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Abstract

The mathematical physicists Bershadsky—Cecotti—-Ooguri—Vafa (BCOV) proposed, in a seminal article from 1994,
a conjecture extending genus zero mirror symmetry to higher genera. With a view towards a refined formulation of
the Grothendieck—-Riemann—Roch theorem, we offer a mathematical description of the BCOV conjecture at genus
one. As an application of the arithmetic Riemann—Roch theorem of Gillet—Soulé and our previous results on the
BCOV invariant, we establish this conjecture for Calabi—Yau hypersurfaces in projective spaces. Our contribution
takes place on the B-side, and together with the work of Zinger on the A-side, it provides the first complete examples
of the mirror symmetry program in higher dimensions. The case of quintic threefolds was studied by Fang-Lu—
Yoshikawa. Our approach also lends itself to arithmetic considerations of the BCOV invariant, and we study a
Chowla—Selberg type theorem expressing it in terms of special I'-values for certain Calabi—Yau manifolds with
complex multiplication.

To Jean-Pierre Demailly, in memoriam.
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1. Introduction

The purpose of this article is to establish higher-dimensional cases of genus one mirror symmetry,
as envisioned by mathematical physicists Bershadsky—Cecotti-Ooguri—Vafa (henceforth abbreviated
BCOV) in their influential paper [BCOV94]. We relate the generating series of genus one Gromov—
Witten invariants on Calabi—Yau hypersurfaces to an invariant of a mirror family built out of holomorphic
analytic torsions. The invariant, whose existence was conjectured in [BCOV94], was mathematically
defined and studied in our previous paper [EFIMM?21]. We refer to it as the BCOV invariant 7gcoy.
In dimension 3, the construction of the BCOV invariant and its relation to mirror symmetry were
established by Fang—Lu—Yoshikawa [FLY08], relying on previous results by [Zin08, Zin09].

Our approach parallels the Kodaira—Spencer formulation of the Yukawa coupling in genus zero and
can be recast as a refined version of the Grothendieck—-Riemann—Roch theorem a la Deligne [Del87].
We hope this point of view will also be inspiring to study higher genus Gromov—Witten invariants and
the B-side of mirror symmetry in dimension 3. In this setting, the A-side has received a lot of attention
recently.

1.1. The classical BCOV conjecture at genus one

Let X be a Calabi—Yau manifold of dimension n. In this article, this will mean a complex projective
connected manifold with trivial canonical sheaf. We now briefly recall the BCOV program at genus one.

On the one hand, on what is referred to as the A-side, we consider enumerative invariants associated
to X. For this, recall first that for every curve class 8 in Hy(X,Z), there is a proper Deligne-Mumford
stack of stable maps from genus g curves to X, whose fundamental class is 3:

My(X,8)={f:C— X|g(C)=g, f stableand f.[C] =p}.

The virtual dimension of this stack can be computed to be (see [Beh97], in particular the introduction)

/ﬁ c1(X) + (dim(X) = 3)(1 - g) = (dim(X) —3)(1  g).
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Whenever dim(X) = 3 or g = 1, this is of virtual dimension 0, and one can consider the Gromov—Witten
invariants

GW, (X, p) = deg [My(X,B)]"" € Q.

Since the main focus of our paper is higher dimensions, we henceforth impose g = 1. One then defines
the formal power series

-1 .
F{‘(r)z—/c,,,l(X)m2nir+ZGwl(X,ﬁ)e2”’<Tﬁ>, (1.1)
24 Jy &

where 7 belongs to the complexified Kihler cone! Hx, and S runs over the nonzero effective curve
classes.

On the other hand, on what is referred to as the B-side, BCOV introduced a spectral quantity ]-'IB
built out of holomorphic Ray—Singer analytic torsions of a mirror Calabi—Yau manifold X V. It depends
on an auxiliary choice of a Kihler structure w on X" and can be recast as

FXw= [] eralacore,
0<p,qg<n

where det A2*? is the /-regularised determinant of the Dolbeault Laplacian acting on A”-4(XV). In
our previous work [EFIMM?21], we normalised this quantity to make it independent of the choice
of w:

TBCOV(XV) = C(XV"U) ']:1B(Xvsw),

for some explicit constant C(X", w). Thus Tscov(XY) only depends on the complex structure of the
Calabi—Yau manifold, in accordance with the philosophy that the B-model only depends on variations
of the complex structure on X",

Mirror symmetry predicts that given X, there is a mirror family of Calabi—Yau manifolds over a
punctured multi-disc around the origin ¢: X'V — D* = (D*)¢, with maximally unipotent monodromies
and d = h">!'(X) = h'(Txv).? Here we denoted by X" any member of the mirror family. The A-side and
B-side should be related by a distinguished biholomorphism onto its image D* — Hx, which is referred
to as the mirror map and is denoted g — 7(g). The mirror map sends the origin of the multi-disc to
infinity. Fixing a basis of ample classes on X, we can think of it as a change of coordinates on D*. In
the special case of d = 1, one such a map is constructed as a quotient of carefully selected periods in
[Mor93].

BCOV conjecture at genus one. Let X be a Calabi—Yau manifold and ¢: X' ¥ — D* a mirror family
as above:

1. There is a procedure called passing to the holomorphic limit to extract from Tacoy (X, qv) asqg —0a
holomorphic function F IB (9).
2. The functions F IA and F IB are related via the mirror map by

FE(q) = F(x(q)).

Passing to the holomorphic limit is often interpreted as considering a Taylor expansion of Tyeoy (X qV)

in 7(g) and 7(g) and keeping the holomorphic part. In this article, we will instead use a procedure
based on degenerations of Hodge structures.

f Kx denotes the Kihler cone of X, we define Hx as Hlé’l (X)/HZI’l (X) +iKx.
2Such families are also called large complex structure limits of Calabi—Yau manifolds.
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1.2. Grothendieck—Riemann—Roch formulation of the BCOV conjecture at genus one

The purpose of this subsection is to formulate a version of the BCOV conjecture producing the holo-
morphic function F lB without any reference to spectral theory, holomorphic anomaly equations or
holomorphic limits. Our formulation parallels the Hodge theoretic approach to the Yukawa coupling
in 3-dimensional genus zero mirror symmetry: the key ingredients going into its construction are the
Kodaira—-Spencer mappings between Hodge bundles and canonical trivialisations of those.

To state a simplified form of our conjecture, we need to introduce the BCOV line bundle
Ascov (XY /D*) of the mirror family ¢: XY — D*. The BCOV line of a Calabi—Yau manifold X"
is defined to be

/lBCOV (XV) - ® det Hq (XV’ ng)(_l)pﬂ]p.

0<p,g<n

For a family of Calabi—Yau manifolds, it glues together into a holomorphic line bundle on the base.
Also, we denote by y the Euler characteristic of any fibre of ¢ and by Kx v px the relative canonical
bundle.

Refined BCOV conjecture at genus one. Let X be a Calabi—Yau manifold and ¢: XV — D* a mirror
family as in §1.1:

1. There exists a natural isomorphism of line bundles,
GRR: Aoy (XY /D¥)®12 — o, (K vpx) ®X, (1.2)

together with natural trivialising sections of both sides. Here « is a nonzero integer that only depends
on the relative dimension of ¢.
2. In the natural trivialisations, the isomorphism GRR can be expressed as a holomorphic function,
)24

which when written as exp ((—1)"F lB (¢))"" satisfies

FE(q) = F(x(g)).

The existence of some isomorphism as in (1.2) is provided by the Grothendieck—-Riemann—Roch
theorem in Chow theory, the key point of the conjecture being the naturality requirement. In fact, an in-
fluential program by Deligne [Del87] suggests that the codimension one part of the usual Grothendieck—
Riemann—Roch equality can be lifted to a base change invariant isometry of line bundles when equipped
with natural metrics. An intermediate version of this exists via the arithmetic Riemann—Roch theorem of
Gillet—Soulé [GS92], which provides an equality of isometry classes of hermitian line bundles. Properly
interpreted, this establishes a link between the BCOV invariant and a metric evaluation of (1.2).

A more detailed treatment of the formulation of the conjecture is given in Section 6, and examples
related to the existing literature are also discussed. We focus on mirror families with a strong degeneration
property formalised by Deligne in [Del] and expressed as a Hodge—Tate condition on the limiting
Hodge structures of all the cohomology groups. In this case, from general principles in the theory of
degenerations of Hodge structures, we can indeed construct natural trivialisations of the line bundles
in (1.2).

1.3. Main results

In this subsection, we discuss the framework and statements of our results. For Calabi—Yau hypersurfaces
in projective space, our main theorem settles the BCOV conjecture and its refinement.
Let X be a Calabi—Yau hypersurface in P?, with n > 4. Its complexified Kéhler cone is one-

dimensional, induced by restriction from that of the ambient projective space. The mirror family
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f: Z — U can be realised using a crepant resolution of the quotient of the Dwork pencil
A - DYoo x, =0, Y eU=C\ frpa (1.3)

by the subgroup of GL,.1(C) given by G = {g - (xo, ..., Xn) = (€0X0s . .., Enxn), M = 1, [1& = 1}.
Moreover, f: Z — U can be naturally extended across ;4 to a degeneration with ordinary double
point singularities, sometimes referred to as a conifold degeneration.

The monodromy around ¢ = oo is maximally unipotent, and the properties of the limiting Hodge
structure can be used to define a natural flag of homology cycles. Using this, we can produce natural
holomorphic trivialisations 77z, in a neighbourhood of i = oo, of the determinants of the primitive Hodge
bundles det(R¥ £,.Q""! ’k)primﬁ These holomorphic trivialisations have unipotent lower triangular period

Z/U
—1={(n=1-k) (=1)""!

matrices. These sections have natural L% norms given by Hodge theory. The product oMk

is the essential building block of a natural frame 7gcoy Of Apcov(Z/U).

Finally, let F lA (7(¥)) be the generating series defined as in (1.1) for a general Calabi—Yau hypersurface
X c P{. Here y — 7 (1) is the mirror map. Then our main result (Theorem 5.9 and Theorem 6.13) can
be stated as follows:*

Main Theorem. Let n > 4. Consider a Calabi-Yau hypersurface X c P and the mirror family
f: Z — U above.

1. In a neighbourhood of infinity, the BCOV invariant of Z, factors as

X(Zy) /122
LZ

(11l

s

Tieon (Zy) = C fexp (1" FE ) )

”ﬁBCOV ||L2

where F IB (¢) is a multivalued holomorphic function with F IB (W) =F lA(T(l//)) as formal series in ¢,
and C is a positive constant;

2. Up to a constant, the refined BCOV conjecture at genus one is true for X and its mirror family, with
the choices of trivialising sections 7zcoy and 779.

Actually, the theorem also holds in the case of cubic curves (as follows from §1.5) and quartic
surfaces. We also show, more generally, in Proposition 6.14 that the refined BCOV conjecture holds, up
to a constant, for K3 surfaces.

The first part of the theorem extends to arbitrary dimensions previous work of Fang—Lu—Yoshikawa
[FLYO08, Thm. 1.3] in dimension 3. In their approach, all the Hodge bundles have geometric meaning in
terms of Weil-Petersson geometry and Kuranishi families. The lack thereof is an additional complication
in our setting.

To our knowledge, our theorem is the first complete example of higher-dimensional mirror symmetry,
of BCOV type at genus one, established in the mathematics literature. It confirms various instances that
had informally been utilised for computational purposes, such as [KP0S8, Sec. 6] in dimension 4.

