𝑓∗Q)min and called the minimal component or minimal part. Likewise, we decorate algebraic
variants (see (3.14)) and associated objects by min. For example, this applies to Hodge bundles and
homology constructions.

The next step consists of isolating the complement of the minimal component. In preparation for
the statement, we recall that the topological intersection form on 𝑅𝑛−1 𝑓∗C has a counterpart on the de
Rham cohomology 𝑅𝑛−1 𝑓∗Ω•

Z/𝑈
, which is already defined in the algebraic category over Q. Indeed, the

construction of the latter involves the cohomological cup-product, the graded product structure on the
complex Ω•

Z/𝑈
and the algebraic geometric trace map

𝑅𝑛−1 𝑓∗Ω
•
Z/𝑈 ⊗ 𝑅𝑛−1 𝑓∗Ω

•
Z/𝑈

∪
−→ 𝑅2(𝑛−1) 𝑓∗Ω

•
Z/𝑈 = 𝑅𝑛−1 𝑓∗𝐾Z/𝑈

tr
−→ O𝑈 .

After forming (𝑅𝑛−1 𝑓∗C) ⊗O𝑈 an , the topological and algebraic intersection pairings agree up to a factor
(2𝜋𝑖)𝑛−1, which accounts for the comparison of the trace maps. We are now ready for the next result.

Proposition 3.13 (Minimal decomposition).

1. LetV be the orthogonal of (𝑅𝑛−1 𝑓∗Q)min in (𝑅𝑛−1 𝑓∗Q)prim for the topological intersection form. Then
there is an orthogonal decomposition of variations of polarised rational Hodge structures over 𝑈an

(𝑅𝑛−1 𝑓∗Q)prim = (𝑅𝑛−1 𝑓∗Q)min ⊕ V. (3.15)

Furthermore, we have

V =

{
0 if 𝑛 − 1 is odd,
of pure type

(
𝑛−1

2 , 𝑛−1
2

)
if 𝑛 − 1 is even.
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2. Let V be the orthogonal of (𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

)min in (𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

)prim for the algebraic geometric
intersection form. Then there is a direct sum decomposition of locally free coherent sheaves with
connection over U, in the algebraic category over Q,

(𝑅𝑛−1 𝑓∗Ω
•
Z/𝑈 )prim = (𝑅𝑛−1 𝑓∗Ω

•
Z/𝑈 )min ⊕ V . (3.16)

Furthermore, the analytification of (3.16) is naturally identified with (3.15) ⊗ O𝑈 an .

Proof. We first deal with (1). In the case of 𝑛 − 1 being odd, (𝑅𝑛−1 𝑓∗Q)prim = (𝑅𝑛−1 𝑓∗Q)min, by the
very definition of the minimal component and by Lemma 3.4 and Lemma 3.9. In the case 𝑛 − 1 is
even, we first notice that the intersection pairing is flat for the Gauss–Manin connection and that the
orthogonal complement of a subvariation of rational Hodge structures in a variation of polarised rational
Hodge structures is also a variation of polarised rational Hodge structures. Thus V is a variation of
polarised rational Hodge structures. To obtain the decomposition of (3.15) with the required properties,
we can reduce to the following general fact. Let (𝐻,𝑄) be a polarised Hodge structure over Q, of
weight 2𝑑, and (𝐸,𝑄) a sub-Hodge structure, such that 𝐸 (𝑝,𝑞) = 𝐻 (𝑝,𝑞) for 𝑝 ≠ 𝑞. Let 𝑉 = 𝐸⊥ be the
orthogonal of E for the intersection form Q. Then 𝐻 = 𝐸 ⊕ 𝑉 and V is a Hodge structure over Q, of
pure type (𝑑, 𝑑). To prove this fact, by linear algebra and the nondegeneracy of the intersection form, it
is enough to verify that 𝐸 ∩𝑉 is trivial. Take any element x in the intersection, and decompose it in 𝐻C
according to the bidegree as 𝑥 =

∑
𝑥𝑝,𝑞 . Then 𝑥𝑝,𝑞 ∈ 𝐸𝑞,𝑝 ⊂ 𝐸C. On the other hand, 𝑖𝑝−𝑞𝑄(𝑥, 𝑥𝑝,𝑞) =

𝑖𝑝−𝑞𝑄(𝑥𝑝,𝑞 , 𝑥𝑝,𝑞) ≥ 0, with equality only if 𝑥𝑝,𝑞 = 0. But this is the case since 𝑥 ∈ 𝐸⊥, proving the
decomposition. It follows from the assumption 𝐸 (𝑝,𝑞) = 𝐻 (𝑝,𝑞) for 𝑝 ≠ 𝑞 that the complement is of pure
type (𝑑, 𝑑).

For item (2), we first notice that since (𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

)min and (𝑅𝑛−1 𝑓∗Ω•
Z/𝑈

)prim are locally free
coherent sheaves, so is V . Besides, the algebraic Gauss–Manin connection preserves V since it preserves
the minimal component and the algebraic intersection form is flat. By the compatibility of the topological
and algebraic intersection forms, the analytification of V is canonically identified withV⊗O𝑈 an . For the
validity of the direct sum decomposition, we can reduce to the analytic setting, in which case it follows
from (3.15) ⊗ O𝑈 an . �

Remark 3.14. After Proposition 3.13, and with the conventions adopted in Definition 3.12, for the
homology local systems, we have

(𝑅𝑛−1 𝑓∗Q)
∨
prim = (𝑅𝑛−1 𝑓∗Q)

∨
min ⊕ V

∨. (3.17)

We can thus consider (𝑅𝑛−1 𝑓∗Q)
∨
min as a subsystem of (𝑅𝑛−1 𝑓∗Q)

∨
prim, which in turn can be seen as a

subsystem of the homology local system (𝑅𝑛−1 𝑓∗Q)
∨. This allows us to interpret (𝑅𝑛−1 𝑓∗Q)

∨
min in terms

of homology classes and Poincaré duals of these in terms of integration.

In the application of the arithmetic Riemann–Roch theorem to the BCOV conjecture, we will need
sections of the Hodge bundles rather than the Hodge filtration (see Theorem 2.3). This is the reason
behind the following definition.

Definition 3.15. We define 𝜂◦𝑘 as the trivialising section of (𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/𝑈

)min, deduced from
𝜃𝑘 via the morphism in (3.13) and by projecting to the Hodge bundle. We also define
𝜂𝑘 = −(𝑛 + 1)𝑘+1𝜓𝑘+1𝜂◦𝑘 .

Remark 3.16.

1. By construction, the section 𝜂𝑘 vanishes at order 𝑘 + 1 at 𝜓 = 0.
2. The sections 𝜂𝑘 are algebraic and defined over Q by Lemma 3.9 and Lemma 3.11.
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Lemma 3.17. The sections 𝜂◦𝑘 satisfy the recurrence

KS(𝑘)

(
𝑑

𝑑𝜓

)
𝜂◦𝑘 = (𝑛 + 1)𝜂◦𝑘+1. (3.18)

Consequently,

KS(𝑘)

(
𝜓

𝑑

𝑑𝜓

)
𝜂𝑘 = 𝜂𝑘+1. (3.19)

Proof. The first recurrence follows from (3.12), Lemma 3.11, the link between the Gauss–Manin
connection ∇ and the Kodaira–Spencer maps KS(𝑞) and the definition of 𝜂◦𝑘 . The second recurrence
follows from the first by the very definition of the sections 𝜂𝑘 and the O𝑈 -linearity of the Kodaira–
Spencer maps. �

4. The degeneration of the Hodge bundles of the mirror family

In the previous section, we exhibited explicit trivialising sections of the minimal part of the middle
degree Hodge bundles of the mirror familyZ → 𝑈. The next goal is to extend these sections to the whole
compactification P1. We also address the trivialisation of the Hodge bundles other than the minimal
part and in any degree. For these goals, we exploit the approach to degenerating Hodge structures via
relative logarithmic de Rham cohomology.

4.1. Generalities on geometric degenerations of Hodge structures

We recall some background from Steenbrink [Ste76, Ste77] and our previous work [EFiMM21, Sec. 2
& Sec. 4]. We also refer to Illusie’s survey [Ill94, Sec. 2.2 & Sec. 2.3]. Let 𝑓 : X → D be a projective
morphism of reduced analytic spaces over the unit disc D. We suppose that the fibres 𝑋𝑡 with 𝑡 ≠ 0
are smooth and connected. We consider the variation of Hodge structures associated to 𝑅𝑘 𝑓∗Q over the
punctured disc D×. Let T be its monodromy operator and ∇ the Gauss–Manin connection on the holo-
morphic vector bundle (𝑅𝑘 𝑓∗Q) ⊗OD× = 𝑅𝑘 𝑓∗Ω•

X /D× . Recall that T is a quasi-unipotent transformation
of the cohomology of the general fibre. The flat vector bundle (𝑅𝑘 𝑓∗Ω•

X /D× ,∇) has a unique extension
to a vector bundle onD, such that ∇ extends to a regular singular connection whose residue Res0 ∇ is an
endomorphism with eigenvalues in [0, 1) ∩Q. This is the Deligne (lower) canonical extension, denoted
by ℓ𝑅𝑘 𝑓∗Ω•

X /D× . Occasionally, we may simply refer to it as the Deligne extension of 𝑅𝑘 𝑓∗C. It can be
realised as the hypercohomology 𝑅𝑘 𝑓 ′Ω•

X ′/D
(log) of the logarithmic de Rham complex of a normal

crossing model 𝑓 ′ : X ′ → D. The Hodge filtration F • on 𝑅𝑘 𝑓∗Ω•
X /D× extends to a filtration by vector

sub-bundles, still denoted by F •. Its locally free graded quotients are of the form 𝑅𝑘−𝑝 𝑓 ′Ω𝑝
X ′/D

(log).
If the monodromy operator is unipotent, then the fibre of 𝑅𝑘 𝑓 ′Ω•

X ′/D
(log) at 0, together with the re-

stricted Hodge filtration, can be identified with the cohomology of the generic fibre 𝐻𝑘
lim with the limiting

Hodge filtration 𝐹•
∞. The identification depends on the choice of a holomorphic coordinate on D. There

is also the monodromy weight filtration 𝑊• on 𝐻𝑘
lim attached to the nilpotent operator 𝑁 = −2𝜋𝑖 Res0 ∇.

The triple (𝐻𝑘
lim, 𝐹

•
∞,𝑊•) is called the limiting mixed Hodge structure. It is isomorphic to Schmid’s

limiting mixed Hodge structure [Sch73] on the cohomology of the general fibre. In particular, 𝑊• ad-
mits a rational structure. This structure is not needed in the current section, but it will be used later
in Section 6 in the greater generality of higher-dimensional parameter spaces. In the general quasi-
unipotent case, one first performs a semi-stable reduction and then constructs the limiting mixed Hodge
structure.

More generally, for a subvariation of Hodge structures E of 𝑅𝑘 𝑓∗Q, which is a direct summand, the
previous constructions can also be carried out and relate to those of 𝑅𝑘 𝑓∗Q as follows. For concreteness,
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let us comment on the case of 𝑓 : X → D as above, with normal crossings model 𝑓 ′ : X ′ → D.
Denote by 𝑗 : D× ↩→ D the open immersion. Then the Deligne extension of E = E ⊗ OD× equals 𝑗∗E ∩
ℓ𝑅𝑘 𝑓∗Ω•

X /D× , or equivalently 𝑗∗E ∩ 𝑅𝑘 𝑓 ′∗Ω
•
X ′/D

(log), where the intersection is taken in 𝑗∗𝑅
𝑘 𝑓∗Ω•

X /D× .
Let us denote it by ℓE . To construct the limiting mixed Hodge structure of E, we may first perform
a ramified base change and suppose that 𝑓 ′ is semi-stable. Secondly, we intersect the limiting mixed
Hodge structure (𝐻𝑘

lim, 𝐹
•
∞,𝑊•) of 𝑅𝑘 𝑓∗Q with ℓE (0), the fibre at 0 of ℓE . In our work, we will

encounter this setting for the standard case of the primitive cohomology but also for the decompositions
in (3.7) (G-invariants) and the minimal decomposition of (3.15). Accordingly, the resulting objects
will be decorated with the symbol prim, G or min. For example, we will have notations such as
𝑅𝑛−1 𝑓 ′∗Ω

•
X ′/D

(log)min.
Analogously, for a projective normal crossings degeneration 𝑓 : X → 𝑆 between complex algebraic

manifolds, with one-dimensional S, there are algebraic counterparts of all the above: logarithmic de
Rham cohomology, Gauss–Manin connection, Hodge filtration and so on. This is compatible with the
analytic theory after localising to a holomorphic coordinate neighbourhood of a given point 𝑝 ∈ 𝑆. We
will in particular speak of the limiting mixed Hodge structure at p and simply write 𝐻𝑘

lim if there is no
danger of confusion.

Finally, we will also need the limiting mixed Hodge structure (𝐻𝑘 )lim on the homology, and in
particular the dual weight filtration𝑊 ′

• defined as𝑊 ′
−𝑟 = (𝐻𝑘

lim/𝑊𝑟−1)
∨. See [Del71, (4.2.2)] or [EZT14,

(3.1.3.1) and (3.2.2.7)] for more information about dual filtrations.

4.2. Triviality of some variations of Hodge structures

We return to the geometric setting of Section 3 and maintain the notations therein. For the mirror family,
we prove that outside of (𝑅𝑛−1 𝑓∗Q)min, all the variations of Hodge structures appearing in our work
correspond to trivial local systems. In particular, the local systems outside of the middle degree and
the local system V from Proposition 3.13 are all trivial. We also derive consequences for the associated
Hodge bundles in the algebraic category.

We fix the normal crossings model 𝑓 ′ : Z ′ → P1 obtained by blowing up the locus of the ordinary
double points of 𝑓 : Z → P1, which is defined over Q. We also introduce a polarisation induced by a
projective factorisation of 𝑓 ′ defined over Q. The corresponding logarithmic Hodge bundles and their
primitive parts are locally free sheaves over P1, already defined in the algebraic category and over Q.

By Lemma 3.4, we have 𝑅𝑑 𝑓 ′∗Ω
•
Z′/P1 (log) = 0 for d odd, not equal to 𝑛 − 1, while if

𝑑 = 2𝑝 ≠ 𝑛 − 1, 𝑅𝑑 𝑓 ′∗Ω
•
Z′/P1 (log) = 𝑅𝑝 𝑓 ′∗Ω

𝑝

Z′/P1 (log). We then have the following result outside
of middle degrees:

Lemma 4.1. For 2𝑝 ≠ 𝑛 − 1, the following hold:

1. The local system 𝑅2𝑝 𝑓∗Q on 𝑈an = P1 \ (𝜇𝑛+1 ∪ {∞}) is trivial.
2. The Hodge bundle 𝑅𝑝 𝑓 ′∗Ω

𝑝

Z′/P1 (log) is trivial in the algebraic category over Q.

Proof. We first prove that the local system 𝑅2𝑝 𝑓∗Q is trivial. Take a base point 𝑏 ∈ 𝑈an, and let
𝜌 : 𝜋1 (𝑈

an, 𝑏) → GL(𝐻2𝑝 (𝑍𝑏 ,Q)) be the monodromy representation determining the local system.
The fundamental group 𝜋1 (𝑈

an, 𝑏) is generated by loops 𝛾𝜉 circling around 𝜉 ∈ 𝜇𝑛+1 and a loop 𝛾∞
circling around ∞, with a relation

∏
𝜉 𝛾𝜉 = 𝛾∞. Because the singularities of Z → P1 at the points 𝜉

are ordinary double points, and 2𝑝 ≠ 𝑛 − 1, the local monodromies 𝜌(𝛾𝜉 ) are trivial. Therefore 𝜌(𝛾∞)
is trivial as well, and so is 𝜌.