We remark that there is an alternative approach to the BCOV theory, in arbitrary genera, provided
by Costello and Li, described in their preprint [CL12]. It would be interesting to compare the results in
this article with their program.

1.4. Overview of proof of the main theorem

Arithmetic Riemann-Roch
In the algebro-geometric setting, the arithmetic Riemann—Roch theorem from Arakelov theory allows
us to compute the BCOV invariant of a family of Calabi—Yau varieties in terms of L> norms of auxiliary

3The primitive Hodge bundle (R¥ f;Q’%’/Zk )prim is actually of rank one if 2k # n — 1.

4To facilitate the comparison with the BCOV conjecture, notice that X now has dimension n — 1 instead of n.
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sections of Hodge bundles. This bypasses some arguments in former approaches, such as [FLY08],
based on the holomorphic anomaly equation (see [EFIMM?21, Prop. 5.9]). It determines the BCOV
invariant up to a meromorphic function — in fact, a rational function.> The divisor of this rational
function is encapsulated in the asymptotics of the L? norms and the BCOV invariant. In the special
case when the base is a Zariski open set of PL, as for the Dwork pencil (1.3) and the mirror family, this
divisor is determined by all but one point. Hence so is the function itself, up to constant. The arithmetic
Riemann—Roch theorem simultaneously allows us to establish the existence of an isomorphism GRR
as in (1.2).

Hodge bundles of the mirror family

The construction of the auxiliary sections is first of all based on a comparison of the Hodge bundles
of the mirror family with the G-invariant part of the Hodge bundles on the Dwork pencil in (1.3),
explained in Section 3. Using the residue method of Griffiths, we construct algebraic sections of the
latter. These are then transported into sections 1 of the Hodge bundles of the crepant resolution: that
is, the mirror family. This leads us to a systematic geometric study of these sections in connection with
Deligne extensions and limiting Hodge structures at various key points, notably at u,,+1, where ordinary
double point singularities arise. We rely heavily on knowledge of the Yukawa coupling and our previous
work in [EFIMM?21, Sec. 2] on logarithmic Hodge bundles and semi-stable reduction. The arguments
are elaborated in Section 4.

Asymptotics of L2 norms and the BCOV invariant

The above arithmetic Riemann—Roch reduction leads us to study the norm of the auxiliary sec-
tions outside of the maximally unipotent monodromy point, enabling us to focus on ordinary dou-
ble points. Applying our previous result [EFiIMM21, Thm. 4.4] to the auxiliary sections, we find that
the behaviour of their L norms is expressed in terms of monodromy eigenvalues and the possible
zeros or poles as determined by the geometric considerations of the preceding paragraph. The
monodromy is characterised by the Picard—Lefschetz theorem. As for the asymptotics for the
BCOV invariant, they were already accomplished in [EFiMM?21, Thm. B]. This endeavor results in
Theorem 5.1, which is a description of the rational function occurring in the arithmetic Riemann—Roch
theorem.

Connection to enumerative geometry

The BCOV conjecture suggests that we need to study the BCOV invariant close to ¢y = co. However, the
formula in Theorem 5.1 is not adapted to the mirror symmetry setting: for example, the sections 77 do
not make any reference to Hl’i‘;]l. We proceed to normalise the 7, by dividing by holomorphic periods,
for a fixed basis of the weight filtration on the homology (H,,—1 )iim, to obtain the sections 77 of the main
theorem. Rephrasing Theorem 5.1 with these sections, we thus arrive at an expression for the F IB in
the theorem. Combined with results of Zinger [Zin08, Zin(09], this yields the relation to the generating
series of Gromov—Witten invariants in the mirror coordinate. Lastly, the refined BCOV conjecture is
deduced in this case through a reinterpretation of the BCOV invariant and the arithmetic Riemann—Roch
theorem.

1.5. Applications to Kronecker limit formulas

Classical first Kronecker limit formula

The simplest Calabi—Yau varieties are elliptic curves, which can conveniently be presented as C/(Z+7Z),
for 7 in the Poincaré upper half-plane. The generating series in (1.1) of Gromov—Witten invariants is
then given by —5 log A(7), where A(1) = g [1(1 - ¢")** and g = ¢*™7. The corresponding function

5This rational function compares to the so-called holomorphic ambiguity in the physics literature.
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]:lB is computed as exp(¢72(0)), where

L=enr Yy D

2s "
(maz0.0) M+ 17l

The BCOV conjecture at genus one is deduced from the equality

exp(—£1(0)) = —— Im(p)|A(1)]'. (1.4)
(27)

This is a formulation of the first Kronecker limit formula; see, for example, [Y0s99, Intro.]. In the
mirror symmetry interpretation, the correspondence v +— ¢ is the (inverse) mirror map. Equation
(1.4) can be recovered from a standard application of the arithmetic Riemann—Roch theorem. In this
vein, we will interpret all results of this shape as generalisations of the Kronecker limit formula. This
includes the Theorem 5.1 cited above, as well as a Theorem 2.6 for Calabi—Yau hypersurfaces in Fano
manifolds.

Chowla-Selberg formula

While being applicable to algebraic varieties over C, the Riemann—Roch theorem in Arakelov geometry
has the further advantage of providing arithmetic information when the varieties are defined over Q. The
arithmetic Riemann—Roch theorem is suited to evaluating the BCOV invariant of certain arithmetically
defined Calabi—Yau varieties with additional automorphisms. As an example, for the special fibre Zj of
our mirror family in (1.3), Theorem 7.2 computes the BCOV invariant as a product of special values
of the I'-function. This is reminiscent of the Chowla—Selberg theorem [SC67], which derives from
(1.4) an expression of the periods of a CM elliptic curve as a product of special I'-values. Assuming
deep conjectures of Gross—Deligne [Gro78], we would be able to write any BCOV invariant of a CM
Calabi—Yau manifold in such terms.

2. The BCOV invariant and the arithmetic Riemann-Roch theorem

In this section, we describe a general method to express the BCOV invariant of a family of Calabi—Yau
varieties in terms of L? norms of rational sections of determinants of Hodge bundles. The approach is
based on the arithmetic Riemann—Roch theorem. As an application, we consider the case of the universal
family of Calabi—Yau hypersurfaces in the projective space.

2.1. Kihler manifolds and L* norms

Let X be a compact complex manifold. In this article, a hermitian metric on X means a smooth hermitian
metric on the holomorphic vector bundle Tx. Let & be a hermitian metric on X. The Arakelov theoretic
Kahler form attached to 4 is given in local holomorphic coordinates by

i 0 0
= — h|—,—|dz; Ndzk. 2.1
@ szZ,; (az.,» azk) R @D
We assume that the complex hermitian manifold (X, ) is Kéhler: that is, the differential form w
is closed. The hermitian metric /# induces hermitian metrics on the C® vector bundles of differential
forms of type (p, g), which we still denote h. Then the spaces A”-7(X) of global sections inherit a L?
hermitian inner product

hoa(a, B) = /X h(a, ﬂ)%. 2.2)
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The coherent cohomology groups H? (X, Qf() can be computed as Dolbeault cohomology, which

in turn can be computed in A”*4(X) by taking d-harmonic representatives. Via this identification,
H(X, Q;) inherits a L2 inner product. Similarly, the hermitian metric £ also induces hermitian metrics
on the vector bundles and spaces of complex differential forms of degree k. The complex de Rham
cohomology H*(X,C) has an induced L? inner product by taking d-harmonic representatives. The
canonical Hodge decomposition

H(X,C) = D HI (X, Q%)

p.q

is an isometry for the L? metrics.

2.2. The BCOV invariant

We briefly recall the construction of the BCOV invariant [EFIMM?21, Sec. 5]. Let X be a Calabi—Yau
manifold of dimension n. Fix a Kéhler metric 4 on X, with Kéhler form w as in (2.1). Let T(Q%, w)
be the holomorphic analytic torsion of the vector bundle Q; of holomorphic differential p-forms
endowed with the metric induced by /. and with respect to the Kéhler form w on X. The BCOV torsion
of (X, w) is

T(X,w) = H T(QF,w) V7P,

0<p<n

Let AZ2? be the Dolbeault Laplacian acting on AP-9(X) and detAg’q its /-regularised determinant

(excluding the zero eigenvalue). Unraveling the definition of holomorphic analytic torsion, we find for
the BCOV torsion

— P-4\ (-1)P* pq
T(X,w) = ]_[ (det A7) .
0<p,q<n

It depends on the choice of the Kihler metric. A suitable normalisation makes it independent of choices.
For this purpose, we introduce two real-valued quantities. For the first one, let  be a basis of H 0 (X,Kx),
and define as in [FLYO08, Sec. 4]:

1 A n!
AX,w) =exp|-— [ (1 Ix,m)|, with ¢= '
(X, w) exp( 12/X(0g90)cn( X )) with ¢ Il (2rw)

(2.3)

For the second one, we consider the largest torsion-free quotient of the cohomology groups H* (X, Z),
denoted by H¥(X,Z)y. These are lattices in the real cohomology groups H*(X,R). The latter have
euclidean structures induced from the L? inner products on the H* (X, C). We define vol,» (H* (X, Z), w)
to be the square of the covolume of the lattice H k (X, Z)y with respect to this euclidean structure, and
we put

B(X.w)= [ vola(H*(X.Z),w) V" *2, 2.4)
0<k<2n
The BCOV invariant of X is then defined to be

A(X,w)

TBCOV(X) = B(X, (u)

T(X,w) € Rug. 2.5)
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The BCOV invariant depends only on the complex structure of X [EFiMM?21, Prop. 5.8]. The definition
in (2.5) differs from that of [EFiIMM21, Def. 5.7] by a factor (27r)"2)( (X)/2 due to the different choice of
normalisation of the L? metric:

(@, ) = /X ha,p)ZE

n!

2.3. The arithmetic Riemann—Roch theorem

In this subsection, we work over an arithmetic ring. This means an excellent regular domain A together
with a finite set ¥ of embeddings o: A < C, closed under complex conjugation. For example, A could
be a number field with the set of all its complex embeddings, or the complex field C. Denote by K the
field of fractions of A.

Let X be an arithmetic variety: that is, a regular, integral, flat and quasi-projective scheme over A.
For every embedding o: A < C, the base change X, = X X4, C is a quasi-projective and smooth
complex variety whose associated analytic space X2 is therefore a quasi-projective complex manifold.
It is convenient to define X*" as the disjoint union of the X%, indexed by o. For instance, when A is a
number field, then X" is the complex analytic space associated to X as an arithmetic variety over Q.
Differential geometric objects on X" such as line bundles, differential forms, metrics and so on may
equivalently be seen as collections of corresponding objects on the X2". The complex conjugation
induces an anti-holomorphic involution on X?", and it is customary in Arakelov geometry to impose
some compatibility of the analytic data with this action. Let us now recall the definitions of the arithmetic
Picard and first Chow groups of X.

Definition 2.1. A smooth hermitian line bundle on X consists in a pair (L, &), where

e Lis aline bundle on X.

e /1 is a smooth hermitian metric on the holomorphic line bundle L** on X*" deduced from L, in-
variant under the action of the complex conjugation. Hence, / is a conjugation invariant collection
{ho}o: a-c, where hy is a smooth hermitian metric on the holomorphic line bundle L% on X"
deduced from L by base change and analytification.

The set of isomorphism classes of hermitian/l\ine bundles (L, &), with the natural tensor product
operation, is a commutative group denoted by Pic(X) and called the arithmetic Picard group of X.

—1
Definition 2.2. The first arithmetic Chow group CH (X) of X is the commutative group

e generated by arithmetic divisors — that is, couples (D, gp) — where D is a Weil divisor on X and gp
is a Green current for the divisor D*", compatible with complex conjugation. Hence, by definition,
gp is a degree O current on X" that is a dd“-potential for the current of integration ¢ pan

ddc gD +6Dﬂn = [CL)D],

up to some smooth differential (1, 1) form wp on X?".
e with relations (div(¢), [- log |¢|2]) for nonzero rational functions ¢ on X.

The arithmetic Picard and first Chow groups are related via the first arithmetic Chern class
= —1
¢ : Pic(X) —» CH (X),

which maps a hermitian line bundle (L, &) to the class of the arithmetic divisor (div(¢), [-log||¢ ||;21])
where £ is any nonzero rational section of L. This is in fact an isomorphism. We refer the reader to
[GS90b, Sec. 2] for a complete discussion.

More generally, Gillet—-Soulé developed a theory of arithmetic cycles and Chow rings [GS90a],
an arithmetic K-theory and characteristic classes [GS90b, GS90c] and an arithmetic Riemann—Roch
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theorem [GS92]. While for the comprehension of the theorem below only C/FII, Pic and ) are needed,
the proof uses all this background, for which we refer to the above references.

Letnow f: X — § be a smooth projective morphism of arithmetic varieties of relative dimension n,
with generic fibre X. To simplify the exposition, we assume that S — Spec A is surjective and has
geometrically connected fibres. In particular, we assume that §2! is connected for every embedding o .
More importantly, we suppose that the fibres X are Calabi—Yau, and hence they satisfy Kx, = Ox,.
We define the BCOV line bundle on § as the determinant of cohomology of the virtual vector bundle
2p(=DP pQP x/s" : that is, in additive notation for the Picard group of S

Acov(X/8) = Y (=D)PpAQh, ) = > (=1)P*pdet R £.QF, . 2.6)
p=0 p-q

If there is no possible ambiguity, we will sometimes write Agcoy instead of Agcoy (X/S).

For the following statement, we fix an auxiliary conjugation invariant Kéhler metric & on Ty ax. We
denote by w the associated Kihler form, normalised according to the conventions in Arakelov theory
as in (2.1). We assume that the restriction of w to fibres (still denoted by w) has a rational cohomology
class. All the L? metrics below are computed with respect to w as in (2.2). Depending on the Kihler
metric, the line bundle Aoy carries a Quillen metric fq

hos =T (X5, w) - hLz’X.

Following [EFIMM 18, Def. 4.1] and [EFiMM?21, Def. 5.2], the Quillen-BCOV metric on Agcoy is defined
by multiplying &, by the correcting factor A in (2.3): for every s € S, we put

hQ,BCOV,S = A(Xs’w) : hQ,S'

It is shown in [EFIMM 18, Sec. 4.1] and [EFIMM?21, Sec. 5.2] that the Quillen-BCOV metric is actually
a smooth hermitian metric, independent of the choice of w. Besides, according to [EFiIMM?21, Def. 5.4],
one defines the L2-BCOV metric on Aoy by

hLZ,Bcov,s = B(X;, w) - hLZ,s’ 2.7

where h,> stands for the combination of L2-metrics on the Hodge bundles and B was introduced in
(2.4). In [EFIMMZ21, Prop. 4.2], we showed that the function s — B(Xj, w) is actually locally constant
and that 4,2 .oy is a smooth hermitian metric, independent of the choice of w. Notice that the BCOV
invariant defined in (2.5) can then be written as the quotient of the Quillen-BCOV and L?>-BCOV

metrics:
hQ,BCOV,S
Taeov(Xs) = /’l— (2.8)
L2,BCOV,s
— 1 — 1
Theorem 2.3. Under the above assumptions, there is an equality in CH (S)g = CH (5) ® Q
—_ XOO —_
Cl(/chov, hQ,BCOV) X(IZ ) (f KX/S, L2) (2.9

Hence, for any complex embedding o, any rational section 1 of f.Kx s, any rational section 1, 4 of

det R9 £,QF x5 We have an equality of functions on S%}

= togllnll, , — D, (D7 plogllnp.gllh,, +logCo,  (2.10)
0<p.,q<n

(Xeo)
log Tscov, o =10g|A|(2)_ o) 12
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where

e AeK(S)*®zQ.
o C, € " Qsg, wherer = % S(=1)**'k%by and by is the kth Betti number of Xeo.

Proof. The proof is a routine application of the arithmetic Riemann—Roch theorem of Gillet—-Soulé
[GS92, Thm. 7]. We give the details for the convenience of the reader. Consider the virtual vector

bundle Y (-1)? p.QI;( /s with virtual hermitian structure deduced from the metric 4 and denoted A°. Its

determinant of cohomology Agcoy carries the Quillen metric i,. The theorem of Gillet—Soulé provides
— 1
an equality in CH (S)q
_ - boap e M
€1 (Aacons o) = £ (h(Y (=17 pQly ), BV Td(T s, 1)
(1)
—a (Ch(Z(_l)pPQi‘an/San) Td(Txan/San)R(Txan/San))

| B -
=5k (C1(Kx/s, B )Cu(Txys, h)), 2.11)

where /* = (det h)~! is the hermitian metric on K /s induced from . Notice that the topological factor
containing the R-genus in (2.11) vanishes in our situation since

1
ch (Z(—l)ppﬂf(m/san) Td(Txamjgm) = —Cpo1 + gcn - Eclcn + higher-degree terms,

and R has only odd degree terms and ¢ (T /s=) = 0. Now the evaluation map f* f,Kx;s — Kx/s is
an isomorphism, but it is in general not an isometry if we equip f.Kx /s with the L? metric and K x /S

— 1
with the metric 2*. Comparing both metrics yields a relation in CH (X))

C1(Kxys, h*) = fCi(fKxys, h2) + [ (0, —log ¢)]. (2.12)

Here ¢ is the smooth function on X*" given by

_i"zr]/\ﬁ n!
% Cro)

where 7 denotes a local trivialisation of f, Ky /g, thought of as a section of K y-an/gan via the evaluation
map. Multiplying (2.12) by €,,(Tx/s, ) and applying f. and the projection formula for arithmetic Chow
groups, we find

fe (€1(Kx s, K )Cn(Txys. b)) = fu (fC1(feKx/ss hi2)Cn(Trys, ) + fi ([(0, —log @) 1S, (Tx s, h))

R (X)E (K oys o) + (o,— /X . <log¢>cn<uan/san,h>)],

where ¢, (Tx/s, ) is the nth Chern—Weil difterential form of (T gm, h). Together with (2.11), this
shows that the metric

1
hq.cov = hq - exp (_E /X s (log @)cy (T an/gn, h))

indeed satisfies (2.9).

—1
The outcome of (2.10) is a translation of the meaning of the equality in (2.9) in CH (S)g in terms of
the constructions in (2.8) and (2.7).
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By [EFiIMM?21, Prop. 4.2], the normalising factor B is constant on each connected manifold S3' and
would be rational if the L? inner products on cohomology groups were computed with //27.
With this understood, we find

vol,2 (H* (X, Z), w) € (27) %Pk Q% (2.13)
for any s € S%'. Together with the definition of B in (2.4), this is responsible for the
constants C,. m]
Remark 2.4.

1. The use of the arithmetic Riemann—Roch theorem requires an algebraic setting but directly yields the
existence of the rational function A. By contrast, previous techniques (see, e.g., [FLYO0S8, Sections
7 & 10]) rely on subtle integrability estimates of the functions in (2.10) to ensure that the a priori
pluriharmonic function log |A|2 is indeed the logarithm of a rational function. The arithmetic
Riemann—Roch theorem further provides the field of definition of A and the constants Co-.

2. In the case of a Calabi—Yau 3-fold defined over a number field, similar computations were done by
Maillot—Rossler [MR 12, Sec. 2].

2.4. Kronecker limit formulas for families of Calabi-Yau hypersurfaces

In this section, we give an example of the use of Theorem 2.3, and we determine the BCOV invariant
for families of Calabi—Yau hypersurfaces in Fano manifolds. The argument provides a simplified model
for the later computation of the BCOV invariant of the mirror family of Calabi—Yau hypersurfaces.

Let V be a complex Fano manifold with very ample anti-canonical bundle —Ky . We consider the anti-
canonical embedding of V into |-Ky | = P(H(V, —Ky)) =~ PV, whose smooth hyperplane sections are
Calabi—Yau manifolds. The dual projective space P = P(H(V, -Ky)") ~ PV parametrises hyperplane
sections and contains an irreducible subvariety A C P that corresponds to singular such sections
[GKZ08, Chap. 1, Prop. 1.3]. We assume that A is a hypersurface in P. This is in general not true,
and a necessary condition is proven in [GKZ08, Chap. 1, Cor. 1.2]. Denote by U the quasi-projective
complement U := P\ A. Denote by f: X — P the universal family of hyperplane sections. Therefore f
is smooth on U, and the corresponding BCOV line bundle Agcqy is thus defined on U.

) ®m

/l®m

Lemma 2.5. For some positive integer m, the line bundles (f.Kxu and Aglo, have trivialising

sections. These are unique up to constants.

Proof. A standard computation shows that Pic(U) = Z/deg A, providing the first claim of the lemma.
For the second assertion, for any of the line bundles under consideration, let # and 6’ be two trivialisations
on U. Therefore, 6 = h6’ for some invertible function 4 on U. The previous description of Pic(U) shows
that the divisor of A, as a rational function on P, is supported on A. As A is irreducible, in the projective
space P this is only possible if the divisor vanishes. We conclude that & is necessarily constant. O

For the following statement, we need a choice of auxiliary Kéhler metric on X’ (restricted to U),
whose Arakelov theoretic Kihler form has fibrewise rational cohomology class. We compute L norms
on Hodge bundles and on Aoy With respect to this choice.

Theorem 2.6. For some integer m > O as in the lemma, let B be a trivialisation of AZ%, and n

a trivialisation of (f.Kx;u)®™. Then there is a global constant C such that, for any Calabi—Yau
hyperplane section Xg =V N H, we have

6 -2/m
Tacov (X)) = Cllnll¥ " 1812

12

Proof. We apply Theorem 2.3 to f: X — U (over C), which in terms of 8 and n becomes

m1og Tucov(Xir) = loggI” + - og Inll% ~ log 18I + log C
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for some regular invertible function g on U and some constant C. By construction, as a rational function
on P, g must have its zeros or poles along A. Since A is irreducible, this forces g to be constant. m]

Remark 2.7.

1. When V is a toric variety with very ample anti-canonical class, all of the constructions can
be done over the rational numbers. The sections 8 and n can be taken to be defined over Q
and unique up to a rational number. With this choice, the constant C takes the form stated in
Theorem 2.3.

2. In the case when the discriminant A has higher codimension, we have Pic(U) =~ Pic(P). In particular,
Apcov uniquely extends to a line bundle . The existence of the canonical (up to constant) trivialisations
B and 7 is no longer true. However, one can propose a variant of the theorem where 8 and 7 are
trivialisations outside a chosen ample divisor in P.

3. The Dwork and mirror families, and their Hodge bundles

The main object of interest in this section is the mirror family of Calabi—Yau hypersurfaces. It is obtained
from the Dwork pencil of Calabi—Yau varieties by first modding out by a group of generic symmetries
and then performing a crepant resolution. We study the structure of the Hodge bundles of the mirror
family. In the even dimension, we show that the primitive Hodge bundles in the middle degree can
be decomposed into two direct factors. One will be seen to be constant in Section 4, and the other
one is called the minimal part. For the latter, we construct explicit trivialisations via Griffiths’ residue
method.