Now the first claim implies the triviality of 𝑅𝑝 𝑓 ′∗Ω
𝑝

Z′/P1 (log) = 𝑅2𝑝 𝑓 ′∗Ω
•
Z′/P1 (log) in the analytic

category, since the latter realises the Deligne extension of 𝑅2𝑝 𝑓∗Ω•
Z/𝑈

. By the GAGA principle,
𝑅𝑝 𝑓 ′∗Ω

𝑝

Z′/P1 (log) is algebraically trivial as a complex vector bundle. This already implies the second
claim. Indeed, let E be a vector bundle over P1

Q
, which is trivial after base change to C. Then the natural
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morphism 𝐻0(P1
Q
, 𝐸) ⊗OP1

Q
→ 𝐸 is necessarily an isomorphism, since it is an isomorphism after a flat

base change. �

Lemma 4.2. With the same notations as in Proposition 3.13, we have

1. The local system V on 𝑈an is trivial.
2. The locally free coherent sheaf with connection V over U is trivial in the algebraic category over Q.

Proof. We first show that if the local monodromy of (𝑅𝑛−1 𝑓∗C)min around one ODP point is trivial,
then it is so around all the ODP points. Since (𝑅𝑛−1 𝑓∗C)min is isomorphic to (𝑅𝑛−1ℎ∗C)

𝐺
prim as a

local system, it is enough to show that the latter descends along the natural projection (𝑈 − {0}) →

(𝑈 − {0})/𝜇𝑛+1, where 𝜇𝑛+1 acts by multiplication on (𝑈 − {0}) ⊂ P1. Notice that for any 𝜁 ∈ 𝜇𝑛+1,
the automorphism 𝜓 ↦→ 𝜁 · 𝜓 lifts to an automorphism of the family 𝑔 : Y → (𝑈 − {0}) via the formula
[𝑥0 : 𝑥1 : . . . : 𝑥𝑛] ↦→ [𝑥 ′0 : 𝑥 ′1 : . . . : 𝑥 ′𝑛], where 𝑥 ′𝑖 = 𝑥𝑖 except for one i, for which 𝑥 ′𝑖 = 𝜁−1 ·𝑥𝑖 . Since we
work in the quotient by the group G, all the choices of i correspond to the same action. We conclude that
the local systems (𝑅𝑘ℎ∗C)

𝐺 � 𝑅𝑘𝑔∗C descend for all k. Observe that 𝑅2ℎ∗C is actually constant with
fibre 𝐻2(P𝑛,C), by Lefschetz, with G acting trivially. Therefore, the polarisation necessarily descends.
We conclude that (𝑅𝑛−1ℎ∗C)

𝐺
prim = ker

(
𝐿 : (𝑅𝑛−1ℎ∗C)

𝐺 → (𝑅𝑛+1ℎ∗C)
𝐺
)

descends too, as was to be
shown.

We now show that V is a trivial local system. It is enough to argue for VC. In the odd-dimensional
case, there is nothing to prove. In the even-dimensional case, we first recall that by the Picard–Lefschetz
formula, the local monodromies on (𝑅𝑛−1 𝑓∗C)prim around the ODP points are semi-simple with a single
nontrivial eigenvalue −1 of multiplicity one. It follows that around each ODP point, exactly one of the
sublocal systems (𝑅𝑛−1 𝑓∗C)min and VC has trivial local monodromy. By the argument in the previous
lemma, if the monodromies around one and hence all the ODP points on (𝑅𝑛−1 𝑓∗C)min were trivial, it
would follow that the monodromy around ∞ would also be trivial. As this is excluded by Lemma 4.3
below, we infer that V is a trivial local system.

We next address the triviality of V asserted by the second point. We will now make use of the
G-equivariant normal crossings model ℎ′ : X ′ → P1 of Proposition 3.1. We summarise the current
geometric setting in the following diagram, which builds upon (3.2):

X ′

��

ℎ′

��

X
𝜌

�� ℎ

��

Z ′ ��

𝑓 ′
��

Z
crepant

𝜋 ��

𝑓

��

Y = X /𝐺
𝑔

���
��

��
��

��

P1.

We first argue analytically. By the minimal decomposition (Proposition 3.13), the morphism in (3.13)
induces a morphism between Deligne extensions

ℓ (𝑅𝑛−1ℎ∗Ω
•
X /𝑈 )𝐺prim↩→

ℓ (𝑅𝑛−1 𝑓∗Ω
•
Z/𝑈 )prim. (4.1)

We can reformulate (4.1) as a morphism

𝜓 : (𝑅𝑛−1ℎ′∗Ω
•
X ′/P1 (log))𝐺prim↩→(𝑅𝑛−1 𝑓 ′∗Ω

•
Z′/P1 (log))prim,

extending (3.14) to P1. By the GAGA principle, this morphism is algebraic. Notice that the coherent
sheaves involved in 𝜓 are locally free and defined over Q. By Lemma 3.11 (2), 𝜓 |𝑈 is defined over Q.
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Therefore, 𝜓 |𝑈 is invariant under the action of Aut(C/Q). Because U is a nonempty Zariski open subset
of P1, which is an integral scheme, we infer that 𝜓 is invariant under Aut(C/Q). Therefore, 𝜓 is defined
over Q, and so is its cokernel. We denote by Ṽ this cokernel of 𝜓 modulo its torsion part. Then Ṽ is a
vector bundle.

By Proposition 3.13 (2), Ṽ |𝑈 is canonically isomorphic to V , over Q, and in particular inherits
a connection from V . Also, by the same proposition, we know that the analytification of (3.16) is
canonically identified with the tensor product of (3.15) with O𝑈 an . By taking Deligne extensions, we
deduce that Ṽan is a vector bundle with regular singular connection, canonically isomorphic to the
Deligne extension of V ⊗ O𝑈 an . By the first part of the lemma, we thus infer that Ṽan is a trivial vector
bundle with connection, and in particular any trivialisation over P1 is flat. As in the proof of Lemma
4.1 (2), we deduce that Ṽ is a trivial vector bundle over P1, defined over Q. From all the above, we
conclude that the restriction to U of any trivialisation of Ṽ , defined over Q, induces a flat trivialisation
of V � Ṽ |𝑈 , defined over Q. This concludes the proof. �

4.3. Behaviour of 𝜼𝒌 at the MUM point

For the mirror family 𝑓 : Z → P1, let D∞ be a holomorphic disc neighbourhood at infinity, with
parameter 𝑡 = 1/𝜓. To lighten notations, we still denote by 𝑓 : Z → D∞ the restricted fam-
ily. To simplify notation, we write 𝐻𝑛−1

lim for the limiting mixed Hodge structure at infinity of
(𝑅𝑛−1 𝑓∗Q)min.
Lemma 4.3.
1. The monodromy T of (𝑅𝑛−1 𝑓∗Q)min at ∞ is maximally unipotent. In particular, the nilpotent operator

N on 𝐻𝑛−1
lim satisfies 𝑁𝑛−1 ≠ 0.

2. The graded pieces Gr𝑊𝑘 𝐻𝑛−1
lim are one-dimensional if k is even and trivial otherwise. For all

1 ≤ 𝑘 ≤ 𝑛 − 1, N induces isomorphisms

Gr𝑊𝑘 𝑁 : Gr𝑊𝑘 𝐻𝑛−1
lim

∼
−→ Gr𝑊𝑘−2 𝐻

𝑛−1
lim .

3. For all 1 ≤ 𝑝 ≤ 𝑛 − 1, N induces isomorphisms

Gr𝑝𝐹∞
𝑁 : Gr𝑝𝐹∞

𝐻𝑛−1
lim

∼
−→ Gr𝑝−1

𝐹∞
𝐻𝑛−1

lim .

Proof. The maximally unipotent property for (𝑅𝑛−1 𝑓∗Q)min � (𝑅𝑛−1ℎ∗Q)
𝐺
prim is proven in odd relative

dimension in [HSBT10, Cor. 1.7]. Exactly the same argument yields the claim in even relative dimension.
In particular, 𝑁𝑛−1 ≠ 0. This settles the first point. Because moreover 𝑁𝑛−1 induces an isomorphism
Gr𝑊2(𝑛−1) 𝐻

𝑛−1
lim

∼
→ Gr𝑊0 𝐻𝑛−1

lim , we deduce that Gr𝑊0 𝐻𝑛−1
lim ≠ 0. By Lemma 3.9, 𝐻𝑛−1

lim is n-dimensional,
and the second item follows for dimension reasons. Finally, we use that Gr𝑝𝐹∞

𝐻𝑛−1
lim is one-dimensional

again by Lemma 3.9 and then necessarily Gr𝑝𝐹∞
𝐻𝑛−1

lim = Gr𝑝𝐹∞
Gr𝑊2𝑝 𝐻

𝑛−1
lim = Gr𝑊2𝑝 𝐻

𝑛−1
lim . Hence the

second point implies the third. �

By the maximally unipotent monodromy and for dimension reasons, the T-invariant classes of the
minimal cohomology of a general fibre span a rank one trivial subsystem of (𝑅𝑛−1 𝑓∗C)min on D×

∞.
We fix a basis 𝛾′ of this trivial system. It extends to a nowhere vanishing holomorphic section of the
Deligne extension of (𝑅𝑛−1 𝑓∗C)min. The fibre at 0 is then a basis for 𝑊0, which identifies with ker 𝑁 by
the above lemma. We still write 𝛾′ for this limit element. Similarly, (𝑅𝑛−1 𝑓∗C)

∨
min has a rank one trivial

subsystem spanned by the class of a T-invariant homological cycle 𝛾. We may choose 𝛾 to correspond to
𝛾′ by Poincaré duality.6 Hence, for any 𝜂 ∈ 𝐻𝑛−1 (𝑍𝑡 ), 𝑡 ∈ D×

∞, the period 〈𝛾, 𝜂〉 equals the intersection
pairing 𝑄(𝛾′, 𝜂). It is possible to explicitly construct an invariant cycle. Although we will need this

6Recall from Proposition 3.13 and Remark 3.14 that classes in (𝑅𝑛−1 𝑓∗C)
∨
min can be seen as homological cycles, and Poincaré

duality can be used on the minimal component.
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in a moment, we postpone the discussion to §5.2, where a broader study of homological cycles is
delivered.

In preparation for the following lemma, we recall from the preliminaries in §4.1 that 𝑓∗𝐾Z/D∞
(log)

is isomorphic to F 𝑛−1𝑅𝑛−1Ω•
Z/D∞

(log) and that 𝑅𝑛−1Ω•
Z/D∞

(log) realises the Deligne extension of
(𝑅𝑛−1 𝑓∗C) ⊗ OD×

∞
to D∞.

Lemma 4.4. Let 𝜂 be a holomorphic trivialisation of 𝑓∗𝐾Z/D∞
(log). Then the period 〈𝛾, 𝜂〉 defines a

holomorphic function on D∞, nonvanishing at the origin.

Proof. The argument is well-known – see, for example, [Mor93, Prop.] and [Voi99, Lemma 3.10] – but
we sketch it due to its relevance.

The pairing 〈𝛾, 𝜂〉 = 𝑄(𝛾′, 𝜂) is clearly a holomorphic function on D×
∞ since both 𝛾′ and 𝜂 are

holomorphic sections of (𝑅𝑛−1 𝑓∗C) ⊗ OD×
∞

. Moreover, they are both global sections of the Deligne
extension. This ensures that |𝑄(𝛾′, 𝜂) | has at most a logarithmic singularity at 0. It follows that 𝑄(𝛾′, 𝜂)
is actually a holomorphic function.

For the nonvanishing property, we make use of the interplay between the intersection pairing seen
on 𝐻𝑛−1

lim and the monodromy weight filtration [Sch73, Lemma 6.4], together with Lemma 4.3. Let
𝜂′ ∈ 𝐻𝑛−1

lim be the fibre of 𝜂 at 0. We need to show that 𝑄(𝛾′, 𝜂′) ≠ 0. Suppose the contrary. Since 𝛾′ is
a basis of 𝑊0 = ker 𝑁 = Im 𝑁𝑛−1, we have 𝜂′ ∈ (Im 𝑁𝑛−1)⊥. The intersection pairing is nondegenerate
and satisfies 𝑄(𝑁𝑥, 𝑦) + 𝑄(𝑥, 𝑁𝑦) = 0. Therefore, we find that 𝜂′ ∈ (Im 𝑁𝑛−1)⊥ = ker 𝑁𝑛−1 = 𝑊2𝑛−3.
But 𝜂′ is a basis of 𝐹𝑛−1𝐻𝑛−1

lim = 𝐹𝑛−1 Gr𝑊2𝑛−2 𝐻
𝑛−1
lim , and therefore 𝜂′ ∉ 𝑊2𝑛−3. We thus have reached a

contradiction. �

Before the next theorem, we consider the logarithmic extension of the Kodaira–Spencer maps in
(3.9): if D is the divisor [∞] +

∑
𝜉𝑛+1=1 [𝜉], then

KS(𝑞) : 𝑇P1 (− log 𝐷) −→ HomO
P1
(𝑅𝑞 𝑓∗Ω

𝑛−1−𝑞
Z′/P1 (log), 𝑅𝑞+1 𝑓∗Ω

𝑛−2−𝑞
Z′/P1 (log)). (4.2)

They preserve the minimal and primitive components.

Theorem 4.5. The section 𝜂𝑘 is a holomorphic trivialisation of 𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/D∞

(log)min.

Proof. First of all, we prove that 𝜂0 is a meromorphic section of 𝑓∗𝐾Z/D∞
(log). Indeed, 𝜂0 is an algebraic

section of 𝑓∗𝐾Z/𝑈 (see Lemma 3.17), hence a rational section of 𝑓∗𝐾Z′/P1 (log) and thus a meromorphic
section of 𝑓∗𝐾Z/D∞

(log).
Second, we establish the claim of the theorem for 𝜂0. By Lemma 4.4, we need to show that the

holomorphic function 〈𝛾, 𝜂0〉 on D×
∞ extends holomorphically to D∞ and does not vanish at the origin.

This property can be checked by a standard explicit computation reproduced below (5.8).
Finally, for the sections 𝜂𝑘 , we use the recurrence in (3.19) and the logarithmic extension of the

Kodaira–Spencer maps in (4.2). It follows that the sections 𝜂𝑘 are global sections of the sheaves
𝑅𝑘 𝑓∗Ω𝑛−1−𝑘

Z/D∞
(log)min. Let us denote by 𝜂′𝑘 the fibre at 0 of the sections 𝜂𝑘 . Specialising (3.19) at 0, we

find (Gr𝑛−1−𝑘
𝐹∞

𝑁)𝜂′𝑘 = 𝜂′𝑘+1. By Lemma 4.3 (3), and because 𝜂′0 ≠ 0, we see that 𝜂′𝑘 ≠ 0 for all k. This
concludes the proof. �

4.4. Behaviour of 𝜼𝒌 at the ODP points

Recall the normal crossings model 𝑓 ′ : Z ′ → P1. We restrict it to a disc neighbour-
hood D𝜉 of some 𝜉 ∈ 𝜇𝑛+1. Concretely, we fix the coordinate 𝑡 = 𝜓 − 𝜉. We write
𝑓 ′ : Z ′ → D𝜉 for the restricted family. We now deal with the limiting mixed Hodge struc-
ture 𝐻𝑛−1

lim at 𝜉 of (𝑅𝑛−1 𝑓∗Q)min. Since the monodromy around 𝜉 is not unipotent in general,
the construction of 𝐻𝑛−1

lim requires a preliminary semi-stable reduction. This can be achieved as
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follows:

Z̃ normalisation ��

𝑓
		��

���
���

���
�� Z ′′ 𝑟 ��

��

�

Z ′

𝑓 ′

��

D𝜉
𝜌(𝑢)=𝑢2=𝑡

�� D𝜉

(4.3)

Hence �̃� : Z̃ → D𝜉 is the normalised base change of 𝑓 ′ by 𝜌. An explicit computation in local
coordinates shows it is indeed semi-stable. The special fibre �̃� −1(0) consists of two components
intersecting transversally. One is the strict transform 𝑍 of 𝑍𝜉 . We denote by E the other compo-
nent. Then E is a nonsingular quadric of dimension 𝑛 − 1, and 𝑍 ∩ 𝐸 is a nonsingular quadric
of dimension 𝑛 − 2. In terms of this data, the monodromy weight filtration is computed as
follows.

Lemma 4.6. The graded pieces of the weight filtration on 𝐻𝑛−1
lim are given by

• if 𝑛 − 1 is odd, then

Gr𝑊𝑘 𝐻𝑛−1
lim =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Q

(
− 𝑛−2

2

)
, if 𝑘 = 𝑛 − 2,

a direct factor of 𝐻𝑛−1 (𝑍), if 𝑘 = 𝑛 − 1,

Q
(
− 𝑛

2
)
, if 𝑘 = 𝑛,

0, otherwise.

• if 𝑛 − 1 is even, then

Gr𝑊𝑘 𝐻𝑛−1
lim =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
a direct factor of 𝐻

(
𝐻𝑛−3 (𝑍 ∩ 𝐸) (−1) → 𝐻𝑛−1 (𝑍) ⊕ 𝐻𝑛−1 (𝐸) → 𝐻𝑛−1 (𝑍 ∩ 𝐸)

)
,

if 𝑘 = 𝑛 − 1,

0, if 𝑘 ≠ 𝑛 − 1.

Hence, 𝐻𝑛−1
lim is a pure Hodge structure of weight 𝑛 − 1.

Proof. The proof follows from [Ste77, Ex. 2.15], noticing that (𝑅𝑛−1 �̃�∗Q)min = 𝜌∗(𝑅𝑛−1 𝑓∗Q)min is a
direct factor of 𝑅𝑛−1 �̃�∗Q, whose complement is a trivial variation of Hodge structures by Lemma 4.1
and Lemma 4.2. For the case 𝑛 − 1 is even, we moreover recall that V as in Proposition 3.13 has pure
bidegree ((𝑛 − 1)/2, (𝑛 − 1)/2). �

We will need the comparison of the middle degree minimal Hodge bundles between before and after
semi-stable reduction. We follow [EFiMM21, Sec. 2 & Prop. 3.10]. There are natural morphisms

𝜑𝑝,𝑞 : 𝜌∗𝑅𝑞 𝑓 ′∗Ω
𝑝
Z′/D𝜉

(log)min ↩→ 𝑅𝑞 �̃�∗Ω
𝑝

Z̃/D𝜉
(log)min. (4.4)

Lemma 4.7. Suppose that 𝑝 + 𝑞 = 𝑛 − 1. Let 𝑄𝑝,𝑞 be the cokernel of 𝜑𝑝,𝑞 in (4.4).

• If 𝑝 ≠ 𝑞, then 𝑄𝑝,𝑞 = 0.
• If 𝑝 = 𝑞 = 𝑛−1

2 , then 𝑄𝑝,𝑝 = OD𝜉 ,0/𝑢OD𝜉 ,0.

Proof. The results in [EFiMM21, Sec. 2 & Prop. 3.10] are explicitly stated for the whole Hodge bundles
and describe the cokernels in terms of the semi-simple part of the monodromy acting on the limiting
Hodge structure. For their minimal components, however, see Remark 2.7 (iii) in [EFiMM21] together
with Proposition 3.13 and Lemma 4.2. �
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We are now fully equipped for the proof of

Theorem 4.8. The sections 𝜂𝑘 extend to meromorphic sections of the logarithmic Hodge bundles
𝑅𝑘 𝑓 ′∗Ω

𝑛−1−𝑘
Z′/A1 (log)min. Furthermore, denote by ord𝜉 𝜂𝑘 the order of zero or pole of 𝜂𝑘 at 𝜉, as a rational

section of 𝑅𝑘 𝑓 ′∗Ω
𝑛−1−𝑘
Z′/A1 (log)min.

• If 𝑛 − 1 is odd, then ord𝜉 𝜂𝑘 = 0 for 𝑘 ≤ 𝑛/2 − 1 and ord𝜉 𝜂𝑘 = −1 otherwise.
• If 𝑛 − 1 is even, then ord𝜉 𝜂𝑘 = 0 for 𝑘 ≤ 𝑛−3

2 and ord𝜉 𝜂𝑘 = −1 otherwise.

Proof. Throughout the proof, we write X , Y and Z for the respective total spaces over A1. We begin
by showing that 𝜂0 extends to a global section of 𝑓 ′∗𝐾Z′/A1 (log), nonvanishing at 𝜉. Since the singular
fibres of Z → A1 present only ordinary double points, there is an equality

𝑓∗𝐾Z/A1 = 𝑓 ′∗𝐾Z′/A1 (log).

This can be seen as the coincidence of the upper and lower extensions of 𝑓∗𝐾Z/𝑈 to A1 (apply
[EFiMM21, Cor. 2.8 & Prop. 2.10] and the Picard–Lefschetz formula for the monodromy). Since Y has
rational singularities (see Lemma 3.2), the natural morphism 𝑔∗𝐾Y/A1 → 𝑓∗𝐾Z/A1 is an isomorphism.
Also 𝑔∗𝐾Y/A1 = (ℎ∗𝐾X /A1)𝐺 . Indeed, let X ◦ be the complement of the fixed point locus of G in X
and similarly for Y◦, so that Y \ Y◦ has codimension ≥ 2. Then because Y is normal Gorenstein and
Y◦ = X ◦/𝐺 is an étale quotient and X is nonsingular, we find

𝑔∗𝐾Y/A1 = 𝑔∗𝐾Y◦/A1 = (ℎ∗𝐾X ◦/A1)𝐺 = (ℎ∗𝐾X /A1)𝐺 .

By construction of 𝜂0 (see Definition 3.15), it is enough to prove that 𝜃0 defines a trivialisation of
ℎ∗𝐾X /A1 around 𝜉. Denote by X ∗ the complement in X of the ordinary double points, so that X \ X ∗

has codimension ≥ 2. Because X is nonsingular, we have ℎ∗𝐾X /A1 = ℎ∗𝐾X ∗/A1 . Now the expression in
(3.1) for 𝜃0 defines a relative holomorphic volume form on the whole X ∗ and hence a trivialisation of
ℎ∗𝐾X ∗/A1 as desired.

That the sections 𝜂𝑘 define meromorphic sections of the sheaves 𝑅𝑘 𝑓 ′∗Ω
𝑛−1−𝑘
Z′/A1 (log)min follows from

the corresponding property for 𝜂0 plus the recurrence in (3.19) and the existence of the logarithmic
extension of the Kodaira–Spencer maps in (4.2). From the same recurrence, we reduce the computation
of ord𝜉 𝜂𝑘 to the computation of the orders at 𝜉 of the rational morphisms KS( 𝑗) (𝜓𝑑/𝑑𝜓), with respect
to the logarithmic extension of the Hodge bundles

ord𝜉 𝜂𝑘 = ord𝜉 𝜂0 +

𝑘−1∑
𝑗=0

ord𝜉 KS( 𝑗)

(
𝜓

𝑑

𝑑𝜓

)
=

𝑘−1∑
𝑗=0

ord𝜉 KS( 𝑗)

(
𝜓

𝑑

𝑑𝜓

)
.

Let us define 𝑀 ( 𝑗) = ord𝜉 KS( 𝑗)
(
𝜓 𝑑

𝑑𝜓

)
. Because 𝜂0 trivialises 𝑓∗𝐾Z/A1 at 𝜉, formula (3.11)

shows that

𝑛−2∑
𝑗=0

𝑀 ( 𝑗) = ord𝜉 𝑌 (𝜓) = −1. (4.5)

We argue that all but one of the 𝑀 ( 𝑗) are zero. For this, we relate 𝑀 ( 𝑗) to the action of the nilpotent
operator N on the limiting mixed Hodge structure at 𝜉. Recall that we defined the coordinate 𝑡 = 𝜓 − 𝜉
on a disc neighbourhood D𝜉 of 𝜉. The first observation is

ord𝑡=0 KS( 𝑗)

(
𝑡
𝑑

𝑑𝑡

)
= ord𝜉 KS( 𝑗)

(
(𝜓 − 𝜉)

𝑑

𝑑𝜓

)
= 𝑀 ( 𝑗) + 1 ≥ 0, (4.6)
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since the Kodaira–Spencer maps along logarithmic tangent vectors preserve the logarithmic Hodge
bundles (see (4.2)). Hence, we see that 𝑀 ( 𝑗) ≥ −1. We now need to distinguish two cases, depending
on the parity of 𝑛 − 1.

Odd case: If 𝑛 − 1 is odd, then the monodromy is unipotent and the fibre of KS(𝑝) (𝑡𝑑/𝑑𝑡) at 𝑡 = 0
is already Gr𝑝𝐹∞

𝑁 : Gr𝑝𝐹∞
𝐻𝑛−1

lim → Gr𝑝−1
𝐹∞

𝐻𝑛−1
lim . From Lemma 4.6, we deduce that unless 𝑝 = 𝑛/2,

Gr𝑝𝐹∞
𝑁 = 0 so that ord𝑡=0 KS(𝑝) (𝑡𝑑/𝑑𝑡) > 0 and hence 𝑀 (𝑝) ≥ 0. By (4.5), we necessarily have

𝑀 (𝑛/2) = −1 and the other 𝑀 ( 𝑗) = 0.

Even case: If 𝑛−1 is even, the nilpotent operator N is trivial, but the monodromy is no longer unipotent.
The construction of the limiting mixed Hodge structure thus involves a semi-stable reduction. Choose
a square root u of t as in (4.3). Then since 𝑢 𝑑

𝑑𝑢 = 2𝑡 𝑑
𝑑𝑡 , we get, comparing the Gauss-Manin connection

before and after semi-stable reduction, a commutative diagram of maps of line bundles

𝜌∗𝑅𝑞 𝑓 ′∗Ω
𝑝
Z′/D𝜉

(log)min
KS(𝑞) (𝑢 𝑑

𝑑𝑢 )��

𝜑𝑝,𝑞

��

𝜌∗𝑅𝑞+1 𝑓 ′∗Ω
𝑝−1
Z′/D𝜉

(log)min

𝜑𝑝−1,𝑞+1

��

𝑅𝑞 �̃�∗Ω
𝑝

Z̃/D𝜉
(log)min

KS(𝑞) (2𝑡 𝑑
𝑑𝑡 )�� 𝑅𝑞+1 �̃�∗Ω

𝑝−1
Z̃/D𝜉

(log)min.

Together with ord𝑢=0 = 2 ord𝑡=0, we conclude that

ord𝑢=0 𝜑
𝑝,𝑞 + ord𝑢=0 KS(𝑞)

(
𝑢
𝑑

𝑑𝑢

)
= ord𝑢=0 (𝜑

𝑝−1,𝑞+1) + 2 ord𝑡=0 KS(𝑞)

(
𝑡
𝑑

𝑑𝑡

)
. (4.7)

By Lemma 4.7, ord𝑢=0(𝜑
𝑝,𝑞) = 0 except for the case (𝑝, 𝑞) = ((𝑛 − 1)/2, (𝑛 − 1)/2), where

ord𝑢=0(𝜑
𝑝,𝑞) = 1. From (4.7), we then conclude that

ord𝑢=0 KS( (𝑛−3)/2)
(
𝑢
𝑑

𝑑𝑢

)
= 1 + 2 ord𝑡=0 KS( (𝑛−3)/2)

(
𝑡
𝑑

𝑑𝑡

)
(4.8)

1 + ord𝑢=0 KS( (𝑛−1)/2)
(
𝑢
𝑑

𝑑𝑢

)
= 2 ord𝑡=0 KS( (𝑛−1)/2)

(
𝑡
𝑑

𝑑𝑡

)
. (4.9)

In both (4.8) and (4.9), the order of vanishing of Kodaira–Spencer along the vector field 𝑢 𝑑
𝑑𝑢 is strictly

positive, since the restriction to 0 is the nilpotent operator 𝑁 = 0. It follows that

ord𝑡=0 KS( (𝑛−3)/2)
(
𝑡
𝑑

𝑑𝑡

)
≥ 0, i.e., 𝑀 ( (𝑛−3)/2) ≥ −1,

and

ord𝑡=0 KS( (𝑛−1)/2)
(
𝑡
𝑑

𝑑𝑡

)
≥ 1, i.e., 𝑀 ( (𝑛−1)/2) ≥ 0.

Since all other 𝑀 ( 𝑗) ≥ 0 as in the odd case, we conclude from (4.5) that all these inequalities are
equalities. �

5. The BCOV invariant of the mirror family

In this section, we prove the first part of the Main Theorem in the introduction to the effect that
the BCOV invariant of the mirror family encapsulates the Gromov–Witten invariants of a general
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Calabi–Yau hypersurface. The proof proceeds by applying the arithmetic Riemann–Roch theorem as
in Section 2, by choosing the algebraic trivialisations of the Hodge bundles studied in Section 3. This
is then worked out in terms of canonical sections of the Hodge bundles, whose existence is tied to
the limiting Hodge structure 𝐻𝑛−1

lim at the MUM point. In the process, a transcendental expression built
out of periods arises, matching Zinger’s formula for the sought generating function of Gromov–Witten
invariants.

5.1. The Kronecker limit formula for the mirror family

For the mirror family 𝑓 : Z → 𝑈, we proceed to prove an expression for the BCOV invariant 𝜏BCOV(𝑍𝜓)

in terms of the 𝐿2 norms of the sections 𝜂𝑘 (see Definition 3.15). The strategy follows the same lines as
for families of Calabi–Yau hypersurfaces §2.4.

We fix a polarisation and a projective factorisation of f, defined over Q. We denote by L the
corresponding algebraic Lefschetz operator, which is the cup-product against the algebraic cycle class
of a hyperplane section. We will abusively confound L with the algebraic cycle class of a hyperplane
section. With this choice of L, the primitive decomposition of the Hodge bundles 𝑅𝑝 𝑓∗Ω

𝑞
Z/𝑈

holds over
Q. Let h be a Kähler metric and 𝜔 the Kähler form normalised as in (2.1), and assume that the fibrewise
cohomology class is in the topological hyperplane class. Hence, under the correspondence between
algebraic and topological cycle classes, L is sent to (2𝜋𝑖) [𝜔] ∈ 𝑅2 𝑓∗Q(1).

Below, all the 𝐿2 norms are computed with respect to 𝜔 as in (2.2).

Theorem 5.1. There exists a real positive constant 𝐶 ∈ 𝜋𝑐Q
×

such that

𝜏BCOV(𝑍𝜓) = 𝐶

���� (𝜓𝑛+1)𝑎

(1 − 𝜓𝑛+1)𝑏

���� 2 ‖𝜂0‖
𝜒/6
L2(∏𝑛−1

𝑘=0 ‖𝜂𝑘 ‖
2(𝑛−1−𝑘)
L2

) (−1)𝑛−1 ,

where 𝜒 = 𝜒(𝑍𝜓) and

𝑎 = (−1)𝑛−1 𝑛(𝑛 − 1)
6

−
𝜒

12(𝑛 + 1)
,

𝑏 = (−1)𝑛−1 𝑛(3𝑛 − 5)
24

𝑐 =
1
2

∑
𝑘

(−1)𝑘+1𝑘2𝑏𝑘 .

Proof. We apply the version of the arithmetic Riemann–Roch theorem formulated in Theorem 2.3 to
the family 𝑓 : Z → 𝑈 as being defined over Q.

Choices of sections. We need to specify the section 𝜂 and the sections 𝜂𝑝,𝑞 in (2.10). The section 𝜂 is
chosen to be 𝜂0, as defined in Definition 3.15. We next describe our choices of 𝜂𝑝,𝑞:

• If 𝑝 + 𝑞 ≠ 𝑛 − 1 and 𝑝 ≠ 𝑞, then the corresponding Hodge bundle vanishes by Lemma 3.4 and thus
gives no contribution.

• For 2𝑝 ≠ 𝑛 − 1, Lemma 4.1 guarantees that det 𝑅𝑝 𝑓 ′∗Ω
𝑝

Z′/P1 (log) = det 𝑅2𝑝 𝑓 ′∗Ω
•
Z′/P1 (log) is trivial,

in the algebraic category over Q, and any trivialisation is flat for the Gauss–Manin. We choose 𝜂𝑝,𝑝

to be any trivialisation defined over Q and then restrict it to U. Notice that the 𝐿2 norm ‖𝜂𝑝,𝑝 ‖L2 is
then constant.