Throughout, our arguments combine analytic and algebraic aspects of the same geometric objects.
Except when there is a risk of confusion, we won’t make any distinction in the notations between an
algebro-geometric object and its analytification. Likewise, we won’t specify the field of definition of
various algebraic varieties and schemes. However, we will precisely indicate the category where the
statements take place.

3.1. The geometry of the Dwork family

We review general facts on the Dwork pencil of Calabi—Yau hypersurfaces and the construction of an
equivariant normal crossings model. Initially, we work with algebraic varieties over the field of complex
numbers. Rationality refinements will be made along the way.

Let n > 4 be an integer. The Dwork pencil X — P! is defined by the hypersurface of P" x P! of the
equation

n

F:p(xo,-n,xn):=Zx;’+l—(n+1)t//x0...x,,=0, [X0:x1:...:x,] €P", ¢ €Pl.
=0

The smooth fibres of this family are Calabi—Yau manifolds of dimension n — 1. The singular

fibres are

e Fibre at = oo, given by the divisor with normal crossings xq - ... - x, = 0.

e The fibres where y"*! = 1. These fibres have ordinary double point singularities. The singular points
have projective coordinates (x, . . ., x;) with xo = 1 and x;‘“ =lforall j > I,and [];x; = vl

Denote by p,+1 the group of the (n + 1)th roots of unity. Let K be the kernel of the multiplication
map pZﬂ — Uu41- Let also A be the diagonal embedding of p,4; in K and G := K/A. The group G
acts naturally on the fibres Xy, of X — P! by multiplication of the projective coordinates.

The above constructions can be realised as schemes over Q. Indeed, Fy, is already defined over Q,

and the groups K, A are finite algebraic groups over Q, and hence so does the quotient G. The action
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of G on Fy is defined over Q as well, as one can see by examining the compatibility with the action of
Aut(C/Q) on the C points of X" or alternatively by writing the coaction at the level of algebras.

The following argument was provided to us by Nicholas Shepherd-Barron, whom we warmly thank
for letting us include it in our article.

Proposition 3.1. The family X — P! admits a G-equivariant projective normal crossings model
X' — P!, with X' nonsingular, which is semi-stable at y = o and defined over Q.

Proof. Outside of the singular points, there is nothing to modify. The points corresponding to or-
dinary double point singularities are provided by the affine equations xo = 1 and x;”l = 1 for
j = 1, and blowing up along the corresponding locus of X provides a normal crossings model.
The locus of ordinary double points is defined over Q and is G-equivariant and thus so is also the
blowup.

We next consider our family at the point at infinity. Introduce the divisor Do in P" givenby ). ; x;‘“ =0
and the divisor Do = 2; H;, where H; is the hyperplane cut out by x; = 0. The axis of the pencil
X — Plis Dy N Dy and hence X = Blp,np (P"). We construct another model by blowing up P"
in Dg N Hy to get Xj. Continue to blow up the strict transform of Dg in X intersected by the strict
transform of Hy, and so on. Each such blowup is a blowup in a smooth centre that is G-equivariant.
The final result is a G-equivariant X projective manifold with an equivariant morphism v : X — P".
Denote by Do (respectively, D) the strict transforms of Dy (respectively, D). By construction they are
disjoint, and computation shows that v*Dg ~ Do+ Y E;and v* (D) ~ Do+ >, E;, where the E; denote
the strict transforms of the exceptional divisors. Since Dy — D is the divisor of a rational function,
hence linearly equ1valent to zero, and D, is disjoint from Dy, we find a morphism p : X — P! such
that p~!(00) = Do and p~1(0) = Dy. This is the searched for semi-stable model at infinity. From the
local description, we also see that v=! (Do N D) = ¥, E; that is principal, so that X — P! factors over
X — P

All of the above constructions can be defined over Q, and taking them together with the previous
considerations with the ordinary double points provides a model X'’ — P! as in the statement of the
proposition. |

3.2. The mirror family

The first step towards the construction of a mirror family is the formation of the quotient Y = X'/G. As
the action of G on X’ is defined over Q, the space ) and projection map )V — P! are also. The following
lemma shows that except for the fibre at infinity, this is a family of singular Calabi—Yau varieties with
mild singularities.

Lemma 3.2. The total space of the restricted family ) — A has rational Gorenstein singularities. It
has a relative canonical line bundle K51 obtained by descent from K x 1.

Proof. To lighten notations, let us write in this proof X and ) for the corresponding restrictions to A'.
The total space X is nonsingular, and ) is a quotient of it by the action of a finite group. Therefore, )
has rational singularities. In particular, it is normal and Cohen—Macaulay. Consequently, if }"** is the
nonsingular locus of Y and j: Y"* < ) the open immersion, then we have a relation between relative
dualising sheaves j.wyns a1 = Wy 41. We will use this below.

Now for the Gorenstein property and the descent claim. Notice that since A' is nonsingular, ) is
Gorenstein if and only if the fibres of ) — A! are Gorenstein. We will implicitly confound both the
absolute and relative points of view. We introduce X ° the complement of the fixed locus of G and X"~
the smooth locus of X — A!. These are G-invariant open subschemes of X" and constitute an open
cover because the ordinary double points in the fibres of X — A! are disjoint from the fixed point locus
of G. Then Y° = X°/G and Y* = X'*/G form an open cover of ), and it is enough to proceed for each
one separately.
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Since G acts freely on X' °, the quotient V° is nonsingular and is therefore Gorenstein. The morphism
X' — )°is étale, and hence K v/ 41 descends to Ky 1.
For Y*, we observe that G preserves a relative holomorphic volume form on X *. Indeed, in affine
coordinates z; = i—k on the open set x; # 0, and where 0F, /0z; # 0, the expression
J

C(=D)ldzo ALdz AL ANdg AL Ndzy,

6
0 0Fy 0z Fy=0

(3.1)

provides such an invariant relative volume form. This entails that K .. ,1 descends to an invertible sheaf
IC on Y*. Now the singular locus of )* is contained in the image of the fixed point set of G on X'*.
We infer that C is an invertible extension of the relative canonical bundle of (J*)" — Al But V* is
normal so that K = j,j*K. Then as mentioned at the beginning of the proof, j.wyns a1 = Wy a1, and
we conclude, since K is also an extension of Wyns Al O

Because the BCOV invariant has not been fully developed for Calabi—Yau orbifolds (see nevertheless
[Yos17] for some three-dimensional cases), we need crepant resolutions of the varieties Y, . This needs
to be done in families so that the results of §2.3 apply. The family of crepant resolutions Z — P! that we
exhibit will be called the mirror family, although it is not unique. We also have to address the rationality
of the construction.

Lemma 3.3. There is a projective birational morphism Z — Y of algebraic varieties over Q, such
that

Z is smooth.

Ify"™*! = 1, the fibre Zy has a single ordinary double point singularity.

If Y = 00, Z, is a simple normal crossings divisor in Z.

Otherwise, Zy, — Y is a crepant resolution of singularities. In particular, Zy, is a smooth Calabi—
Yau variety.

5. The smooth complex fibres Z, are mirror to the Xy in that their Hodge numbers satisfy
hP-4(Zy) = h”_l_”’q(Xlz,). In particular, the smooth Zy, are Calabi-Yau with x(Zy) = (-t
X (Xy).

Proof. The proof of (1)—(4) is based on [DHZ98, Sec. 8 (v)], [DHZ06] and [BG 14, Prop. 3.1], together
with Hironaka’s resolution of singularities. We recall the strategy to justify the existence of a model
over Q.

Introduce W = P"/G. We claim this is a split toric variety over Q. First of all, it can be realised as
the hypersurface in P(’é“ of equation

S

n+l

W ypt! = l_[yj.
j=1

Second, the associated torus is split over Q. It is actually given by Gy,, g X T, where T is the kernel of
the multiplication map G&J’é} — G, . Finally, the action of the torus on W is defined over Q:

((t0s 115 -5 tns1)s (V0. Y15 - - 5 Yna1)) > (20Y0, 2011V 15 - - > Lot na1 Yne1)-

Once we know that W is a split toric variety over Q with the same equation as in [DHZ06, Application
5.5], the toric and crepant projective resolution exhibited in [DHZ06] automatically works over Q as
well. We write W for this resolution of W. _

We now consider ) as a closed integral Q-subscheme of W X P!. Let ) be the strict transform of
in W x P By [DHZ98, Sec. 8 (v)], the fibres of V at ¢y € C\ p,1 are projective crepant resolutions
of the fibres Y. In particular, ) is smooth over C \ u,41, and in turn this implies smoothness over
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the complement U of the closed subscheme V(! — 1) of A&. Necessarily, the fibres of )7 over U

have trivial canonical bundle as well. For the fibres at "' = 1, the claim of the lemma requires two
observations:

e The ordinary double points of X, are permuted freely and transitively by G and are identified to a
single point in the quotient Y,,. This entails that the total space ) is nonsingular in a neighbourhood
of these points and that they remain ordinary double points of )) — P'.

e The centre of the toric resolution is disjoint from the ordinary double points since it is contained in the
locus of P"* /G where two or more projective coordinates vanish. Therefore, the moiphism Y- Yis
an isomorphism in a neighbourhood of these points. Finally, on the complement, ), is a resolution
of singularities of Y,,. Indeed, this is a local question in a neighbourhood of the fixed points of G so
that the above references [DHZ98, DHZ06] still apply.

Finally, Vis by construction smooth on the complement of the fibre ¢y = oo. After a resolution
of singularities given by blowups with smooth centres in Yoo (defined over Q), we obtain a smooth
algebraic variety Z over Q such that Z, is a simple normal crossings divisor in Z. This sets
(1-4).

For (5), we refer for instance to [BD96, Thm. 6.9, Conj. 7.5 & Ex. 8.7]. This is specific to
the Dwork pencil. More generally, we can cite work of Yasuda, who proves an invariance prop-
erty of orbifold Hodge structures (and hence orbifold Hodge numbers) under crepant resolutions,
for quotient Gorenstein singularities [YasO4, Thm. 1.5]. Orbifold Hodge numbers coincide with
stringy Hodge numbers of global (finite) quotient orbifolds, whose underlying group respects a
holomorphic volume form [BD96, Thm. 6.14]. Finally, by [BB96, Thm. 4.15], stringy Hodge num-
bers satisfy the expected mirror symmetry property for the mirror pairs constructed by Batyrev
[Bat94]. ]

From the proof of Lemma 3.3, we keep the notation U ¢ P for the smooth locus of the mirror family
f:Z2- P!. For later use, we record the following lemma.

Lemma 3.4. Let hP-9 be the rank of the Hodge bundle R4 f*Qg u Then
o Wi =1lifp+g=n—1landp #q.
o hrop = 8 (1) () (PHEDTP) 460 e
o hP9 = () otherwise.
In particular,
_ B (_n)n+1 -1
X(Zy) = ()" x(Xy) = () (= e 1)

Proof. The items are a consequence of the mirror symmetry property for the Hodge numbers in
Lemma 3.3 and the computation of the cohomology of a hypersurface in projective space (see [BD96,
Ex. 8.7]). m]

Definition 3.5. The point co € P! is called the MUM point of the family f: Z — P'. The points &£ € P!
with £"*! = 1 are called the ODP points.