• For 𝑝 + 𝑞 = 𝑛 − 1 and 𝑝 ≠ 𝑞, the (𝑝, 𝑞) Hodge bundle is primitive and has rank one. Then we take
𝜂𝑝,𝑞 = 𝜂Q in Definition 3.15. By Lemma 3.17, 𝜂Q is defined over Q.

• For 𝑝 + 𝑞 = 𝑛 − 1 and 𝑝 = 𝑞, which can only occur when 𝑛 − 1 is even, the (𝑝, 𝑞) Hodge bundle is
no longer primitive of rank one. We employ first the algebraic primitive decomposition and then the
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minimal decomposition of Proposition 3.13 (2)

det 𝑅𝑝 𝑓∗Ω
𝑝
Z/𝑈

= det(𝑅𝑝 𝑓∗Ω
𝑝
Z/𝑈

)prim ⊗ det 𝐿𝑅𝑝−1 𝑓∗Ω
𝑝−1
Z/𝑈

� det(𝑅𝑝 𝑓∗Ω
𝑝
Z/𝑈

)prim ⊗ det 𝑅𝑝−1 𝑓∗Ω
𝑝−1
Z/𝑈

� det(𝑅𝑝 𝑓∗Ω
𝑝
Z/𝑈

)min ⊗ detV ⊗ det 𝑅𝑝−1 𝑓∗Ω
𝑝−1
Z/𝑈

.

(5.1)

We define 𝜂 𝑛−1
2 , 𝑛−1

2
as the element corresponding to 𝜂 𝑛−1

2
⊗ 𝑣 ⊗ 𝜂 𝑛−3

2 , 𝑛−3
2

under this isomorphism, for
any algebraic flat trivialisation 𝑣 ∈ detV , defined over Q, provided by Lemma 4.2. We claim that

‖𝜂 𝑛−1
2 , 𝑛−1

2
‖2

L2 ∼Q× ‖𝜂 𝑛−1
2
‖2

L2 ‖𝑣‖
2
L2 ‖𝜂 𝑛−3

2 , 𝑛−3
2
‖2

L2 , (5.2)

where ∼Q× denotes equality up to a rational number. For this, we bring together several facts.
The first is that the Lefschetz decomposition is orthogonal for the 𝐿2 metrics regardless of the
normalisation of the Kähler forms. The second is that the algebraic cycle class of L corresponds
to (2𝜋𝑖) [𝜔] in analytic de Rham cohomology. The third fact is that the operator [2𝜋𝜔] ∧ · is
an isometry up to a rational constant, since 2𝜋𝜔 is the Hodge theoretic Kähler form (see, for
instance, [Huy05, Prop. 1.2.31]). The last fact is that the minimal component decomposition of
Proposition 3.13 is also orthogonal for the 𝐿2 norm, since it is orthogonal for the intersection form
by construction. This settles (5.2). Furthermore, we notice that as for 𝜂 𝑛−3

2 , 𝑛−3
2

, the 𝐿2 norm of v is
constant, since it is flat by construction and it is the wedge product of a collection of sections of pure
Hodge bidegree ((𝑛 − 1)/2, (𝑛 − 1)/2). Therefore, the norm ‖𝜂 𝑛−1

2 , 𝑛−1
2
‖2

L2 equals ‖𝜂 𝑛−1
2
‖2

L2 up to a
constant.

Determining the rational function Δ . To establish the theorem, we need to specify the element
Δ ∈ Q(𝜓)× ⊗ Q in (2.10) (formal rational power of a rational function), which satisfies

log 𝜏BCOV = log |Δ |2 +
𝜒

12
log ‖𝜂‖2

L2 −
∑
𝑝,𝑞

(−1) 𝑝+𝑞 𝑝 log ‖𝜂𝑝,𝑞 ‖
2
L2 + log𝐶𝜎 . (5.3)

We will determine Δ up to an algebraic number. To this end, it suffices to know its divisor. Unless
𝜓 = 0 or 𝜓 = 𝜉, where 𝜉𝑛+1 = 1, Δ has no zeroes or poles by construction, since the sections 𝜂𝑝,𝑞 are
holomorphic and nonvanishing, and log 𝜏BCOV is smooth. Hence we are led to consider the logarithmic
behaviour of the right-hand side of (5.3) at these points. Since for 2𝑝 ≠ 𝑛 − 1 the sections 𝜂𝑝,𝑝 have
constant 𝐿2 norm, we only need to examine the functions log ‖𝜂𝑝,𝑞 ‖L2 with 𝑝 + 𝑞 = 𝑛 − 1.

Behaviour at 𝜓 = 0. This corresponds to a smooth fibre of 𝑓 : Z → 𝑈. Hence log 𝜏BCOV is smooth at
𝜓 = 0, as are the 𝐿2 metrics. However, the sections 𝜂𝑝,𝑞 with 𝑝 + 𝑞 = 𝑛 − 1 admit zeros at 𝜓 = 0 (see
Remark 3.16), with ord0 𝜂𝑝,𝑞 = 𝑞 + 1 = 𝑛 − 𝑝. This means a in the theorem is given by

(𝑛 + 1)𝑎 = (−1)𝑛−1
𝑛−1∑
𝑝=0

𝑝(𝑛 − 𝑝) −
𝜒

12
= (−1)𝑛−1 (𝑛 − 1)𝑛(𝑛 + 1)

6
−

𝜒

12
.

Behaviour at 𝜓 = 𝜉 ∈ 𝜇𝑛+1. This corresponds to a singular fibre of 𝑓 : Z → P1, which has a unique
ordinary double point. By Theorem 4.8, we control ord𝜉 𝜂𝑘 according to the parity of 𝑛 − 1. Here we
encounter the additional problem that the 𝐿2 norms might have contributions from the semi-simple
part of the monodromy 𝑇𝑠 . More precisely, consider the local parameter 𝑡 = 𝜓 − 𝜉 around 𝜉, and write
𝜂𝑝,𝑞 = 𝑡𝑏𝑝,𝑞𝜎𝑝,𝑞 , where 𝜎𝑝,𝑞 trivialises det 𝑅𝑞 𝑓∗Ω

𝑝

Z′/P1 (log). Then by construction of 𝜂𝑝,𝑞 and by
[EFiMM21, Thm. C], we have

log ‖𝜂𝑝,𝑞 ‖
2
L2 = (𝑏𝑝,𝑞 + 𝛼𝑝,𝑞) log |𝑡 |2 + 𝑜(log |𝑡 |2)
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with

𝛼𝑝,𝑞 = −
1

2𝜋𝑖
tr

(
ℓ log𝑇𝑠 | Gr𝑝𝐹∞

𝐻𝑛−1
lim

)
∈ Q.

Here ℓ log refers to the lower branch of the logarithm: that is, with argument in 2𝜋(−1, 0]. Let us
combine all this information:

Odd case: If 𝑛 − 1 is odd, according to Theorem 4.8, if 𝑘 ≤ 𝑛
2 − 1, ord𝜉 𝜂𝑘 = 0 and ord𝜉 𝜂𝑘 = −1

otherwise. In this case the monodromy is unipotent, so that 𝛼𝑝,𝑞 = 0 for all 𝑝 + 𝑞 = 𝑛− 1. Moreover, by
[EFiMM21, Thm. B], we have that log 𝜏BCOV = 𝑛

24 log |𝑡 |2 + 𝑜(log |𝑡 |2). Putting all these contributions
together, we find that

−𝑏 =
𝑛

24
+ (−1)𝑛−1

𝑛−1∑
𝑘=𝑛/2

(𝑛 − 1 − 𝑘) · (−1) =
𝑛(3𝑛 − 5)

24
.

Even case: If 𝑛 − 1 is even, according to Theorem 4.8, if 𝑘 ≤ 𝑛−3
2 , ord𝜉 𝜂𝑘 = 0 and ord𝜉 𝜂𝑘 = −1

otherwise. Also, unless 𝑝 = 𝑞 = (𝑛 − 1)/2, 𝛼𝑝,𝑞 = 0. In the remaining case 𝑝 = 𝑞 = (𝑛 − 1)/2,
by [EFiMM21, Prop. 3.10], we have 𝛼𝑝,𝑝 = 1/2. Finally, from [EFiMM21, Thm. B], we have that
log 𝜏BCOV = 3−𝑛

24 log |𝑡 |2 + 𝑜(log |𝑡 |2). Putting all these contributions together, we find that

−𝑏 =
3 − 𝑛

24
+ (−1)𝑛−1 ���(𝑛 − 1)/2(−1 + 1/2) +

𝑛−1∑
𝑘=(𝑛+1)/2

(𝑛 − 1 − 𝑘) · (−1)��� = −
𝑛(3𝑛 − 5)

24
.

Rationality considerations. To complete the proof of the theorem, we still need to tackle the constant C.
Two sources contribute: i) for 2𝑝 ≠ 𝑛 − 1, the 𝐿2 norms ‖𝜂𝑝,𝑝 ‖L2 are constant; and ii) if 𝑛 − 1 = 2𝑝,
after (5.2), there might be extra contributions from ‖𝜂 𝑛−3

2 , 𝑛−3
2
‖L2 and from ‖𝑣‖L2 .

First for 2𝑝 ≠ 𝑛 − 1. Let 𝜓0 ∈ Q be in the smooth locus so that we have the period isomorphism

𝐻2𝑝 (𝑍𝜓0 ,Ω
•
𝑍𝜓0/Q

) ⊗Q C
∼

−→ 𝐻2𝑝 (𝑍𝜓0 ,Q) ⊗ C.

Taking rational bases on both sides, the determinant can be defined in C×/Q×. It equals (2𝜋𝑖) 𝑝𝑏2𝑝 . Since
‖𝜂𝑝,𝑝 ‖L2 is constant, it can be evaluated at 𝜓 = 𝜓0. We find

‖𝜂𝑝,𝑝 ‖
2
L2 ∼Q× (2𝜋)2𝑝𝑏2𝑝 volL2 (𝐻2𝑝 (𝑍𝜓0 ,Z), 𝜔). (5.4)

Now recall from (2.13) that with the Arakelov theoretic normalisation of the Käh-
ler form, and under the integrality assumption on its cohomology class, we have
volL2 (𝐻2𝑝 (𝑍𝜓0 ,Z), 𝜔) ∼Q× (2𝜋)−2𝑝𝑏2𝑝 . All in all, we arrive at the pleasant

‖𝜂𝑝,𝑝 ‖
2
L2 ∼Q× 1. (5.5)

If 𝑛 − 1 = 2𝑝 is even, we will show that

‖𝜂 𝑛−1
2 , 𝑛−1

2
‖2

L2 ∼Q× ‖𝜂 𝑛−1
2
‖2

L2 , (5.6)

namely that both ‖𝜂 𝑛−3
2 , 𝑛−3

2
‖2

L2 and ‖𝑣‖2
L2 are rational. For 𝜂 𝑛−3

2 , 𝑛−3
2

, this is already known after (5.5).
We will now see that formally the same argument yields the case of v. Since the norm of v is constant,
it is enough to consider the value at any 𝜓0 ∈ Q in the smooth locus. The results in §3.3 and §3.5
show that (V𝜓0 ,V𝜓0) behaves like the pair formed by the rational Betti and algebraic de Rham primitive
cohomologies in degree 𝑛−1 of a smooth projective algebraic variety defined overQ, of dimension 𝑛−1.
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In particular, we have a period isomorphism and a Poincaré type duality induced by the intersection
form. From this, one derives the analogue of (5.4) for v: for any rational basis 𝑣′ of detV𝜓0 , we have

‖𝑣‖2
L2 ∼Q× (2𝜋) (𝑛−1)𝑑 ‖𝑣′‖2

L2 , 𝑑 = dimV𝜓0 .

Now we use that the Hodge structure on V𝜓0 is concentrated in bidegree ((𝑛 − 1)/2, (𝑛 − 1)/2), by
Proposition 3.13, and we take into account the Arakelov theoretic normalisation of the Kähler form. We
readily deduce ‖𝑣′‖2

L2 ∼Q× (2𝜋)−(𝑛−1)𝑑 . All in all, we conclude that ‖𝑣‖2
L2 ∼Q× 1 as desired.

Finally, plug (5.3) into (5.5) in the cases 2𝑝 ≠ 𝑛 − 1 and into (5.6) in the case 2𝑝 = 𝑛 − 1. Also plug
in the value of 𝐶𝜎 furnished by Theorem 2.3, and recall that Δ was determined only up to algebraic
number. We conclude that C has the asserted shape. �

Corollary 5.2. As 𝜓 → ∞, log 𝜏BCOV(𝑍𝜓) behaves as

log 𝜏BCOV(𝑍𝜓) = 𝜅∞ log |𝜓 | −2 + 𝜚∞ log log |𝜓 |−2 + 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, (5.7)

where

𝜅∞ = (−1)𝑛
𝑛 + 1

12

(
(𝑛 − 1) (𝑛 + 2)

2
+

1 − (−𝑛)𝑛+1

(𝑛 + 1)2

)
,

𝜚∞ = (−1)𝑛−1 (𝑛 − 1) (𝑛 + 1)
12

(
(−𝑛)𝑛+1 − 1
(𝑛 + 1)2 − 2𝑛 + 1

)
.

Proof. The general shape (5.7) was proven in [EFiMM21, Prop. 6.8]. The precise value of 𝜅∞ is
(𝑛 + 1) (𝑏 − 𝑎) entirely due to the term

��� (𝜓𝑛+1)𝑎

(1−𝜓𝑛+1)𝑏

��� in Theorem 5.1. Indeed, by Theorem 4.5, the sections
𝜂𝑘 trivialise 𝑅𝑘 𝑓∗Ω𝑛−1−𝑘

Z′/P1 (log)min at infinity, and moreover the monodromy is unipotent there (Lemma
4.3). This entails that the functions log ‖𝜂𝑘 ‖

2
L2 are𝑂 (log log |𝜓 |−2) at infinity and hence do not contribute

to 𝜅∞. For the subdominant term, the expression of [EFiMM21, Prop. 6.8] can be explicitly evaluated
for the mirror family, thanks to the complete understanding of the limiting Hodge structure at infinity
(again Lemma 4.3) and the known value of 𝜒 (Lemma 3.4). �

5.2. Canonical trivialisations of the Hodge bundles at the MUM point

The Picard–Fuchs equation of the mirror
For the mirror family 𝑓 : Z → 𝑈, we review classical facts on the Picard–Fuchs equation of the
local system of middle-degree cohomologies. The discussion serves as the basis for the construction
of canonical trivialising sections of the middle-degree Hodge bundles close to the MUM point, which
differ from the 𝜂𝑘 by some periods.

The starting point is the construction of an invariant (𝑛 − 1)-homological cycle at infinity for the
mirror family 𝑓 : Z → P1. Recall the Dwork pencil ℎ : X → P1, which comes with a natural embedding
in P𝑛×P1. We obtain a ‘physical’ n-cycle Γ in P𝑛 as follows: we place ourselves in the affine piece 𝑥0 ≠ 0
and define Γ by the condition |𝑥𝑖/𝑥0 | = 1 for all i. If 𝜓 ∈ C and |𝜓 |−1 is small, then the fibre 𝑋𝜓 does not
encounter Γ. Therefore, Γ induces a constant family of cycles in 𝐻𝑛 (P

𝑛 \ 𝑋𝜓 ,Q). Notice that these are
clearly G-invariant cycles. The tube map𝐻𝑛−1 (𝑋𝜓 ,Q) → 𝐻𝑛 (P

𝑛\𝑋𝜓 ,Q) is surjective and G-equivariant
and induces an isomorphism 𝐻𝑛−1 (𝑋𝜓 ,Q)prim � 𝐻𝑛 (P

𝑛 \ 𝑋𝜓 ,Q) by [Gri69, Prop. 3.5]. Therefore, we
can find a T-invariant cycle �̃�0 ∈ 𝐻𝑛−1 (𝑋𝜓 ,Q)

𝐺
prim corresponding to Γ. Finally, through the isomorphism

𝐻𝑛−1 (𝑋𝜓 ,Q)
𝐺
prim � 𝐻𝑛−1(𝑍𝜓 ,Q)min deduced by duality from Lemma 3.11 and Proposition 3.13, |𝐺 | · �̃�0

maps to a T-invariant cycle on 𝑍𝜓 , denoted 𝛾0. The convenience of multiplication by |𝐺 | will be clear in a
moment.
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The period integral 𝐼0(𝜓) :=
∫
𝛾0
𝜂0 can be written as an absolutely convergent power series in 𝜓−1.

Indeed, taking into account the relationship between the cup-product on 𝑋𝜓 and 𝑍𝜓 (see, e.g., Lemma
3.6) and the definition of 𝜂0 (see Definition 3.15), we find

𝐼0(𝜓) =
∫
𝛾0

𝜂0 = −
(𝑛 + 1)𝜓

|𝐺 |

∫
|𝐺 | ·𝛾0

𝜃0 = −(𝑛 + 1)𝜓
∫
𝛾0

𝜃0.

For the latter integral, we use that the residue map and the tube map are mutual adjoint and then perform
an explicit computation: if D ⊂ C is the unit disc around 0, we have

𝐼0(𝜓) =
1

(2𝜋𝑖)𝑛

∫
(𝜕D)𝑛

−(𝑛 + 1)𝜓𝑑𝑧1 ∧ . . . ∧ 𝑑𝑧𝑛
𝐹𝜓 (1, 𝑧1, . . . , 𝑧𝑛)

=
∑
𝑗≥0

1
((𝑛 + 1)𝜓) 𝑗

1
(2𝜋𝑖)𝑛

∫
(𝜕D)𝑛

(
1 +

𝑛∑
𝑙=1

𝑧𝑛+1
𝑙

) 𝑗
𝑑𝑧1

𝑧
𝑗+1
1

∧ . . . ∧
𝑑𝑧𝑛

𝑧
𝑗+1
𝑛

=
∑
𝑘≥0

1
((𝑛 + 1)𝜓) (𝑛+1)𝑘

((𝑛 + 1)𝑘)!
(𝑘!)𝑛+1 .

(5.8)

In these integrals, the parameters 𝑧𝑖 are the affine coordinates 𝑥𝑖/𝑥0. To obtain the last equality, we
expand the integrands in the second line with Newton’s multinomial formula and then evaluate the
resulting Cauchy integrals. We conclude that those with 𝑗 ≠ (𝑛 + 1)𝑘 for any k vanish, while those
with 𝑗 = (𝑛 + 1)𝑘 for some k equal ((𝑛 + 1)𝑘)!/(𝑘!)𝑛+1. Equation (5.8) is the period integral used in
Theorem 4.5 to prove that 𝜂0 trivialises 𝑓∗𝐾Z/D∞

(log).
To the local system 𝑅𝑛−1 𝑓∗C, there is an associated Picard–Fuchs equation, which coincides with

that of (𝑅𝑛−1 𝑓∗C)min since the associated Hodge bundles of type (𝑛, 0) are equal. We make the change
of variable 𝑧 = 𝜓−(𝑛+1) so that 𝐼0 becomes

𝐼0(𝑧) =
∑
𝑘≥0

𝑧𝑘

(𝑛 + 1) (𝑛+1)𝑘
((𝑛 + 1)𝑘)!
(𝑘!)𝑛+1 .

Define the differential operators 𝛿 = 𝑧 𝑑
𝑑𝑧 and

𝐷 = 𝛿𝑛 − 𝑧
𝑛∏
𝑗=1

(
𝛿 +

𝑗

𝑛 + 1

)
. (5.9)

Differentiating 𝐼0(𝑧) term by term and repeatedly, one checks 𝐷𝐼0(𝑧) = 0. It is known (see [Gäh13,
Thm. 6] and [CG11, Sec. 1]) that this is the Picard–Fuchs equation of (𝑅𝑛−1ℎ∗C)prim, which necessarily
coincides with that of (𝑅𝑛−1ℎ∗C)

𝐺
prim, and hence 𝑅𝑛−1 𝑓∗C.

We now exhibit all the solutions of the Picard–Fuchs equation. For dimension reasons, these will
determine a multivalued basis of homology cycles. Following Zinger (see, e.g., [Zin08, pp. 1214–1215]),
for 𝑞 = 0, . . . , 𝑛 − 1, we define an a priori formal series 𝐼0,𝑞 by

∞∑
𝑞=0

𝐼0,𝑞 (𝑡)𝑤
𝑞 = 𝑒𝑤𝑡

∞∑
𝑑=0

𝑒𝑑𝑡
∏(𝑛+1)𝑑

𝑟=1 ((𝑛 + 1)𝑤 + 𝑟)∏𝑑
𝑟=1(𝑤 + 𝑟)𝑛+1

=: 𝑅(𝑤, 𝑡).

Let us also define 𝐹 (𝑤, 𝑡) for the infinite sum on the right-hand side so that 𝑅(𝑤, 𝑡) = 𝑒𝑤𝑡𝐹 (𝑤, 𝑡).
Under the change of variable

𝑒𝑡 = (𝑛 + 1)−(𝑛+1) 𝑧 = ((𝑛 + 1)𝜓)−(𝑛+1) , (5.10)

the series 𝐼0,0 (𝑡) becomes 𝐼0(𝑧) = 𝐼0(𝜓) [Zin08, eq. (2–17)].
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Proposition 5.3. Under the change of variable in (5.10), the functions 𝐼0,𝑞 (𝑧), 𝑞 = 0, . . . , 𝑛−1, define a
basis of multivalued holomorphic solutions of the Picard–Fuchs equation for the local system 𝑅𝑛−1 𝑓∗C
on 0 < |𝑧 | < 1.

Proof. We first recall that the Picard–Fuchs equations of 𝑅𝑛−1 𝑓∗C and (𝑅𝑛−1 𝑓∗C)min coincide, and the
latter is a local system of rank n.

After the change of variable, one checks that 𝐹 (𝑤, 𝑧) is absolutely convergent on compact subsets
in the region |𝑤 | < 1 and |𝑧 | < 1. This implies that the functions 𝐼0,𝑞 (𝑧) are multivalued holomorphic
functions on 0 < |𝑧 | < 1. Again taking into account the change of variable, it is formal to verify that
𝑅(𝑤, 𝑡) solves the Picard-Fuchs (5.9), and hence so do the functions 𝐼0,𝑞 (𝑧). To see that they form
a basis of solutions, it is enough to notice that each 𝐼0,𝑞 (𝑧) has a singularity of the form (log 𝑧)𝑞
as 𝑧 → 0. �

An adapted basis of homological cycles
By Proposition 5.3, and because (𝑅𝑛−1 𝑓∗C)min has rank n, the functions 𝐼0,𝑞 (𝑧) determine a flat multi-
valued basis of sections 𝛾𝑞 of (𝑅𝑛−1 𝑓∗C)

∨
min on 0 < |𝑧 | < 1 by the recipe

𝐼0,𝑞 (𝑧) =
∫
𝛾𝑞 (𝑧)

𝜂0.

See, for instance, [Voi99, Sec. 3.4 & Lemme 3.12] for a justification in an analogous situation. The
notation is compatible with the invariant cycle 𝛾0 constructed above, as we already observed that
𝐼0,0 (𝑧) = 𝐼0(𝑧). The flat multivalued basis elements 𝛾𝑞 provide a basis of (𝐻𝑛−1)lim whose underlying
vector space is seen here as the (minimal) homology of the general fibre. We still denote by 𝛾𝑞 this basis
of (𝐻𝑛−1)lim. We next prove that it is adapted to the homological weight filtration, recalled at the end of
§4.1.

Proposition 5.4. Let 𝑊 ′
• be the weight filtration of the limiting mixed Hodge structure on (𝐻𝑛−1)lim.

Then 𝛾𝑞 ∈ 𝑊 ′
2𝑞−2(𝑛−1) \𝑊

′
2𝑞−1−2(𝑛−1) .

Proof. By [Sch73, Lemma (6.4)], the Poincaré duality induces an isomorphism between the weight
filtration 𝑊𝑟 on 𝐻𝑛−1

lim to the dual weight filtration 𝑊 ′
𝑟−2(𝑛−1) on (𝐻𝑛−1)lim. Therefore, it is enough to

establish 𝛾′
𝑞 ∈ 𝑊2𝑞 \𝑊2𝑞−1 for the Poincaré duals 𝛾′

𝑞 ∈ 𝐻𝑛−1
lim .

On each fibre 𝑍𝑧 , the Hodge decomposition and the Cauchy–Schwarz inequality imply

|𝐼0,𝑞 (𝑧) | =

����∫
𝑍𝑧

𝛾′
𝑞 (𝑧) ∧ 𝜂0

���� ≤ (2𝜋)𝑛−1‖𝛾′
𝑞 (𝑧)‖L2 ‖𝜂0‖L2 .

Now |𝐼0,𝑞 (𝑧) | grows like (log |𝑧 |−1)𝑞 as 𝑧 → 0 along angular sectors (see proof of Proposition 5.3).
Because the monodromy is maximally unipotent at infinity and 𝜂0 is a basis of 𝑓∗𝐾Z/D∞

(log), the 𝐿2

norm ‖𝜂0‖L2 grows like (log |𝑧 |−1) (𝑛−1)/2 (see [EFiMM18, Thm. A] or the more general [EFiMM21,
Thm. 4.4]). We infer that as 𝑧 → 0, along angular sectors,

‖𝛾′
𝑞 (𝑧)‖L2 � (log |𝑧 |−1)

2𝑞−(𝑛−1)
2 .

By Schmid’s metric characterisation of the limiting Hodge structure [Sch73, Thm. 6.6], we then see that
𝛾′
𝑞 ∉ 𝑊2𝑞−1.

It remains to show that 𝛾′
𝑞 ∈ 𝑊2𝑞 . First, starting with 𝑞 = 𝑛−1, we already know 𝛾′

𝑛−1 ∈ 𝑊2𝑛−2\𝑊2𝑛−3.
We claim that 𝛾′

𝑛−2 ∈ 𝑊2𝑛−4. Otherwise 𝛾′
𝑛−2 ∈ 𝑊2𝑛−2 \ 𝑊2𝑛−4. But the weight filtration has one-

dimensional graded pieces in even degrees, and zero otherwise (see Lemma 4.3). It follows that𝑊2𝑛−4 =
𝑊2𝑛−3 and 𝛾′

𝑛−1 = 𝜆𝛾′
𝑛−2 + 𝛽, for some constant 𝜆 and some 𝛽 ∈ 𝑊2𝑛−4. Integrating against 𝜂0, this
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relation entails

𝐼0,𝑛−1 (𝑧) = 𝜆𝐼0,𝑛−2(𝑧) +

∫
𝑍𝑧

𝛽(𝑧) ∧ 𝜂0,

where 𝛽(𝑧) is the flat multivalued section corresponding to 𝛽. Let us examine the asymptotic behaviour
of the right-hand side of this equality, as 𝑧 → 0, along angular sectors. We know that |𝐼0,𝑛−2 (𝑧) | grows
like (log |𝑧 |−1)𝑛−2. By the Hodge decomposition, the Cauchy–Schwarz inequality and Schmid’s theorem,
the integral grows at most like (log |𝑧 |−1)𝑛−2. This contradicts that |𝐼0,𝑛−1 (𝑧) | grows like (log |𝑧 |−1)𝑛−1.
Hence 𝛾′

𝑛−2 ∈ 𝑊2𝑛−4. Continuing inductively in this fashion, we conclude that 𝛾′
𝑞 ∈ 𝑊2𝑞 for all q, as

desired. �

A normalised basis of 𝑹𝒏−1 𝒇∗𝛀•
Z/D∞

(log)min

We construct a basis of holomorphic sections of 𝑅𝑛−1 𝑓∗Ω•
Z/D∞

(log)min close to infinity, which corre-
spond to the period integrals 𝐼𝑝,𝑞 (𝑧). We proceed inductively:

1. Set 𝜗0 = 𝜂0.
2. For 𝑝 ≥ 1, suppose that 𝜗0, . . . , 𝜗𝑝−1 have been constructed. Define

𝐼𝑝−1,𝑞 (𝑧) =
∫
𝛾𝑞 (𝑧)

𝜗𝑝−1.

This notation is consistent with the previous definition of 𝐼0,𝑞;
3. As by [Zin09, Prop. 3.1], in turn based on [ZZ08], the integral 𝐼𝑝−1, 𝑝−1(𝑧) is holomorphic and

nonvanishing at 𝑧 = 0, we can define 𝜗𝑝 by

𝜗𝑝 = ∇𝑧𝑑/𝑑𝑧

(
𝜗𝑝−1

𝐼𝑝−1, 𝑝−1(𝑧)

)
. (5.11)

One verifies, integrating (5.11) over 𝛾𝑞 (𝑧), that the period integrals 𝐼𝑝,𝑞 (𝑧) :=
∫
𝛾𝑞 (𝑧)

𝜗𝑝 satisfy the
following recursion:

𝐼𝑝,𝑞 (𝑧) = 𝑧
𝑑

𝑑𝑧

(
𝐼𝑝−1,𝑞 (𝑧)

𝐼𝑝−1, 𝑝−1(𝑧)

)
. (5.12)

Taking into account the change of variable in (5.10), we see that this is the same recurrence relation as
in [Zin08, eq. (2–18)] (see also [Zin09, eq. (0.16)]). Hence the 𝐼𝑝,𝑞 (𝑧) above coincides with the 𝐼𝑝,𝑞 (𝑡)
in [Zin08]. We further normalise

𝜗𝑝 =
𝜗𝑝

𝐼𝑝,𝑝 (𝑧)
.

Proposition 5.5.

1. For all k, the sections {𝜗 𝑗 } 𝑗=0,...,𝑘 , constitute a holomorphic basis of the filtered piece
F 𝑛−1−𝑘𝑅𝑛−1 𝑓∗Ω•

Z/D∞
(log)min.

2. The periods of 𝜗𝑘 satisfy ∫
𝛾𝑘

𝜗𝑘 = 1 and
∫
𝛾𝑞

𝜗𝑘 = 0 if 𝑞 < 𝑘.
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3. The projection of 𝜗𝑘 to 𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/D∞

(log)min relates to 𝜂𝑘 by

(𝜗𝑘 )
𝑛−1−𝑘,𝑘 =

(−1)𝑘

(𝑛 + 1)𝑘
𝜂𝑘∏𝑘

𝑝=0 𝐼𝑝,𝑝 (𝑧)
.

4. The sections {𝜗 𝑗 } 𝑗=0,...,𝑛−1 are uniquely determined by properties in (1)-(2) above.

Proof. We noticed that the period integrals 𝐼𝑝,𝑝 (𝑧) are holomorphic in z and nonvanishing at 𝑧 = 0.
With this observation at hand, the claims in (1)-(2) then follow from properties of the Gauss–Manin
connection and Kodaira–Spencer maps, Lemma 3.17 and Theorem 4.5. From 𝜗0 = 𝜂0 = −(𝑛 + 1)𝜓𝜃0
and the recursion (3.12) for 𝜃𝑘 , the definition in (5.11) further normalised gives

𝜗𝑘 = (−1)𝑘−1(𝑛 + 1)𝜓𝑘+1 𝜃𝑘∏𝑘
𝑝=0 𝐼𝑝,𝑝 (𝑧)

mod F 𝑛−1−(𝑘−1)𝑅𝑛−1 𝑓∗Ω
•
Z/D∞

(log)min.

As 𝜃𝑘 maps to 𝜂◦𝑘 = −
𝜂𝑘

(𝑛+1)𝑘+1𝜓𝑘+1 in the Hodge bundle (𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/𝑈

)min, this proves (3). The uniqueness
property in (4) is obtained by comparing two such bases adapted to the Hodge filtration as in (1) and
then imposing the period relations in (2). �

Actually, the basis 𝜗• = {𝜗 𝑗 } 𝑗=0,...,𝑛−1 is determined by the limiting Hodge structure 𝐻𝑛−1
lim , up to

constant, as we now show:

Proposition 5.6.