The terminology MUM stands for Maximally Unipotent Monodromy, and it will be justified later in
Lemma 4.3. The terminology ODP stands for Ordinary Double Point.
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3.3. Generalities on Hodge bundles

We gather general facts on the Hodge bundles of our families of Calabi—Yau varieties, summarised in
the following diagram:

X (3.2

~N
.
P AN
crepant h

zZ-25Yy=X/G

Recall the notation U for the Zariski open subset of P! where f (respectively, /) is smooth. When it is
clear from the context, we will still write X', ) and Z for the total spaces of the fibrations restricted to
U. Otherwise, we add an index U to mean the restriction to U. We let J° be the nonsingular locus of
Yy . Itis the étale quotient of X' °, the complement in Ay, of the fixed point set of G. They are both open
subsets whose complements have codimension > 2.

In this subsection, most of the arguments take place in the complex analytic category.

Hodge bundles in arbitrary degree
Our discussion is based on a minor adaptation of [Ste77, Sec. 1] to the relative setting. First of
all, we observe that the higher direct images R¥g.C are locally constant sheaves, and actually
Rkg.C ~ (R¥h,C)C. Indeed, we have the equality Cy = (p.Cx)€. Moreover, since G is finite, so
is p, and taking G-invariants is an exact functor in the category of sheaves of C[G]-modules. A spectral
sequence argument allows us to conclude. Similarly, one has R*g,Q ~ (R¥h,Q)°.

Let now £~23} U be the relative holomorphic de Rham complex of )V — U, in the orbifold sense. It

is constructed as follows. If j: V° < ) is the open immersion, then we let S~23}U = j*QS,O, and we

derive the relative version Q°,, . out of it in the usual manner. An equivalent presentation is

y/iu

O° . G
Qy/U = (p*gx/u) .

The complex ﬁy i is a resolution of g~'Op. Hence its kth relative hypercohomology computes
(R*g.C) ® Oy and satisfies

k_ e
R g*Qy/U

= (R*h.Q% /U)G (3.3)
compatibly with R¥g,C ~ (R¥h,C)C. It has a Hodge filtration and a Gauss—Manin connection defined
in the usual way, satisfying a relationship analogous to (3.3). Equipped with this extra structure, R¥g,Q
defines a variation of pure rational Hodge structures of weight k.

In [Ste77, Lemma 1.11], a canonical identification QS,U = mQ’ZU is established. It induces a natural
morphism

ﬁ-

yiu ”*(Q%/U)‘ (3.4)

The restriction of (3.4) to J° is given by pulling back differential forms. We derive a natural map
(R*n.Q% )¢ = R*g,Q

Su — RELQL (3.5)
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which is an injective morphism of variations of pure Hodge structures of weight k (see [Ste77, Cor.
1.5]). It is in particular compatible with restricting to the fibres and remains injective on those. It can be
checked to be compatible with the topological Q-structures, and hence we have an injective morphism
of variations of rational Hodge structures over U

(R*n.Q)¢ — R*f.Q. (3.6)

Notice that at this stage, the compatibility of (3.5) with the algebraic geometric Q-structure has not been
addressed. This will be studied in later subsections.

Hodge bundles in the middle degree
In the case k = n — 1, considering the isotypical components of the action of G on R"~!,C, we have a
direct sum decomposition,

R"'h,C = (R"'h.C)® @ Be, where Ec = @ (R"'h.C),. (3.7)

x: G-C*
X#1

This decomposition is easily seen to be orthogonal for the intersection form on R"~! h,C. In particular,
the restriction of the intersection form to (R"~'4,C)% is nondegenerate, and Poincaré duality holds
for R"'g.C ~ (R"'h,C)Y. Notice that the orthogonal of (R"~'7.Q)% in R"~'h,Q defines a rational
structure on Ec, and hence (3.7) can be refined rationally.

We next relate the intersection forms of (R"~'4,Q) and R"~! £,Q. Before the first statement in this
direction, we recall from Lemma 3.2 that )y is Gorenstein and K x /i descends to the relative canonical

bundle Ky .

Lemma 3.6.

1. ﬁ’l‘)_/;] is the relative canonical bundle Ky .

2. The natural morphism R™™! g*QSJ v R™! S Q% e induces a commutative diagram
R1g.Q @ R"—l—qg*?zg‘/;f’ —— R 'g. Ky

\
d

RIFQY , ® R £.QL 7P —— R fiKzpy

Ou

3. The natural isomorphism R g*ﬁy U

~ (R"‘lh*Q:Y /U)G induces a commutative diagram

ng*ng/U ® R”‘l‘qg*f!;_/;j_p e R”_lg*Ky/U LA Ovu
J{IGIA
th*Qi/U ® Rn—l—qh*g’;—/lu—l’ —_— Rn_ll’l*K)(/U L) Oy

Proof. For the first property, we notice that p*Ky,;;; = Ky, since both coincide outside a codimension
> 2 closed subset and Ay is smooth. Then we have the string of equalities

Q1 = (peKxy)? = (Kyjw @ p.0x,) = Kyjy ® (p.O0x ) = Ky
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For the first diagram, only the commutativity of the triangle requires a justification. For this, we rely
on general facts in duality theory. Our references are stated in the algebraic category. Corresponding
complex analytic properties are obtained by analytification. With this understood, the commutativity of
the triangle is a consequence of the three following facts: i) the transitivity of trace maps with respect
to the composition of morphisms [Har66, Thm. 10.5 (TRA1)], ii) the crepant resolution property
7*Ky,;y = Kzyy and iii) Yy has rational singularities so that Rm.Oz, = Oy,,. The argument is
similar for the second diagram. Briefly, one combines i) the transitivity of trace maps, ii) the duality
pKxyjy, =Homo,, (p+Ox,, Oy, ) and iii) the trace tr: p.Kx, /v, — Oy, is given by ¢ — ¢(1)
[Har66, proof of Prop. 6.5], and the composite map

idetr
Kyiw — p:Kxjw = Kyju ® psKxy /v, — Ky

is the multiplication by |G|. This is clear over )° since it is the étale quotient of X'° by G. It is then
necessarily true everywhere. m}

Proposition 3.7. Let Q be the intersection form on R"™' f.Q and Q' the intersection form on R"~'h,Q.
Then via the injection in (3.6), we have Q = ﬁQ’ on (R"'h,Q)°.

Proof. 1t is enough to check the relationship after extending the scalars to C, in which case we can use
the Hodge decomposition. The proposition then follows from Lemma 3.6 and the fact that in the middle
degree, the intersection form is induced by the cohomological cup product and the trace map. We notice
that in dimension #n — 1, the topological and complex geometric trace maps differ by a factor (27i)" !,
but this is inconsequential for the problem at hand. O

Remark 3.8.

1. In the case of direct images of relative canonical sheaves, the discussion in the proof of Lemma 3.6
reduces to the chain of isomorphisms of line bundles

(hKxp)® — g.Kyjy — fKzu. (3.8)

We leave it to the reader to check that these are the natural morphisms already defined in the algebraic
category over Q.

2. Because of Proposition 3.7, and for the purposes of this article, it is natural to scale the intersection
form on (R 'h,Q)% as ﬁQ’. This will be of minor importance below.

3.4. The Kodaira—Spencer maps and the Yukawa coupling

Recall that for a general variation of Hodge structures (7, F°) on a complex manifold X, Grif-
fiths transversality entails that the Gauss—Manin connection factors as an Ox-linear morphism
FPIFPt — (FPTU/FP) ® Q; This is the Kodaira—Spencer map, and in the setting of R"‘lf*Q'Z/U,
we also write it in the form

KS@: Ty —s Homo,, (RY f*g'g/i;q, Ra*! f*gg‘/@“l). (3.9)

A repeated application of the Kodaira—Spencer maps gives a morphism
Y: Sym" ' Ty — Homo,, (f.Kzu, R £.0z2) = (f.Kz/u)® 2. (3.10)

We can explicitly evaluate the morphism Y in terms of the sections ¥d/dy of Ty and the section
0o of (h*KX/U)G ~ f.Kzu (see (3.8)) constructed in (3.1). Then the morphism Y identifies with a
rational function on U, denoted Y (¢). This is the definition of the so-called (unnormalised) Yukawa
coupling.
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Working with (R"‘lh*Q;( /U)G instead, one similarly defines a function ¥ (¢). Via the morphism

in (3.5), the functions Y () and Y (¢) can be compared. The only subtle point to bear in mind is the
use of Serre duality in the definition of the Yukawa coupling. For Hodge bundles of complementary
bi-degree, Serre duality is induced by the cup-product and the trace morphism. Hence, an application
of Lemma 3.6 shows that Y () and Y () are equal up to the order of G. With this understood,
we can invoke the computation of the Yukawa coupling in [BvS95, Cor. 4.5.6 & Ex. 4.5.7], which
summarises to

- - l,bni]
Y(y) = /Xw (90 A de,dwé)o) =g (3.11)

for some irrelevant constant ¢ # 0. To ease the comparison with the expression in [BvS95], we make
the following observations. First, their factor Az is 1/ tp"”. Secondly, their evaluation of ¥ amounts to
working with the section /6y instead of 6.

3.5. The middle degree Hodge bundles

We now further compare the middle degree Hodge bundles of the Dwork pencil #: X — U and that
of the mirror f: Z — U by drawing on specific features of these families. We introduce primitivity
notions for the relative Hodge bundles induced by any projective factorisation of f and the natural
projective embedding of . Observe that the latter is G-equivariant and defined over Q. We also require
the polarisation for Z — U to be defined over Q. Then the primitive Hodge bundles are defined in the
algebraic category over Q.

Construction of sections
We begin by constructing explicit sections of the middle degree Hodge bundles of #: X — U via
Griffiths’ residue method [Gri69].

Our reasoning starts in_the complex analytic category. Denote by H = xo - x1 - ... - x, and
Q=3(-Dixidxo A ... Adx; A... Ndx, € H(P", QL (n+1)). For ¢ € U, the residue along Xy,

KIH*Q
k+1
Fl//

O, = resx,,

defines a G-invariant element of H”‘I(Xl/,), still denoted 8. For k = 0, this indeed agrees with the
holomorphic volume form in (3.1). Varying ¢ gives us sections of R"‘lh*Q:Y e also denoted by 6.
The constructed sections are primitive by [Gri69, Thm. 8.3].

From the definition of the sections 6, one can check the following recurrence:

KIH*Q
k+1
Fw

0
Vajay Ok = resx,, (—

6!// = (I’l+ 1)9k+1- (3.]2)

Lemma 3.9.

1. Fork=0,...,n-1, we have

9k € Fn—l—an—l (XIZ/)G

prim*

Moreover, the spaces H”‘l‘k’k(X,p)gim are all one-dimensional, and the image of 0y in

H"_l_k’k(X,/,)G is a basis for y € U. In particular, the local system (R""'h,Q)S. is of rank n.

prim prim
G

2. The sections 0y, trivialise (R"™! h.Q5, /U)prim outside of 0 and are algebraic and defined over Q.
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Proof. For the first item, the spaces H"~ 17Kk (Xy )pGrlm are necessarily one-dimensional, which follows
from a computation in the case of Fermat hypersurfaces; see [DMOSS82, p. 82, Rmk. 7.5]. For the rest
of (1), we use Griffiths’ description of the Hodge filtration of a hypersurface in terms of residues of
rational forms, reviewed in [Voi07, Chap. 6].