1. Let 𝛾′
• be an adapted basis of the weight filtration on (𝐻𝑛−1)lim, as in Proposition 5.4. Then there

exists a unique holomorphic basis 𝜗′
• of 𝑅𝑛−1 𝑓∗Ω•

Z/D∞
(log)min satisfying the conditions analogous

to (1)-(2) with respect to 𝛾′
•.

2. There exist nonzero constants 𝑐𝑘 ∈ C such that 𝜗′
𝑘 = 𝑐𝑘𝜗𝑘 .

Proof. We prove both assertions simultaneously. We write 𝛾• and 𝛾′
• as column vectors. Since the graded

pieces of the weight filtration on (𝐻𝑛−1)lim are all one-dimensional, there exists a lower triangular matrix
𝐴 ∈ GL𝑛 (C) with 𝛾′

• = 𝐴𝛾•. If we decompose 𝐴 = 𝐷 + 𝐿, where D is diagonal and L is lower triangular,
we see that the entries of the column vector 𝜗′

• := 𝐷−1𝜗• fulfill the requirements. �

Definition 5.7. We define the canonical trivialising section of 𝑅𝑘 𝑓∗Ω𝑛−1−𝑘
Z/D∞

(log)min to be

𝜂𝑘 = (𝜗𝑘 )
𝑛−1−𝑘,𝑘 =

(−1)𝑘

(𝑛 + 1)𝑘
𝜂𝑘∏𝑘

𝑝=0 𝐼𝑝,𝑝 (𝑧)
.

By the previous proposition, up to constants, the sections 𝜂𝑘 depend only on (𝐻𝑛−1)lim, or equivalently
𝐻𝑛−1

lim by Poincaré duality. These constructions are part of a wider framework about distinguished sections
for degenerations of Hodge–Tate type. It is discussed in more detail in §6.2.

5.3. Generating series of Gromov–Witten invariants and Zinger’s theorem

To state Zinger’s theorem on generating series of Gromov–Witten invariants of genus one, and for
coherence with the notations of this author, it is now convenient to work in the t variable instead of z.
The mirror map in Zinger’s normalisations is the change of variable

𝑡 ↦→ 𝑇 =
𝐼0,1 (𝑡)

𝐼0,0 (𝑡)
=

∫
𝛾1 (𝑡)

𝜂0∫
𝛾0 (𝑡)

𝜂0
. (5.13)
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Notice that this differs by a factor 2𝜋𝑖 from the more standard Morrison’s mirror map [Mor93] used in
the introduction. The Jacobian of the mirror map is computed from (5.12)

𝑑𝑇

𝑑𝑡
= 𝐼1,1(𝑡).

Let us introduce some last notations:

• 𝑋𝑛+1 denotes a general degree 𝑛 + 1 hypersurface in P𝑛.
• 𝑁1 (0) = −

(
(𝑛−1) (𝑛+2)

48 +
1−(−𝑛)𝑛+1

24(𝑛+1)2

)
= 1

24

(
−

𝑛(𝑛+1)
2 +

𝜒 (𝑋𝑛+1)
𝑛+1

)
.

• 𝑁1 (𝑑) is the genus 1 and degree d Gromov-Witten invariant of 𝑋𝑛+1 (𝑑 ≥ 1).

From these invariants, we build a generating series:

𝐹𝐴
1 (𝑇) = 𝑁1 (0)𝑇 +

∞∑
𝑑=1

𝑁1 (𝑑)𝑒
𝑑𝑇 . (5.14)

It follows from [Zin08, Thm. 2] that this generating series satisfies

𝐹𝐴
1 (𝑇) = 𝑁1 (0)𝑡 +

(𝑛 + 1)2 − 1 + (−𝑛)𝑛+1

24(𝑛 + 1)
log 𝐼0,0(𝑡)

−

⎧⎪⎪⎨⎪⎪⎩
𝑛
48 log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) +

∑(𝑛−2)/2
𝑝=0

(𝑛−2𝑝2)
8 log 𝐼𝑝,𝑝 (𝑡), if 𝑛 even

𝑛−3
48 log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) +

∑(𝑛−3)/2)
𝑝=0

(𝑛+1−2𝑝) (𝑛−1−2𝑝)
8 log 𝐼𝑝,𝑝 (𝑡) if 𝑛 odd .

This identity has to be understood in the sense of formal series. As an application of relations between
the hypergeometric series 𝐼𝑝,𝑝 (𝑡), studied in detail in [ZZ08], the following identity holds (for a version
of this particular identity, see [Zin09, eq. (3.2)]):

𝑛(3𝑛 − 5)
48

log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) +
1
2

𝑛−2∑
𝑝=0

(
𝑛 − 𝑝

2

)
log 𝐼𝑝,𝑝 (𝑡)

=

⎧⎪⎪⎨⎪⎪⎩
𝑛
48 log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) +

∑(𝑛−2)/2
𝑝=0

(𝑛−2𝑝2)
8 log 𝐼𝑝,𝑝 (𝑡), if 𝑛 even

𝑛−3
48 log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) +

∑(𝑛−3)/2)
𝑝=0

(𝑛+1−2𝑝) (𝑛−1−2𝑝)
8 log 𝐼𝑝,𝑝 (𝑡) if 𝑛 odd .

Consequently, Zinger’s theorem takes the following pleasant form that we will use to simplify the task
of recognising 𝐹𝐴

1 (𝑇) in our expression for the BCOV invariant (see Theorem 5.1).

Theorem 5.8 (Zinger). Under the change of variables 𝑡 ↦→ 𝑇 , the series 𝐹𝐴
1 (𝑇) takes the form

𝐹𝐴
1 (𝑇) = 𝑁1 (0)𝑡 +

𝜒(𝑋𝑛+1)

24
log 𝐼0,0(𝑡)

−
𝑛(3𝑛 − 5)

48
log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) −

1
2

𝑛−2∑
𝑝=0

(
𝑛 − 𝑝

2

)
log 𝐼𝑝,𝑝 (𝑡).

(5.15)

A final remark on the holomorphicity of 𝐹𝐴
1 (𝑇) is in order. While Theorem 5.8 is a priori an identity

of formal series, the right-hand side of (5.15) is actually a holomorphic function in t, for Re 𝑡 � 0. Then
via the mirror map, 𝐹𝐴

1 (𝑇) acquires the structure of a holomorphic function in T. One can check that
the domain of definition is a half-plane Re𝑇 � 0.
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5.4. Genus one mirror symmetry and the BCOV invariant

We are now in position to show that the BCOV invariant of the mirror family 𝑓 : Z → 𝑈 realises
genus one mirror symmetry for Calabi–Yau hypersurfaces in projective space. That is, one can extract
the generating series 𝐹𝐴

1 (𝑇) from the function 𝜓 ↦→ 𝜏BCOV(𝑍𝜓). The precise recipe by which this is
accomplished goes through expressing 𝜏BCOV in terms of the 𝐿2 norms of the canonical sections 𝜂𝑘 (see
Definition 5.7). But first, we need to make 𝜏BCOV(𝑍𝜓) and 𝐹𝐴

1 (𝑇) depend on the same variable. To this
end, we let

𝐹𝐵
1 (𝜓) = 𝐹𝐴

1 (𝑇), for 𝑇 =
𝐼0,1(𝑡)

𝐼0,0(𝑡)
and 𝑒𝑡 = ((𝑛 + 1)𝜓)−(𝑛+1) . (5.16)

Theorem 5.9. In a neighbourhood of 𝜓 = ∞, there is an equality

𝜏BCOV(𝑍𝜓) = 𝐶
���exp

(
(−1)𝑛−1𝐹𝐵

1 (𝜓)
)��� 4 ‖𝜂0‖

𝜒/6
L2(∏𝑛−1

𝑘=0 ‖𝜂𝑘 ‖
2(𝑛−1−𝑘)
L2

) (−1)𝑛−1 ,

where 𝜒 = 𝜒(𝑍𝜓) and 𝐶 ∈ 𝜋𝑐Q×
>0, 𝑐 = 1

2
∑

𝑘 (−1)𝑘+1𝑘2𝑏𝑘 .

Proof. The proof is a simple computation, which consists of changing the variable T to 𝜓, using (5.16),
in the expression for 𝐹𝐴

1 (𝑇) provided by Theorem 5.8. For the computation, recall that for a smooth
hypersurface 𝑋𝑛+1 in P𝑛, 𝜒(𝑋𝑛+1) = (−1)𝑛−1𝜒. Modulo log of rational numbers, we find

4𝐹𝐴
1 (𝑇) =

(
−
𝑛(𝑛 + 1)

12
+
𝜒(𝑋𝑛+1)

6(𝑛 + 1)

)
𝑡 +

𝜒(𝑋𝑛+1)

6
log 𝐼0,0(𝑡)

−
𝑛(3𝑛 − 5)

12
log(1 − (𝑛 + 1)𝑛+1𝑒𝑡 ) − 2

𝑛−2∑
𝑝=0

(
𝑛 − 𝑝

2

)
log 𝐼𝑝,𝑝 (𝑡)

=

(
𝑛(𝑛 + 1)

12
−
𝜒(𝑋𝑛+1)

6(𝑛 + 1)
+
𝑛(3𝑛 − 5)

12

)
log(𝜓𝑛+1)

−
𝑛(3𝑛 − 5)

12
log(𝜓𝑛+1 − 1) +

𝜒(𝑋𝑛+1)

6
log 𝐼0,0(𝑡) − 2

𝑛−2∑
𝑝=0

(
𝑛 − 𝑝

2

)
log 𝐼𝑝,𝑝 (𝑡)

= (−1)𝑛−1 log
(𝜓𝑛+1)2𝑎

(𝜓𝑛+1 − 1)2𝑏 + (−1)𝑛−1 𝜒

6
log 𝐼0,0(𝑡) − 2

𝑛−2∑
𝑝=0

(
𝑛 − 𝑝

2

)
log 𝐼𝑝,𝑝 (𝑡).

Now, in terms of the canonical trivialising sections 𝜂𝑘 given in Definition 5.7, Theorem 5.1 becomes

𝜏BCOV(𝑍𝜓) = 𝐶

���� (𝜓𝑛+1)𝑎

(1 − 𝜓𝑛+1)𝑏

���� 2 |𝐼0,0 (𝑡) |
𝜒/6(∏𝑛−2

𝑝=0 |𝐼𝑝,𝑝 (𝑡) |
2(𝑛−𝑝2 )

) (−1)𝑛−1

‖𝜂0‖
𝜒/6
L2(∏𝑛−1

𝑘=0 ‖𝜂𝑘 ‖
2(𝑛−1−𝑘)
L2

) (−1)𝑛−1 . �

Remark 5.10.

1. In relative dimension 3, we recover the main theorem of Fang–Lu–Yoshikawa [FLY08, Thm. 1.3].
Their result is presented in a slightly different form. The first formal discrepancy is in the choice
of the trivialising sections. Their trivialisations can be related to ours via Kodaira–Spencer maps.
The second discrepancy is explained by a different normalisation of 𝐹𝐴

1 : they work with two times
Zinger’s generating series. This justifies why their expression for the BCOV invariant contains
| exp(−𝐹𝐵

1 (𝜓)) |2, while our formula in dimension 3 specialises to | exp(−𝐹𝐵
1 (𝜓)) |4.
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2. The norms of the sections 𝜂𝑘 are independent of the choice of crepant resolution. It follows that the
expression on the right-hand side in Theorem 5.9 is independent of the crepant resolution, except
possibly for the constant C. In [EFiMM21, Conj. B], we conjectured that the BCOV invariant is a
birational invariant. A proof of this conjecture has been announced in [Zha20, FZ20]. Thus C should
be independent of the choice of crepant resolution.

Corollary 5.11.

1. The invariant 𝑁1 (0) satisfies

𝑁1 (0) =
−1
24

∫
𝑋𝑛+1

c𝑛−2 (𝑋𝑛+1) ∧ 𝐻,

where H is the hyperplane class in P𝑛.
2. As 𝜓 → ∞, log 𝜏BCOV(𝑍𝜓) behaves as

log 𝜏BCOV(𝑍𝜓) =

(
(−1)𝑛

12

∫
𝑋𝑛+1

c𝑛−2 (𝑋𝑛+1) ∧ 𝐻

)
log

���𝜓−(𝑛+1)
��� 2 +𝑂 (log log |𝜓 |). (5.17)

Proof. The sought-for interpretation of 𝑁1 (0), or equivalently for the coefficient 𝜅∞ in Corollary 5.2,
is obtained by an explicit computation of and comparison to

∫
𝑋𝑛+1

c𝑛−1 (Ω𝑋𝑛+1 ) ∧ 𝐻. Indeed, by the
cotangent exact sequence for the immersion of 𝑋𝑛+1 into P𝑛, this reduces to∫

𝑋𝑛+1

c𝑛−2 (Ω𝑋𝑛+1 ) ∧ 𝐻 =
(−1)𝑛−1

𝑛 + 1
𝜒(𝑋𝑛+1) −

∫
P𝑛

c𝑛−1 (ΩP𝑛 ) ∧ 𝐻,

and we have explicit formulas for both terms on the right. This settles both the first and second claims. �

Remark 5.12. The asymptotic expansion (5.17) has been written in the variable 𝜓−(𝑛+1) on purpose
since this is the natural parameter in a neighbourhood of the MUM point in the moduli space. In this
form, the equation agrees with the predictions of genus one mirror symmetry (see [EFiMM21, Sec. 1.4]
for a discussion).

6. The refined BCOV conjecture

In this section, we propose an alternative approach to genus one mirror symmetry for Calabi–Yau
manifolds, which bypasses spectral theory and is closer in spirit to the genus zero picture. The counterpart
of the Yukawa coupling on the mirror side will now be a Grothendieck–Riemann–Roch isomorphism
(GRR) of line bundles built out of Hodge bundles. As in the case of the Yukawa coupling, one seeks
canonical trivialisations of these Hodge bundles, and the expression of the GRR isomorphism in these
trivialisations should then encapsulate the genus one Gromov–Witten invariants of the original Calabi–
Yau manifold. This is our interpretation of the holomorphic limit of the BCOV invariant. We refer to
this conjectural program as the refined BCOV conjecture.

6.1. The Grothendieck–Riemann–Roch isomorphism

Let 𝑓 : X → 𝑆 be a projective morphism of connected complex manifolds whose fibres are Calabi–
Yau manifolds. Recall from (2.6) that the BCOV bundle 𝜆BCOV(X /𝑆) is defined as a combination of
determinants of Hodge bundles. Its formation commutes with arbitrary base change.

Conjecture 1. For every projective family of Calabi–Yau manifolds 𝑓 : X → 𝑆 as above, there exists a
natural isomorphism of line bundles, compatible with any base change,

GRR(X /𝑆) : 𝜆BCOV(X /𝑆)⊗12𝜅 ∼
−→ ( 𝑓∗𝐾X /𝑆)

⊗𝜒𝜅 . (6.1)
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Here 𝜒 is the Euler characteristic of any fibre of f, and 𝜅 only depends on the relative dimension of f.

Below, we present some arguments in favour of the conjecture.

• Applying this to the universal elliptic curve, the right-hand side becomes trivial in view of 𝜒 = 0.
This suggests that the left-hand side is trivial. It is indeed trivialised by the discriminant modular
form Δ , with 𝜅 = 1. For higher-dimensional abelian varieties, both sides are trivial, and the identity
provides a natural isomorphism.

• For 𝐾3 surfaces, both sides are identical, and the identity provides a natural isomorphism. See in
particular Proposition 6.14. The referee kindly communicated to us a proof of the analogue of the
conjecture for Enriques surfaces, relying on the works about analytic torsions and the Borcherds’
Φ-function by Kawaguchi–Mukai–Yoshikawa [KMY18], Dai–Yoshikawa [DY20] and Yoshikawa
[Yos04].