By [V0i07, Thm. 6.10], we indeed have for k = 0,...,n -1, 6; € F"I"FH""1(X,)C . We need

¥ Jprim*
to verify that the projections of the sections 6; onto H"~ 1%k (Xy )(r;lm are everywhere nonzero on U.
The following argument was suggested by the anonymous referee, whom we thank for allowing us to
include it. A detailed study of Griffiths’ residue map — see, for example, [Voi07, Cor. 6.12] — provides
an isomorphism [C[xo, ..., X.]/J](n+1) -k — H”‘l‘k’k(Xl,,)prim, where J denotes the Jacobian ideal of
X, in P" and the index (n+ 1)k refers to the homogeneous part of the corresponding degree. Recall the

notation H = xq - . . . - x. Since C[x, ..., x,]° = =Clxg ntl o x™H], we find that

*'n

[C[xn+l"” xn+l /JG](,H_])k ~ g 1- kk(X )

¥ Jprim>

where JG = J N C[xo, ..., x,]¢. A straightforward computation shows that x"*! = %H modulo JC,
so that in fact

Clxg*!, .. x* H]/JC =~ C[H]/JC.

Now the image of 6; in H" 7% k(Xw)pnm corresponds to the image of k!H* in [C[H]/JG](n+1)k

through the above isomorphisms, and the latter is a generator of [C[H]/J G](n+1) ., hence nonzero. Thus
the projection of 6 gives a basis of H"~ 1% k(X )lelm

For the second item, we just need to address the second half of the statement. We observe that
the section 0y of (h.Ky /U)G is algebraic and defined over Q. By the algebraic theory of the Gauss—
Manin connection [KO68], we know that the latter preserves the algebraic de Rham cohomology
(R"'h,Q° /U)pnm and is defined over Q. Because the vector field d/dy is algebraic and defined over

Q, the claim follows from the recurrence in (3.12). ]

Remark 3.10. An alternative approach to the nonvanishing of the projection of the sections 6 onto
H17kk(x )G orim 15 based on the explicit expression of the Yukawa coupling in (3.1 1) and the realisation
of the sectlons 0y as iterated Gauss—Manin derivatives via (3.12). If either of 6; have zero projection
for some ¥, applying the Kodaira—Spencer map in (3.9) and the recurrence in (3.12), we see that all the
projections of 8 with k” > k are also zero at ¢. This implies that the Yukawa coupling, divided by
Y"1 to work with the tangent vector d/dy instead of yd/dy, also has a zero at . But the expression
in (3.11) divided by """ has no zeros on U, from which we conclude.

The minimal component of the cohomology

Below, we show that the image of the primitive middle cohomology of the Dwork family under (3.6) is
a direct factor of the cohomology of the mirror. Later, in Lemma 4.2, we will see that the complement
is irrelevant for most considerations.

Lemma 3.11.

1. The natural morphism in (3.6) induces an injective morphism of variations of polarised Hodge
structures over U*"

(Rn ]h Q)glmc_’(Rnilf*Q)prim- (3-13)
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2. The natural morphism

(R 1% ) gt (R £:Q% 1, Jprim (3.14)

deduced from (3.13) @ Oy exists in the algebraic category over Q.

Proof. For the proof of (1), it is enough to show that (3.5) restricts to a map between the primitive
cohomologies. It will automatically be compatible with the polarisations, by Proposition 3.7. See
Remark 3.8 (2) regarding the scaling of the intersection forms. By Lemma 3.9, it suffices to check that
the sections 6 of (R"‘lh*Q:\, /U)p(r;im map into primitive classes. Let 6 be the image of 6, under (3.5).
As (3.5) is compatible with Gauss-Manin connections, the 6, satisfy the analogous recurrence to (3.12).
Because f.K z,y is primitive and the Gauss—Manin connection preserves primitive cohomology, we see
that the 6; land in the primitive cohomology.

The claim in (2) is addressed in a similar manner. By Lemma 3.9, we already know that the sections
0 constitute an algebraic trivialisation of (R"~! h.Q% /U)gim defined over Q. We need to prove that
their images 6, in (R™! 1, I, Jprim are algebraic and defined over Q as well. This is the case of
9(’), because the natural isomorphism (/.K x /U)G ~ fuKzy (see (3.8)) is algebraic and defined over
Q. In this respect, see Remark 3.8 (1). Because the 9,’( satisfy the analogous recurrence to (3.12),
and the Gauss—Manin connection and the vector field d/dy are algebraic and defined over Q, we
conclude. O

Notice that the image of (R"‘lh*Q)pCr;im under (3.13) is the smallest subvariation of Hodge struc-
tures of R"~! £.Q whose Hodge filtration contains f.K = Ju (see (3.8)). This motivates the following
definition:

Definition 3.12. The image of (R""'4.Q)%. in (R""' f, Q)prim under the morphism in (3.13) is denoted

prim
by (R""! £,Q)min and called the minimal component or minimal part. Likewise, we decorate algebraic
variants (see (3.14)) and associated objects by min. For example, this applies to Hodge bundles and
homology constructions.

The next step consists of isolating the complement of the minimal component. In preparation for
the statement, we recall that the topological intersection form on R”~! £,C has a counterpart on the de
Rham cohomology R""! S€2% L which is already defined in the algebraic category over Q. Indeed, the
construction of the latter involves the cohomological cup-product, the graded product structure on the

complex Q°, v and the algebraic geometric trace map

n— ] n— L] Y n— o n— b
R lf*Qz/U ®R lf*QZ/U — R l)f*QZ/U =R"f.Kzw — Ou.

After forming (R"~! f.C) ® Oy, the topological and algebraic intersection pairings agree up to a factor
(27i)"~!, which accounts for the comparison of the trace maps. We are now ready for the next result.

Proposition 3.13 (Minimal decomposition).

1. LetV be the orthogonal of (R"™! f.Q)min in (R"™ £.Q)prim for the topological intersection form. Then
there is an orthogonal decomposition of variations of polarised rational Hodge structures over U™"

(Rn_lf*Q)prim = (Rn_lf*Q)min eV. (3.15)
Furthermore, we have

0 if n—1isodd,
| of pure type ("T_l, "T_l) if n—1is even.
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2. Let V be the orthogonal of (R"_lf*Q'Z/U)mm in (R”_lf*Q},/U)prim for the algebraic geometric
intersection form. Then there is a direct sum decomposition of locally free coherent sheaves with
connection over U, in the algebraic category over Q,

(Rnilf*g.z/y)prim = (Rnilf*g.g/u)min eV. (316)

Furthermore, the analytification of (3.16) is naturally identified with (3.15) ® Ogan.

Proof. We first deal with (1). In the case of n — 1 being odd, (R"™! £,Q)prim = (R"™! £,Q)min, by the
very definition of the minimal component and by Lemma 3.4 and Lemma 3.9. In the case n — 1 is
even, we first notice that the intersection pairing is flat for the Gauss—Manin connection and that the
orthogonal complement of a subvariation of rational Hodge structures in a variation of polarised rational
Hodge structures is also a variation of polarised rational Hodge structures. Thus V is a variation of
polarised rational Hodge structures. To obtain the decomposition of (3.15) with the required properties,
we can reduce to the following general fact. Let (H, Q) be a polarised Hodge structure over Q, of
weight 2d, and (E, Q) a sub-Hodge structure, such that E (P9 = H(P-9 for p # q. Let V = E* be the
orthogonal of E for the intersection form Q. Then H = E @ V and V is a Hodge structure over Q, of
pure type (d, d). To prove this fact, by linear algebra and the nondegeneracy of the intersection form, it
is enough to verify that E NV is trivial. Take any element x in the intersection, and decompose it in Hc
according to the bidegree as x = Y, xP*9. Then xP-4 € E9-P C E¢. On the other hand, i?~9Q (x, xP-9) =
iP=4Q(xP-4,xP-d) > 0, with equality only if x”>¢ = 0. But this is the case since x € E*, proving the
decomposition. It follows from the assumption E(P-9) = HP-9) for p # ¢ that the complement is of pure
type (d, d).

For item (2), we first notice that since (R""! 1 Q2 /U)min and (R"! Q% /U)Prim are locally free
coherent sheaves, so is V. Besides, the algebraic Gauss—Manin connection preserves V since it preserves
the minimal component and the algebraic intersection form is flat. By the compatibility of the topological
and algebraic intersection forms, the analytification of V is canonically identified with V ® Oan. For the
validity of the direct sum decomposition, we can reduce to the analytic setting, in which case it follows
from (3.15) ® Opan. o

Remark 3.14. After Proposition 3.13, and with the conventions adopted in Definition 3.12, for the
homology local systems, we have

(R" £, Qi = (R £.Q) © VY. (3.17)

We can thus consider (R"! £.Q)). as a subsystem of (R™! f*Q)grim, which in turn can be seen as a

subsystem of the homology local system (R"~! £,Q)". This allows us to interpret (R"~! £, Q) in terms
of homology classes and Poincaré duals of these in terms of integration.

In the application of the arithmetic Riemann—Roch theorem to the BCOV conjecture, we will need
sections of the Hodge bundles rather than the Hodge filtration (see Theorem 2.3). This is the reason
behind the following definition.

Definition 3.15. We define UZ as the trivialising section of (Rk f*Q’é‘/lU_ k )min, deduced from
0r via the morphism in (3.13) and by projecting to the Hodge bundle. We also define
e = —(n+ 1D)**ly e

Remark 3.16.

1. By construction, the section r; vanishes at order k + 1 at iy = 0.
2. The sections ni are algebraic and defined over Q by Lemma 3.9 and Lemma 3.11.
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Lemma 3.17. The sections n; satisfy the recurrence

d o o
KS® (W) ny = (n+ )5, (3.18)
Consequently,
d
KS™ (¢ — | nk = nxst. 3.19
(l/’dw)ﬂk Mi+1 (3.19)

Proof. The first recurrence follows from (3.12), Lemma 3.11, the link between the Gauss—Manin
connection V and the Kodaira—Spencer maps KS?) and the definition of 1~ The second recurrence
follows from the first by the very definition of the sections 7 and the O -linearity of the Kodaira—
Spencer maps. O

4. The degeneration of the Hodge bundles of the mirror family

In the previous section, we exhibited explicit trivialising sections of the minimal part of the middle
degree Hodge bundles of the mirror family Z — U. The next goal is to extend these sections to the whole
compactification P!. We also address the trivialisation of the Hodge bundles other than the minimal
part and in any degree. For these goals, we exploit the approach to degenerating Hodge structures via
relative logarithmic de Rham cohomology.

4.1. Generalities on geometric degenerations of Hodge structures

We recall some background from Steenbrink [Ste76, Ste77] and our previous work [EFiMM?21, Sec. 2
& Sec. 4]. We also refer to Illusie’s survey [11194, Sec. 2.2 & Sec. 2.3]. Let f: X — D be a projective
morphism of reduced analytic spaces over the unit disc D. We suppose that the fibres X; with r # 0
are smooth and connected. We consider the variation of Hodge structures associated to R¥ £,Q over the
punctured disc D*. Let T be its monodromy operator and V the Gauss—Manin connection on the holo-
morphic vector bundle (R* ,Q) ® Opx = R¥ S Q2% e Recall that T is a quasi-unipotent transformation
of the cohomology of the general fibre. The flat vector bundle (R¥ Ji€2% /D% V) has a unique extension
to a vector bundle on D, such that V extends to a regular singular connection whose residue Resg V is an
endomorphism with eigenvalues in [0, 1) N Q. This is the Deligne (lower) canonical extension, denoted
by ¢R¥ S 2% DX Occasionally, we may simply refer to it as the Deligne extension of R* £,C. It can be

realised as the hypercohomology R* f'Q°,, /D(log) of the logarithmic de Rham complex of a normal
crossing model f’: X’ — D. The Hodge filtration 7 * on R* S Q25 /o
sub-bundles, still denoted by F*. Its locally free graded quotients are of the form R*~7 f ’Q;, /D (log).

extends to a filtration by vector

If the monodromy operator is unipotent, then the fibre of R* f Q. /D(log) at 0, together with the re-

stricted Hodge filtration, can be identified with the cohomology of the generic fibre H, ﬁm with the limiting
Hodge filtration F2 . The identification depends on the choice of a holomorphic coordinate on D. There
is also the monodromy weight filtration W, on H{fm attached to the nilpotent operator N = —2mi Resg V.
The triple (Hllfm, F3.,W,) is called the limiting mixed Hodge structure. It is isomorphic to Schmid’s
limiting mixed Hodge structure [Sch73] on the cohomology of the general fibre. In particular, W, ad-
mits a rational structure. This structure is not needed in the current section, but it will be used later
in Section 6 in the greater generality of higher-dimensional parameter spaces. In the general quasi-
unipotent case, one first performs a semi-stable reduction and then constructs the limiting mixed Hodge
structure.

More generally, for a subvariation of Hodge structures E of R¥ £,Q, which is a direct summand, the
previous constructions can also be carried out and relate to those of R¥ £,Q as follows. For concreteness,
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let us comment on the case of f: A — D as above, with normal crossings model f': X’ — D.
Denote by j: D* < D the open immersion. Then the Deligne extension of £ = E ® Opx equals j,.E N
‘R*f.Q0, /< OF equivalently /.€ N REf1Q0,, /p(log), where the intersection is taken in J«R*£.Q5, /Dx-
Let us denote it by €. To construct the limiting mixed Hodge structure of E, we may first perform
a ramified base change and suppose that f” is semi-stable. Secondly, we intersect the limiting mixed
Hodge structure (H{ ,F2,W,) of R*f£,Q with ‘£(0), the fibre at 0 of ‘£. In our work, we will
encounter this setting for the standard case of the primitive cohomology but also for the decompositions
in (3.7) (G-invariants) and the minimal decomposition of (3.15). Accordingly, the resulting objects
will be decorated with the symbol prim, G or min. For example, we will have notations such as
Rn_lf*,Q:y//D(log)mim

Analogously, for a projective normal crossings degeneration f: X — § between complex algebraic
manifolds, with one-dimensional S, there are algebraic counterparts of all the above: logarithmic de
Rham cohomology, Gauss—Manin connection, Hodge filtration and so on. This is compatible with the
analytic theory after localising to a holomorphic coordinate neighbourhood of a given point p € S. We
will in particular speak of the limiting mixed Hodge structure at p and simply write Hﬁm if there is no
danger of confusion.

Finally, we will also need the limiting mixed Hodge structure (Hp )iy, on the homology, and in
particular the dual weight filtration W, defined as W/ = (Hl’i‘m J/W,_1)".See [Del71, (4.2.2)] or [EZT14,
(3.1.3.1) and (3.2.2.7)] for more information about dual filtrations.

4.2. Triviality of some variations of Hodge structures

We return to the geometric setting of Section 3 and maintain the notations therein. For the mirror family,
we prove that outside of (R"™! £,Q)min, all the variations of Hodge structures appearing in our work
correspond to trivial local systems. In particular, the local systems outside of the middle degree and
the local system V from Proposition 3.13 are all trivial. We also derive consequences for the associated
Hodge bundles in the algebraic category.

We fix the normal crossings model f”: Z’ — P! obtained by blowing up the locus of the ordinary
double points of f: Z — P!, which is defined over Q. We also introduce a polarisation induced by a
projective factorisation of f’ defined over Q. The corresponding logarithmic Hodge bundles and their
primitive parts are locally free sheaves over P!, already defined in the algebraic category and over Q.

By Lemma 3.4, we have Rdf*’Q'Z//Pl(log) = 0 for d odd, not equal to n — 1, while if
d=2p #n-1, R”’f*’Q'Z,/P1 (log) = Rl’f*’Q’;/Pl (log). We then have the following result outside

of middle degrees:
Lemma 4.1. For 2p # n — 1, the following hold:

1. The local system R*P £,Q on U™ = P!\ (ip41 U {c0}) is trivial.
2. The Hodge bundle RP f*’Qg, /P (log) is trivial in the algebraic category over Q.

Proof. We first prove that the local system R>” f,Q is trivial. Take a base point b € U2, and let
p: 1 (U™, b) — GL(H?P(Zp,Q)) be the monodromy representation determining the local system.
The fundamental group 71 (U®", b) is generated by loops y¢ circling around & € u,41 and a loop ye
circling around oo, with a relation [+ y¢ = Y. Because the singularities of Z — P! at the points &
are ordinary double points, and 2p # n — 1, the local monodromies p(y¢) are trivial. Therefore p(ye)
is trivial as well, and so is p.

Now the first claim implies the triviality of R? f*’Q’Z’, e (log) = R?P f! Q7 /B! (log) in the analytic

category, since the latter realises the Deligne extension of R2? Q% U By the GAGA principle,
R?P f*’Q’;, /Bl (log) is algebraically trivial as a complex vector bundle. This already implies the second

claim. Indeed, let E be a vector bundle over P(lQ, which is trivial after base change to C. Then the natural
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morphism H*(PL, E) ® Op1 — E is necessarily an isomorphism, since it is an isomorphism after a flat
Q
base change. O

Lemma 4.2. With the same notations as in Proposition 3.13, we have

1. The local system V on U™ is trivial.
2. The locally free coherent sheaf with connection V) over U is trivial in the algebraic category over Q.

Proof. We first show that if the local monodromy of (R"~! £,C)ni, around one ODP point is trivial,
then it is so around all the ODP points. Since (R"~! f,C)pin is isomorphic to (R"’lh*C)pcfim as a
local system, it is enough to show that the latter descends along the natural projection (U — {0}) —
(U = {0})/tn+1, Where 1,41 acts by multiplication on (U — {0}) c P!. Notice that for any ¢ € f,41,
the automorphism ¢ — ¢ - ¢ lifts to an automorphism of the family g: )V — (U — {0}) via the formula
[xo:x1:...:x,] [x(’) : xi :...1x,], where x] = x; except for one i, for which x; = (‘1 -x;. Since we
work in the quotient by the group G, all the choices of i correspond to the same action. We conclude that
the local systems (R*h.C)C ~ R*g,C descend for all k. Observe that R?1,C is actually constant with
fibre H>(P", C), by Lefschetz, with G acting trivially. Therefore, the polarisation necessarily descends.
We conclude that (R"‘lh*C)pcfim = ker (L: (R"'h,C)¢ — (R"'h,C)) descends too, as was to be
shown.

We now show that V is a trivial local system. It is enough to argue for V¢. In the odd-dimensional
case, there is nothing to prove. In the even-dimensional case, we first recall that by the Picard—Lefschetz
formula, the local monodromies on (R"! f+C)prim around the ODP points are semi-simple with a single
nontrivial eigenvalue —1 of multiplicity one. It follows that around each ODP point, exactly one of the
sublocal systems (R"~! f,C)min and V¢ has trivial local monodromy. By the argument in the previous
lemma, if the monodromies around one and hence all the ODP points on (R”‘1 f+C)min Were trivial, it
would follow that the monodromy around co would also be trivial. As this is excluded by Lemma 4.3
below, we infer that V is a trivial local system.

We next address the triviality of V asserted by the second point. We will now make use of the
G-equivariant normal crossings model 4’: X’ — P! of Proposition 3.1. We summarise the current
geometric setting in the following diagram, which builds upon (3.2):

X/

|

X ~
p \
crepant

zZ—z2- 2 3y=X/G

We first argue analytically. By the minimal decomposition (Proposition 3.13), the morphism in (3.13)
induces a morphism between Deligne extensions
CR" Q) gt (R 1% 1) Jorim- @1

prim

We can reformulate (4.1) as a morphism
v (R™HQS, o (l0g)iy = (R F1Q3, 11 (10@) orim,

extending (3.14) to P!. By the GAGA principle, this morphism is algebraic. Notice that the coherent
sheaves involved in ¢ are locally free and defined over Q. By Lemma 3.11 (2), |y is defined over Q.

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.13

Forum of Mathematics, Pi 27

Therefore, ¢y is invariant under the action of Aut(C/Q). Because U is a nonempty Zariski open subset
of P!, which is an integral scheme, we infer that ¢ is invariant under Aut(C/Q). Therefore, ¢ is defined
over Q, and so is its cokernel. We denote by V this cokernel of ¥ modulo its torsion part. Then Visa
vector bundle. _

By Proposition 3.13 (2), V|y is canonically isomorphic to V), over Q, and in particular inherits
a connection from V. Also, by the same proposition, we know that the analytification of (3.16) is
canonically identified with the tensor product of (3.15) with Oyw. By taking Deligne extensions, we
deduce that V*" is a vector bundle with regular singular connection, canonically isomorphic to the
Deligne extension of V ® Opa. By the first part of the lemma, we thus infer that V" is a trivial vector
bundle with connection, and in particular any trivialisation over P! is flat. As in the proof of Lemma
4.1 (2), we deduce that V is a trivial vector bundle over ] P!, defined over Q. From all the above, we
concludg that the restriction to U of any trivialisation of V, defined over Q, induces a flat trivialisation
of V =~ V|y, defined over Q. This concludes the proof. ]

4.3. Behaviour of 1y, at the MUM point

For the mirror family f: Z — P!, let D, be a holomorphic disc neighbourhood at infinity, with
parameter ¢t = 1/¢. To lighten notations, we still denote by f: Z — D, the restricted fam-
ily. To simplify notation, we write Hl'l.’r;ll for the limiting mixed Hodge structure at infinity of

(R f.Q)min-
Lemma 4.3.

1. The monodromy T of (R"! f.Q)min at oo is maximally unipotent. In particular, the nilpotent operator
Non H"‘l satisfies N~ # 0.
2. The graded pieces Grk H""' are one-dimensional if k is even and trivial otherwise. For all

lim
1 < k < n -1, Ninduces isomorphisms

Gr) N: Gr)Y H!'"! — Gr)/, H!'-!.

lim lim

3. Foralll < p <n—1, Ninduces isomorphisms

GrF N: GrF H' 1—>Grp Vgn-t,

lim lim

Proof. The maximally unipotent property for (R"~!' £,Q)min = (R"'h Q)Gnm is proven in odd relative
dimensionin [HSBT10, Cor. 1.7]. Exactly the same argument yields the clalm in even relative dimension.
In particular, N"~! # 0. This settles the first point. Because moreover N"~! induces an isomorphism
Grg‘(/n b Hi — Gr) H!'-!, we deduce that Grj) H!'! # 0. By Lemma 3.9, H!'-! is n-dimensional,
and the second item follows for dimension reasons. Finally, we use that Gr Hi T is one-dimensional
again by Lemma 3.9 and then necessarily Gry. H/'"! = Grf._ Grzl7 Hl’i‘ml = Grzp H!. Hence the
second point implies the third. o

By the maximally unipotent monodromy and for dimension reasons, the T-invariant classes of the
minimal cohomology of a general fibre span a rank one trivial subsystem of (R"! f,C)pin on DX,.
We fix a basis y’ of this trivial system. It extends to a nowhere vanishing holomorphic section of the
Deligne extension of (R"*~! f*C)mm The fibre at 0 is then a basis for Wy, which identifies with ker N by
the above lemma. We still write ’ for this limit element. Similarly, (R"~! £, C),.., has a rank one trivial
subsystem spanned by the class of a T-invariant homological cycle y. We may choose 7y to correspond to
¥’ by Poincaré duality.® Hence, for any n € H""'(Z;), t € DX, the period (y, ) equals the intersection
pairing Q(y’,n). It is possible to explicitly construct an invariant cycle. Although we will need this

6Recall from Proposition 3.13 and Remark 3.14 that classes in (R"~! f*(C)le can be seen as homological cycles, and Poincaré
duality can be used on the minimal component.
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in a moment, we postpone the discussion to §5.2, where a broader study of homological cycles is
delivered.