• In the category of schemes, a natural isomorphism of Q-line bundles up to sign exists by work
of Franke [Fra92] and the first author [Eri08]. It is compatible with the arithmetic Riemann–Roch
theorem but is far more general and stronger.

The following proposition establishes a version of Conjecture 1 in the setting of arithmetic varieties
(see Section 2.3). This is an application of the arithmetic Riemann–Roch theorem 2.3. Recall that
an arithmetic ring A comes together with a finite collection of complex embeddings Σ, closed under
complex conjugation. We will write 𝐴×,1 for the group of elements 𝑢 ∈ 𝐴× with |𝜎(𝑢) | = 1 for all
embedding 𝜎 ∈ Σ. For instance, if A is the ring of integers of a number field, then 𝐴×,1 is a finite group.
If 𝐴 = Q or R, then 𝐴×,1 = {±1}. If 𝐴 = C, then 𝐴×,1 is the unit circle in C.

Proposition 6.1. Let 𝑓 : X → 𝑆 be a smooth projective morphism of arithmetic varieties over an
arithmetic ring A, with Calabi–Yau fibres. Let 𝑋∞ be the generic fibre of f, and write 𝜒 = 𝜒(𝑋∞).
Assume that 𝑆 → Spec 𝐴 is surjective and has geometrically connected fibres.

1. There exist an integer 𝜅 ≥ 1 and an isomorphism of line bundles on S

GRR : 𝜆BCOV(X /𝑆)⊗12𝜅 ∼
−→ ( 𝑓∗𝐾X /𝑆)

⊗𝜒𝜅 ,

with the property of being an isometry for the Quillen-BCOV and 𝐿2 metrics on 𝜆BCOV(X /𝑆) and
𝑓∗𝐾X /𝑆 , respectively.

2. If GRR′ is another such isomorphism, for another choice of integer 𝜅′ ≥ 1, then

GRR′ ⊗𝜅 = GRR ⊗𝜅′

up to multiplication by some 𝑢 ∈ 𝐴×,1. Consequently, the formation of GRR is compatible with any
base change between geometrically connected arithmetic varieties over A, up to the power 𝜅 and
multiplication by a unit in 𝐴×,1.

Proof. The first claim is a restatement of the identity in (2.9) in ĈH
1
(𝑆)Q, together with the isomorphism

ĉ1 : P̂ic(𝑆) ∼
→ ĈH

1
(𝑆) and the very definition of P̂ic(𝑆) as the group of isomorphism classes of hermitian

line bundles over S.
For the second claim, notice that both GRR′ ⊗𝜅 and GRR ⊗𝜅′ induce isometries between the her-

mitian line bundles 𝜆BCOV(X /𝑆)⊗12𝜅𝜅′ and ( 𝑓∗𝐾X /𝑆)
⊗𝜒𝜅𝜅′ , endowed with the Quillen-BCOV and 𝐿2

metrics, respectively. These isomorphisms differ by multiplication by a unit 𝑢 ∈ Γ(𝑆,O×
𝑆 ). The isome-

try property guarantees that the induced holomorphic function on 𝑆an has modulus one and is constant
on the connected components. Hence, if we fix 𝜎 ∈ C, u is constant on 𝑆an

𝜎 . If we see u in Γ(𝑆𝜎 ,O×
𝑆𝜎

),
we infer from this that it satisfies the descent condition with respect to 𝑆𝜎 → SpecC. It follows that u
already satisfies the descent condition with respect to 𝑆 → Spec 𝐴. This is easily seen if S is affine by
the flatness of 𝑆 → Spec 𝐴, and in general one may replace S by the disjoint union of the open subsets
of an affine covering of S. Because 𝑆 → Spec 𝐴 is actually faithfully flat by assumption, we conclude

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.13


44 Dennis Eriksson et al.

that 𝑢 ∈ 𝐴×. Now u has modulus one as a function on 𝑆an, which exactly means 𝑢 ∈ 𝐴×,1. The base
change property then follows from the compatibility of 𝜆BCOV(X /𝑆) and 𝑓∗𝐾X /𝑆 with base change and
the fact that the Quillen and Hodge metrics are preserved as well. �

Remark 6.2.

1. If 𝐴×,1 is a finite group of order d, then the second claim of the corollary entails

GRR′ ⊗𝑑𝜅 = GRR ⊗𝑑𝜅′ .

Therefore, after possibly adjusting 𝜅, the isomorphism is uniquely determined.
2. The proposition applies to the mirror family of Calabi–Yau hypersurfaces studied in Section 3. Here

𝐴 = Q, and therefore the resulting isomorphism is determined by the previous remark.

6.2. Strongly unipotent monodromy and distinguished sections

The below discussion is based on [Del] and [Mor97, §6.3, §7.1].

Hodge–Tate structures
Let (𝑉, 𝐹•,𝑊•) be a mixed Hodge structure on a Q-vector space V, where 𝐹• is the decreasing Hodge
filtration of𝑉C and𝑊• is the increasing weight filtration of V. We also write𝑊• for the induced filtrations
on 𝑉R and 𝑉C.

Definition 6.3. A mixed Hodge structure is Hodge–Tate if the Hodge filtration is opposite to the weight
filtration, in the sense that for any k, the natural map

𝐹𝑘 ⊕𝑊2𝑘−2 → 𝑉C

is an isomorphism. Equivalently if the following two conditions are satisfied:

1. Gr𝑊2𝑘 𝑉 = 𝑊2𝑘/𝑊2𝑘−1 is isomorphic to a sum of Tate twists Q(−𝑘). In other words, it is purely of
type (𝑘, 𝑘).

2. Gr𝑊2𝑘+1𝑉 = {0}.

According to [Del, §6], if a limiting Hodge structure has this property, it should be viewed as
maximally degenerate. An example of this situation is 𝐻𝑛−1

lim for the mirror family around ∞, as explained
in the proof of Lemma 4.3. For Calabi–Yau degenerations overD×, this condition on the limiting middle
Hodge structure implies that the monodromy is maximally unipotent.

It follows from the definition of Hodge–Tate mixed Hodge structure that the natural map

𝐹 𝑝/𝐹 𝑝+1 ↩→ 𝑉C/𝐹
𝑝+1 = (𝐹 𝑝+1 ⊕𝑊2𝑝)/𝐹

𝑝+1 → 𝑊2𝑝 → 𝑊2𝑝/𝑊2𝑝−2 (6.2)

is an isomorphism and that there are natural isomorphisms

𝐹 𝑝 ∩𝑊2𝑝 � Gr𝑊2𝑝 (𝑉C) (6.3)

and

𝐹 𝑝 ∩𝑊2𝑝 � Gr𝑝𝐹 (𝑉C) (6.4)

compatible with the isomorphism in (6.2).
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Distinguished sections
Suppose now that we are provided a variation of integrally polarised Hodge structures (VZ,F •) of
weight w over D× = (D×)𝑑 . Here VZ is an integral local system, and F 𝑝 is the Hodge filtration of
V := VZ ⊗Z OD× . Denote by ∇ the flat connection on V , and suppose the local monodromies are
unipotent. Denote by 𝑇𝑗 the endomorphism of the local system VZ given by the monodromy around the
coordinate axis (𝑠 𝑗 = 0) of (D×)𝑑 . Consider the family of operators 𝑁 𝑗 := log𝑇𝑗 over D×. LetW𝑘 be
the associated increasing weight monodromy filtration of VQ, and also consider the associated vector
bundle W𝑘 = W𝑘 ⊗ OD× . The bundle W𝑘 is preserved by ∇ and satisfies 𝑁 𝑗W𝑘 ⊆ W𝑘−2, and for any
positive real numbers 𝑎 𝑗 > 0, with 𝑁 =

∑
𝑎 𝑗𝑁 𝑗 , we have an isomorphism

𝑁 𝑘 : Gr𝑊𝑤+𝑘 VR → Gr𝑊𝑤−𝑘 VR.

By the results of Schmid [Sch73], associated to (VZ,F •) and for any base point 𝑠 ∈ D×, there is a
limiting mixed Hodge structure𝑉lim onVQ,𝑠 . Its weight filtration is given byW𝑘,𝑠 . The following lemma
can be found in [Del, Sec. 6]:

Lemma 6.4. If 𝑉lim is Hodge–Tate, then, after possibly shrinking D×, (VZ,F 𝑝 ,W𝑘 ) is a variation
of mixed Hodge structures over D× with the same Hodge numbers as 𝑉lim. In particular, the natural
morphism F 𝑝 ⊕ W2𝑝−2 → V is an isomorphism over D×.

Remark 6.5. The Hodge and the weight filtrations on V extend as subvector bundles of the Deligne
extension Ṽ over D. The extended filtrations continue to be opposite in the sense of Lemma 6.4.

From now on, we suppose the limiting Hodge structure is Hodge–Tate. In this setting, af-
ter Lemma 6.4, we have the analogues of the isomorphisms in (6.2), (6.3) and (6.4), namely
isomorphisms

F 𝑝/F 𝑝+1 → W2𝑝/W2𝑝−2, (6.5)

F 𝑝 ∩W2𝑝 � Gr𝑊2𝑝 V (6.6)

and

F 𝑝 ∩W2𝑝 � Gr𝑝𝐹 V . (6.7)

Since 𝑁 𝑗W2𝑝 ⊆ W2𝑝−2 ⊆ W2𝑝−1, 𝑁 𝑗 and hence the monodromy act trivially on the local system
Gr𝑊2𝑝 VQ, which is thus constant. In particular, Gr𝑊2𝑝 V is a trivial flat vector bundle. We abusively often
identify this trivial local system with the vector space 𝐻0(D×,Gr𝑊2𝑝 VQ).

Definition 6.6. The distinguished sections of F 𝑝/F 𝑝+1 are the global sections corresponding to
Gr𝑊2𝑝 VC ⊆ Gr𝑊2𝑝 (V) under the isomorphism in (6.5). A basis of distinguished sections will be called a
distinguished basis. It is unique up to a matrix transformation with constant complex coefficients.

For the determinant bundles, we have the following corollary:

Corollary 6.7. Keep the notations and assumptions of Definition 6.6. The exterior products of a distin-
guished basis provides a local frame for det(F 𝑝/F 𝑝+1).

Any frame as in the corollary will be called a distinguished trivialisation. It is unique up to a scalar
constant in C×.

Remark 6.8. Using the integral lattice VZ, one naturally defines an integral structure Gr𝑊2𝑘 VZ on
Gr𝑊2𝑘 VQ. Accordingly, there are integral distinguished sections and trivialisations. The corresponding
integral distinguished trivialisation of det(F 𝑝/F 𝑝+1) is unique up to sign.
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Suppose now that we are in the geometric case of a projective family of complex manifolds
𝑓 : X → D×, endowed with a relatively ample line bundle. We assume that for any k, 𝑅𝑘 𝑓∗Z is a
local system with unipotent local monodromies. Each variation (𝑅𝑘 𝑓∗Q)prim is integrally polarised, and
Schmid’s theory in [Sch73] recalled above applies. By the Lefschetz decomposition, 𝑅𝑘 𝑓∗Q admits a
limiting Hodge structure and in particular a monodromy weight filtration W•. The constructions are
independent of the choice of ample line bundle.

In the geometric case, we can provide an alternative description of the distinguished sections in terms
of the behaviour of periods:

Lemma 6.9. If the local monodromies of 𝑅𝑘 𝑓∗C are unipotent and the limiting Hodge structure is
Hodge–Tate, the distinguished sections of F 𝑝/F 𝑝+1 uniquely correspond to elements 𝜂 ∈ F 𝑝 such that

1.
∫
𝛾
𝜂 = 0 for all multivalued flat homology cycles 𝛾 inW′

−2𝑝−2 ⊆ (𝑅𝑘 𝑓∗C)
∨.

2.
∫
𝛾
𝜂 is constant for all multivalued flat homology cycles 𝛾 inW′

−2𝑝 ⊆ (𝑅𝑘 𝑓∗C)
∨.

Proof. By definition of the dual weight filtration recalled at the end of §4.1 and (6.7), we can identify
Gr𝑝𝐹 V with the set of sections of F 𝑝 whose periods along cycles in W′

−2𝑝−2 vanish. Moreover, by
(6.6), 𝜂 ∈ F 𝑝 ∩ W2𝑝 corresponds to a distinguished section exactly when ∇𝜂 ∈ W2𝑝−2 ⊗ Ω1

D× .
This in turn is equivalent to

∫
𝛾
∇𝜂 = 0 for all 𝛾 of W′

−2𝑝 . The statement then follows from the
formula

𝑑

(∫
𝛾
𝜂

)
=

∫
𝛾
∇𝜂

for flat multivalued homology sections 𝛾. �

Strongly unipotent monodromy degenerations
Definition 6.10. We say that a projective family 𝑓 : X → D× of complex manifolds is of strongly
unipotent monodromy if

1. for all 𝑘 ≥ 0, all local monodromies 𝑅𝑘 𝑓∗Q are unipotent;
2. for all 𝑘 ≥ 0, the variations of Hodge structures associated to the local systems 𝑅𝑘 𝑓∗Q have limits at

0 that are Hodge–Tate.

In the situation of a family of Calabi–Yau manifolds in relative dimension 3 with one-dimensional
complex moduli, with ℎ1,0 = ℎ2,0 = 0 and unipotent monodromies, strongly unipotent monodromy
is equivalent to 𝑁3 ≠ 0 on 𝐻3

lim. This is the usual definition of maximally unipotent monodromy. In
general, for a family of Calabi–Yau manifolds 𝑓 : X → D× of relative dimension n, the definition of
strongly maximally unipotent monodromy is stronger than imposing that 𝑁𝑛 ≠ 0 on 𝑅𝑛 𝑓∗C.

We now show that our results on the mirror family 𝑓 : Z → D×
∞ provide an example of the previous

phenomena and constructions. In preparation for the discussion, recall the minimal decomposition
introduced in Proposition 3.13, and in particular the local system V and its associated flat vector
bundle V .

Lemma 6.11. The mirror family 𝑓 : Z → D×
∞ has strongly unipotent monodromy.

Proof. Outside the middle cohomology 𝑛−1, being Hodge–Tate follows from the fact that the variation
of Hodge structures associated to 𝑅2𝑝 𝑓∗Q is purely of type (𝑝, 𝑝) (see Lemma 3.4), and the monodromy
is trivial by Lemma 4.1.

In the middle cohomology, by the Lefschetz decomposition, it is enough to deal with the local system
(𝑅𝑛−1 𝑓∗Q)prim. This is a sum of (𝑅𝑛−1 𝑓∗Q)min and V. The limiting Hodge structure associated to V
is Hodge–Tate by Proposition 3.13 and Lemma 4.2. That (𝑅𝑛−1 𝑓∗Q)min is unipotent and has limiting
mixed Hodge structure that is Hodge–Tate follows from Lemma 4.3 and its proof. �
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The following proposition summarises the results of §4.2 and §5.2, to the effect of describing
distinguished trivialisations of the Hodge bundles.

Proposition 6.12. The distinguished trivialisations of the determinants of the Hodge bundles 𝑅𝑞Ω𝑝

Z/D×
∞

are described as follows:

1. Suppose 2𝑝 ≠ 𝑛 − 1. Any basis of the trivial local system 𝑅2𝑝 𝑓∗C provides a distinguished triviali-
sation of det 𝑅𝑝 𝑓∗Ω

𝑝

Z/D×
∞

.
2. Suppose 2𝑘 ≠ 𝑛 − 1. Then 𝜂𝑘 are distinguished trivialisations of 𝑅𝑘Ω𝑛−1−𝑘

Z/D×
∞

.
3. Suppose 2𝑘 = 𝑛 − 1. For any polarisation L, any basis u (respectively, v) of the trivial local systems

𝑅2𝑛−4 𝑓∗C (respectively, V), the section 𝜂𝑘 ∧ (det 𝐿𝑢) ∧ det 𝑣 is a distinguished trivialisation of
det 𝑅𝑘 𝑓∗Ω𝑘

Z/D×
∞

.

6.3. Relationship with mirror symmetry

We now present our refinement of the BCOV conjecture for degenerating families of Calabi–Yau
manifolds with strongly unipotent monodromy. The statement predicts that GRR realises genus one
mirror symmetry. We then show that the conjecture holds for the case of mirrors of hypersurfaces in
projective space as a consequence of our previous main theorems. The case of K3 surfaces is not covered
by those considerations, but a proof is also provided.

To prepare for the formulation of the conjecture, let 𝑓 : X → D× = (D×)𝑑 be a projective mor-
phism of Calabi–Yau n-folds, with 𝑑 = ℎ1,𝑛−1, the dimension of the deformation space of the fibres,
effectively parametrised and with strongly unipotent monodromy. We denote by 𝜂𝑝,𝑞 an integral dis-
tinguished trivialisation of det 𝑅𝑞 𝑓∗Ω

𝑝
X /D× , which is unique up to sign (see Corollary 6.7 and Remark

6.8). Using these, both bundles appearing in the conjectural Grothendieck–Riemann–Roch isomor-
phism in (6.1) admit canonical trivialisations. Precisely, up to sign, the BCOV bundle is canonically
trivialised by

𝜂BCOV :=
⊗
𝑝,𝑞

𝜂 ⊗(−1) 𝑝+𝑞 𝑝
𝑝,𝑞 . (6.8)

Likewise, 𝜂𝑛,0 trivialises the 𝑓∗𝐾X /D× . Expressed in these trivialisations, we can write

GRR(X /D×) : 𝜂12𝜅
BCOV ↦→ GRR(𝑠) · 𝜂

𝜒𝜅
𝑛,0 (6.9)

for an invertible holomorphic function 𝑠 ↦→ GRR(𝑠) on D×.
In the above situation, it is expected that there are canonical mirror coordinates q = (𝑞1, . . . , 𝑞𝑑)

on D. In [Mor93], for one-dimensional moduli, this is constructed through exponentials of quotients
of well-selected periods. For mirrors of hypersurfaces, this amounts to Zinger’s mirror map recalled in
(5.13). A general alternative construction of mirror coordinates in the Hodge–Tate setting is suggested
in [Del, Sec. 14].

Conjecture 2. Let 𝑓 : X → D× = (D×)𝑑 be a projective morphism of Calabi–Yau n-folds, with
𝑑 = ℎ1,𝑛−1, the dimension of the deformation space of the fibres, effectively parametrised with strongly
unipotent monodromy. In the mirror coordinates q = (𝑞1, . . . , 𝑞𝑑) of D, the function defined in (6.9)
becomes

GRR(q) = 𝐶 · exp
(
(−1)𝑛𝐹𝐴

1 (q)
)24𝜅

,
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where C is a constant,

𝐹𝐴
1 (q) = −

1
24

𝑑∑
𝑘=1

(∫
𝑋∨

c𝑛−1 (𝑋
∨) ∧ 𝜔𝑘

)
log 𝑞𝑘 +

∑
𝛽∈𝐻2 (𝑋∨ ,Z)

GW1 (𝑋
∨, 𝛽) q〈𝜔,𝛽〉

is a generating series of genus one Gromov–Witten invariants on a mirror Calabi–Yau manifold 𝑋∨,
and

• 𝜔 = (𝜔1, . . . , 𝜔𝑑) is some basis of 𝐻1,1 (𝑋∨) ∩ 𝐻2(𝑋∨,Z) formed by ample classes.
• GW1 (𝑋

∨, 𝛽) is the genus one Gromov–Witten invariant on 𝑋∨ associated to the class 𝛽.
• q〈𝜔,𝛽〉 =

∏
𝑘 𝑞

〈𝜔𝑘 ,𝛽〉
𝑘 .

As supporting evidence, we consider the case of the mirror family of Calabi–Yau hypersurfaces in
P𝑛 and settle the second part of the Main Theorem in the introduction:

Theorem 6.13. Let 𝑛 ≥ 4. Then Conjecture 1 and Conjecture 2 are true, up to a constant, for the mirror
family 𝑓 : Z → D×

∞ in a neighbourhood of the MUM point.

Proof. First, the existence of a natural isomorphism as in Conjecture 1 is provided by Proposition 6.1
and Remark 6.2 (2). Secondly, for Conjecture 2, consider 𝜂BCOV defined as in (6.8). Since distinguished
trivialisations are equal up to a constant, for the purpose of proving Conjecture 2, we can suppose that
the sections 𝜂𝑝,𝑞 are actually those determined by Proposition 6.12. By the isometry property of GRR
and the very definition of the BCOV invariant, we have

𝜏12𝜅
BCOV =

‖ GRR(𝜂12𝜅
BCOV)‖

2
L2

‖𝜂BCOV‖
24𝜅
L2 ,BCOV

.

In other words,

𝜏BCOV = | GRR(q) |1/6𝜅 ‖𝜂𝑛−1,0‖
𝜒/6
L2

‖𝜂BCOV‖
2
L2 ,BCOV

. (6.10)

As in the proof of Theorem 5.1 (see also [EFiMM21, Prop. 4.2]), the quantity ‖𝜂BCOV‖L2 ,BCOV co-
incides with the factor

∏𝑛−1
𝑘=0 ‖𝜂𝑘 ‖

𝑛−1−𝑘
L2 up to a constant. We conclude by comparing (6.10) with

Theorem 5.9. �

The cases of one- and two-dimensional Calabi–Yau varieties are not covered by the above result.
The one-dimensional case essentially corresponds to the Kronecker limit formula recalled in §1.5. We
now study the case of 𝐾3 surfaces. Since ℎ1,1 = 20 for a 𝐾3 surface, our one-dimensional Dwork-type
family cannot be a mirror family. It is still expected that the mirror of a K3 surface is a K3 surface; a
systematic construction in terms of polarised lattices can be found in, for example, [Dol96]. We will
assume this below.

Proposition 6.14. Conjecture 1 and Conjecture 2 are true, up to a constant, for any mirror family of a
K3 surface. Moreover, 𝜅 = 1.

Proof. The BCOV line takes a particularly simple form for a 𝐾3 surface X: its square can be
written as

𝜆BCOV(𝑋)
⊗2 = det𝐻2,0 (𝑋)⊗4 ⊗ det𝐻1,1 (𝑋)⊗2 ⊗ det𝐻2,2 (𝑋)⊗4 � det𝐻2,0(𝑋)⊗4. (6.11)

The isomorphisms det𝐻1,1 (𝑋)⊗2 � C and det𝐻2,2 (𝑋) � C are both induced by Serre duality and
are thus isometries for the 𝐿2 norms and standard metric on C. Since 𝜒(𝑋) = 24, the square of the
right-hand side of Conjecture 1 is provided by the same object.
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Let 𝑓 : X → D× be a family of K3 surfaces. The previous construction globalises to an isomorphism
of line bundles

𝜆BCOV(X /D×)⊗2 ∼
−→ ( 𝑓∗𝐾X /D×)⊗4

compatible with base change. Taking 6th powers and setting 𝜅 = 1, this proves Conjecture 1 in this case.
We hence propose that GRR is induced by (6.11).

Following the proof of Theorem 6.13, to prove Conjecture 2, we need to construct distinguished
trivialisations of both sides. For 𝐻1,1, we choose the section of det 𝑅1 𝑓∗Ω1

X /D× = (det 𝑅2 𝑓∗C) ⊗ OD×

induced by a generator of det 𝑅2 𝑓∗Z, and analogously for det 𝑅2 𝑓∗Ω2
X /D× = (det 𝑅4 𝑓∗C) ⊗ OD×. Their

𝐿2 norms are locally constant by [EFiMM21, Prop. 4.2]. Picking any distinguished section 𝜂2,0 of
𝑓∗𝐾X /D× , it allows us to write down the section 𝜂BCOV of (6.8).

The analogous formula to (6.10) becomes, in this case,

𝜏BCOV = | GRR(q) |1/6 ‖𝜂2,0‖
4
L2

‖𝜂BCOV‖
2
L2 ,BCOV

= 𝐶 | GRR(q) |1/6,

for a constant 𝐶 > 0. By triviality of the Gromov–Witten invariants for K3 surfaces (see, for example,
[LP07, Cor. 3.3]), to prove Conjecture 2, we need to prove that 𝜏BCOV is constant. This is the content of
[EFiMM21, Thm. 5.12]. �

7. A Chowla–Selberg formula for the BCOV invariant

In this section, we discuss an example of using the arithmetic Riemann–Roch theorem to evaluate the
BCOV invariant of a Calabi–Yau manifold with complex multiplication, similar to the derivation of
the Chowla–Selberg formula from the Kronecker limit formula for elliptic curves. In such situations,
or more generally for Calabi–Yau manifolds whose Hodge structures have some extra symmetries, we
expect that the BCOV invariant can be evaluated in terms of special values of Γ-functions or other special
functions.

Let 𝑝 ≥ 5 be a prime number, and define 𝑛 = 𝑝 − 1. We consider the mirror family 𝑓 : Z → 𝑈
to Calabi–Yau hypersurfaces of degree p in P𝑛. The restriction on the dimension here has been made
to simplify the exposition. The special fibre 𝑍0 is a crepant resolution of 𝑋0/𝐺, where 𝑋0 is now the
Fermat hypersurface

𝑥𝑝
0 + . . . + 𝑥𝑝

𝑛 = 0.

The quotient 𝑋0/𝐺 has an extra action of 𝜇𝑝 ⊂ C: a pth root of unity 𝜉 ∈ C sends a point
(𝑥0 : . . . : 𝑥𝑛) to (𝑥0 : . . . : 𝑥𝑛−1 : 𝜉𝑥𝑛). This action induces a Q-linear action of 𝐾 = Q(𝜇𝑝) ⊂ C

on 𝐻𝑛−1 (𝑋0,Q)
𝐺 . As a rational Hodge structure, the latter is isomorphic to 𝐻𝑛−1(𝑍0,Q). For

this, see §3.3, and especially Lemma 3.11 and Proposition 3.13 (we are in odd dimension, and
all the cohomology is primitive now). Hence 𝐻𝑛−1 (𝑍0,Q) inherits a Q-linear action of K. Ob-
serve that [𝐾 : Q] = 𝑝 − 1, which is exactly the dimension of 𝐻𝑛−1 (𝑍0,Q). We say that 𝑍0 has
complex multiplication by K. Similarly, the algebraic de Rham cohomology 𝐻𝑛−1 (𝑍0,Ω•

𝑍0/Q
) af-

fords a Q-linear action of K. Indeed, this is clear for 𝐻𝑛−1(𝑋0,Ω•
𝑋0/Q

)𝐺 , since the action of 𝜇𝑝

on 𝑋0 by automorphisms can be defined over Q and commutes with the G action. Then we trans-
fer this to the cohomology of 𝑍0 via Lemma 3.11, which in this case provides an isomorphism
𝐻𝑛−1 (𝑍0,Ω•

𝑍0/Q
) � 𝐻𝑛−1(𝑋0,Ω•

𝑋0/Q
)𝐺 .
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Let us fix a nontrivial 𝜉 ∈ 𝜇𝑝 . If we base change 𝐻𝑛−1 (𝑍0,Q) to K, we have an eigenspace
decomposition

𝐻𝑛−1 (𝑍0, 𝐾) =
𝑝−1⊕
𝑘=0

𝐻𝑛−1 (𝑍0, 𝐾)𝜉 𝑘 .

Hence, 𝜉 acts by multiplication by 𝜉𝑘 on 𝐻𝑛−1(𝑍0, 𝐾)𝜉 𝑘 . Similarly, for algebraic de Rham
cohomology,

𝐻𝑛−1(𝑍0,Ω
•
𝑍0/𝐾

) =
𝑝−1⊕
𝑘=0

𝐻𝑛−1 (𝑍0,Ω
•
𝑍0/𝐾

)𝜉 𝑘 .

If we compare with 𝐻𝑛−1 (𝑋0,Ω•
𝑋0/𝐾

)𝐺 , and we recall the construction of the sections 𝜃𝑘 and 𝜂◦𝑘 (see
§3.5), we see by inspection that 𝜉 acts on 𝜂◦𝑘 by multiplication by 𝜉𝑘+1. Therefore, we infer that the
nontrivial eigenspaces only occur when 1 ≤ 𝑘 ≤ 𝑝 − 1 and

𝐻𝑛−1 (𝑍0,Ω
•
𝑍0/𝐾

)𝜉 𝑘 = 𝐾𝜂◦𝑘−1 = 𝐻𝑘−1(𝑍0,Ω
𝑛−𝑘
𝑍0/𝐾

).

Hence, the eigenspace 𝐻𝑛−1 (𝑍0,Ω•
𝑍0/𝐾

)𝜉 𝑘 has Hodge type (𝑛 − 𝑘, 𝑘 − 1).
The period isomorphism relating algebraic de Rham and Betti cohomologies decomposes into

eigenspaces as well. We obtain refined period isomorphisms

per𝑘 : 𝐻𝑛−1 (𝑍0,Ω
•
𝑍0/𝐾

)𝜉 𝑘 ⊗𝐾 C
∼

−→ 𝐻𝑛−1 (𝑍0, 𝐾)𝜉 𝑘 ⊗𝐾 C.

Evaluating the isomorphism on K-bases of both sides, we obtain a period, still denoted per𝑘 ∈ C×/𝐾×.

Lemma 7.1. Fix an algebraic closure Q of Q in C. Then there is an equality in C×/Q
×

per𝑘 =
1
𝜋
Γ

(
𝑘 + 1
𝑝

) 𝑝

.

Proof. The claim is equivalent to the analogous computation on 𝑋0. Hidden behind this phrase is the
comparison of cup products on 𝑋0 and 𝑍0 accounted for by Lemma 3.6. On 𝑋0, the formula for the period
is well-known and given, for instance, in [Gro78, Sec. 4, p. 206] (see more generally [DMOS82, Chap.
I, Sec. 7]). Notice that the author would rather work with the Fermat hypersurface 𝑥𝑝

0 + . . . + 𝑥𝑝
𝑛−1 = 𝑥𝑝

𝑛 .
However, as we compute periods up to algebraic numbers, by applying the obvious isomorphism of
varieties defined overQ, the result is the same. Also, we have used standard properties of the Γ-function
to transform [Gro78] in our stated form. �

Theorem 7.2. For 𝑍0 of dimension 𝑝 − 2, with 𝑝 ≥ 5 prime, the BCOV invariant satisfies

𝜏BCOV(𝑍0) =
1
𝜋𝜎

(
Γ

(
1
𝑝

)𝜒 (𝑍0)/12 𝑝−1∏
𝑘=1

Γ

(
𝑘

𝑝

) 𝑝−𝑘−1
)2𝑝

in R×/R ∩ Q
×
,

where

𝜎 = 𝑝

(
𝜒(𝑍0)

12
+
(𝑝 − 1) (𝑝 − 2)

2

)
+

1
2

∑
𝑘

(−1)𝑘 𝑘2𝑏𝑘 .

Proof. We apply Theorem 5.1, written in terms of the sections 𝜂◦𝑘 instead of 𝜂𝑘 (which vanish at 0). Up
to rational number, this has the effect of letting down the term (𝜓𝑛+1)𝑎 in that statement. We are thus
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led to evaluate the 𝐿2 norms of the sections 𝜂◦𝑘 . By [MR04, Lemma 3.4], the 𝐿2 norms satisfy

‖𝜂◦𝑘 ‖
2
L2 = (2𝜋)−(𝑝−2) | per𝑘 |2.

It is now enough to plug this expression into Theorem 5.1, as well as the value of per𝑘 provided by
Lemma 7.1. �

Combining Theorem 2.3 and the conjecture of Gross–Deligne (see [Fre17, MR04] for up-to-date
discussions and positive results), one can propose a general conjecture for the values of the BCOV
invariants of some Calabi–Yau varieties with complex multiplication. For this to be plausible, how-
ever, it seems necessary to impose further conditions on the Hodge structure. Other recent exam-
ples of Calabi–Yau manifolds whose BCOV invariants should adopt a special form are given in
[CdlOEvS20].
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