In preparation for the following lemma, we recall from the preliminaries in §4.1 that f.K zp_ (log)
is isomorphic to F" 'R"1Q® _ (log) and that R"'Q®, ,_ (log) realises the Deligne extension of

Z/Deo Z /Do
(R"1£.C) ® Opx 10 Dew.

Lemma 4.4. Let 17 be a holomorphic trivialisation of f.K z o, (10g). Then the period {y,n) defines a
holomorphic function on Dy, nonvanishing at the origin.

Proof. The argument is well-known — see, for example, [Mor93, Prop.] and [Voi99, Lemma 3.10] — but
we sketch it due to its relevance.

The pairing (y,n) = Q(y’,n) is clearly a holomorphic function on D since both y’ and 5 are
holomorphic sections of (R""!£.C) ® Opx . Moreover, they are both global sections of the Deligne
extension. This ensures that |Q (y’, n7)| has at most a logarithmic singularity at 0. It follows that Q(y’, n7)
is actually a holomorphic function.

For the nonvanishing property, we make use of the interplay between the intersection pairing seen
on Hl’;ll and the monodromy weight filtration [Sch73, Lemma 6.4], together with Lemma 4.3. Let
n € Hl'i‘[;l be the fibre of 1 at 0. We need to show that Q(y’,n") # 0. Suppose the contrary. Since y’ is
a basis of Wy = ker N = Im N"*~!, we have n’ € (Im N"~!)*. The intersection pairing is nondegenerate
and satisfies Q(Nx, y) + Q(x, Ny) = 0. Therefore, we find that 5’ € (ImN""')* = ker N"~! = W,,,_3.
But 7’ is a basis of F”‘IH]’i'r;1 = -l Grg‘r/l_2 leilr;ll’ and therefore n” ¢ W,,,_3. We thus have reached a
contradiction. O

Before the next theorem, we consider the logarithmic extension of the Kodaira—Spencer maps in
(3.9):if D is the divisor [oo] + 3 zni-; [€], then

KS@: Ty (- log D) — Homo_, (R f*Q’;/lﬂ;q (log), RI*! f*gz’;/ﬁ;ﬁ (log)). (4.2)

They preserve the minimal and primitive components.

Theorem 4.5. The section 1y is a holomorphic trivialisation of R f*Q’g/gwk (10g)min-

Proof. First of all, we prove that 179 is a meromorphic section of f.K z/p_, (log). Indeed, ng is an algebraic
section of f.Kz,y (see Lemma 3.17), hence a rational section of f.K z pi (log) and thus a meromorphic
section of f.K zp_ (log).

Second, we establish the claim of the theorem for 19. By Lemma 4.4, we need to show that the
holomorphic function (y, n9) on DX extends holomorphically to D, and does not vanish at the origin.
This property can be checked by a standard explicit computation reproduced below (5.8).

Finally, for the sections 7, we use the recurrence in (3.19) and the logarithmic extension of the
Kodaira—Spencer maps in (4.2). It follows that the sections 7, are global sections of the sheaves

R¥ f*Q’g/gf(log)mm. Let us denote by 7, the fibre at 0 of the sections 5. Specialising (3.19) at 0, we

find (Gr;;l_k N)n = 1n;,,- By Lemma 4.3 (3), and because 1, # 0, we see that 17; # 0 for all k. This
concludes the proof. O

4.4. Behaviour of 1y at the ODP points

Recall the normal crossings model f’: Z’ — P!'. We restrict it to a disc neighbour-
hood Ds of some & € puyu4. Concretely, we fix the coordinate r = y — & We write
f': 2" — Dg for the restricted family. We now deal with the limiting mixed Hodge struc-
ture Hl’i‘;l at & of (R"!f,Q)min. Since the monodromy around & is not unipotent in general,
the construction of Hl’i’;]l requires a preliminary semi-stable reduction. This can be achieved as

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.13

Forum of Mathematics, Pi 29

follows:

S normalisation zZr r z (43)

N

Hence f A D¢ is the normalised base change of f’ by p. An explicit computation in local

coordinates shows it is indeed semi-stable. The special fibre f_l(O) consists of two components
intersecting transversally. One is the strict transform Z of Zg. We denote by E the other compo-
nent. Then E is a nonsingular quadric of dimension n — 1, and ZNEisa nonsingular quadric
of dimension n — 2. In terms of this data, the monodromy weight filtration is computed as
follows.

Lemma 4.6. The graded pieces of the weight filtration on Hl'i‘;]l are given by
e ifn—1isodd, then

Q(-22). ifk=n-2,
. L e
GV gl = a direct factor of H*"'(Z), ifk=n-1,
k lim n )
Q(-3) ifk=n,
0, otherwise.

e ifn— 1 is even, then

a direct factor of H (H"-3(Z NE)(=1) = H"(Z) @ H"\(E) - H" (Z N E)) :

GrkWH"_lz ifk=n-1,

lim
0, ifk #n—1.

1 .
Hence, H}; " is a pure Hodge structure of weight n — 1.

Proof. The proof follows from [Ste77, Ex. 2.15], noticing that (R"‘lﬁQ)min = p*(R" ' £,Q)min is a
direct factor of R"~! £,Q, whose complement is a trivial variation of Hodge structures by Lemma 4.1

and Lemma 4.2. For the case n — 1 is even, we moreover recall that V as in Proposition 3.13 has pure
bidegree ((n—1)/2,(n—1)/2). O

We will need the comparison of the middle degree minimal Hodge bundles between before and after
semi-stable reduction. We follow [EFIMM?21, Sec. 2 & Prop. 3.10]. There are natural morphisms
N7 'OP . ~OP .
P p* RS, QZ’/Dg (log)min — qu*gg/Df (1og)min- (4.4)

Lemma 4.7. Suppose that p + g = n — 1. Let QP9 be the cokernel of P-4 in (4.4).

e Ifp # q, then QP71 = 0.
o Ifp=gq="1 then QPP = Op, o/uOp, 0.

Proof. The results in [EFIMM?21, Sec. 2 & Prop. 3.10] are explicitly stated for the whole Hodge bundles
and describe the cokernels in terms of the semi-simple part of the monodromy acting on the limiting
Hodge structure. For their minimal components, however, see Remark 2.7 (iii) in [EFiIMM?21] together
with Proposition 3.13 and Lemma 4.2. m}
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We are now fully equipped for the proof of

Theorem 4.8. The sections ny extend to meromorphic sections of the logarithmic Hodge bundles

ka*’Q’g,/lgf (108)min. Furthermore, denote by ord g ni the order of zero or pole of ni at &, as a rational

section of R¥ f*’Q”_,/lAf{ (1og)min-

o [fn—1isodd, then ordg ng =0 for k < n/2 — 1 and ord¢ i = —1 otherwise.
o Ifn—1iseven, then ordg i = 0 for k < ”7_3 and ordg n; = —1 otherwise.

Proof. Throughout the proof, we write X', ) and Z for the respective total spaces over A!. We begin
by showing that i extends to a global section of f/K z/,41(log), nonvanishing at &. Since the singular
fibres of Z — A! present only ordinary double points, there is an equality

Kz a1 = [/Kz 01 (log).

This can be seen as the coincidence of the upper and lower extensions of f.Kz;y to Al (apply
[EFIMM21, Cor. 2.8 & Prop. 2.10] and the Picard-Lefschetz formula for the monodromy). Since ) has
rational singularities (see Lemma 3.2), the natural morphism g.Ky, 51 — fiKz/a1 is an isomorphism.
Also g.Ky a1 = (h*KX/Al)G. Indeed, let X'° be the complement of the fixed point locus of G in X
and similarly for )°, so that ) \ J° has codimension > 2. Then because ) is normal Gorenstein and
Y° = X°/G is an étale quotient and X is nonsingular, we find

g*Ky/Al = g*Ky°/A] = (h*KXO/Al)G = (h*Kx/Al)G.

By construction of 79 (see Definition 3.15), it is enough to prove that 6y defines a trivialisation of
h.K a1 around £. Denote by X'* the complement in &’ of the ordinary double points, so that X' \ X'
has codimension > 2. Because X is nonsingular, we have /. Ky /41 = h.Ky+/51. Now the expression in
(3.1) for 8y defines a relative holomorphic volume form on the whole A’ * and hence a trivialisation of
hiK - a1 as desired.

That the sections 7; define meromorphic sections of the sheaves R¥ f/ Q’g}&f‘ (l0g)min follows from
the corresponding property for 19 plus the recurrence in (3.19) and the existence of the logarithmic
extension of the Kodaira—Spencer maps in (4.2). From the same recurrence, we reduce the computation
of ord¢ ny to the computation of the orders at £ of the rational morphisms KS) (¥ d/dy), with respect
to the logarithmic extension of the Hodge bundles

k-1 k-1
. d ) d

ordg g =ordg no + ) ord KSW) (¢—) = ord KSW) (lﬂ—) .
‘ ¢ JZ‘O ¢ dy Z ¢ W

Let us define M) = ordg KS) (zpﬁ). Because no trivialises f.Kz,1 at & formula (3.11)

shows that
n-2 )
Z MY =ord; Y(y) = —1. (4.5)
j=0

We argue that all but one of the M () are zero. For this, we relate M (/) to the action of the nilpotent
operator N on the limiting mixed Hodge structure at £. Recall that we defined the coordinate ¢ = y — &
on a disc neighbourhood D¢ of &. The first observation is

o d ) d .
ord,—o KSV) (IZ) = ordz KS") ((w - g)w) =MD 4120, (4.6)
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since the Kodaira—Spencer maps along logarithmic tangent vectors preserve the logarithmic Hodge
bundles (see (4.2)). Hence, we see that M () > —1. We now need to distinguish two cases, depending
on the parity of n — 1.

Odd case: If n — 1 is odd, then the monodromy is unipotent and the fibre of KS'”) (td/dt) at t = 0
is already Gry. N: Grf._ H-l — Grﬁ;l H-1. From Lemma 4.6, we deduce that unless p = n/2,
Gr?w N = 0 so that ord,—g KS'” (td/dr) > 0 and hence M?) > 0. By (4.5), we necessarily have
M /2 = _1 and the other M/ = 0.

Even case: If n—1 is even, the nilpotent operator N is trivial, but the monodromy is no longer unipotent.
The construction of the limiting mixed Hodge structure thus involves a semi-stable reduction. Choose
a square root u of ¢ as in (4.3). Then since u% = ZI%, we get, comparing the Gauss-Manin connection
before and after semi-stable reduction, a commutative diagram of maps of line bundles

KS(@) (u L

PIRIFIQL, 1 (10)min —— PRI F1Q0 (10g)in

le)»‘l l<pp],q+]

9FQ0 (loghmn e Pl pan Tt
R1f, g/Dg( 0Z)min ———— RI* f; E/Dg( 0Z)min-

Together with ord,,-¢o = 2 ord,~g, we conclude that
@ (,9 ~1g+l @ (4
ord,—o ¢”*9 + ord,—g KS'¢ u—-| = ord,—o(¢P™9"") + 2 ord,—o KS'¢ ta ) 4.7
u

By Lemma 4.7, ord,—o(¢?9) = 0 except for the case (p,q) = ((n — 1)/2,(n — 1)/2), where
ord,=o(¢P*?) = 1. From (4.7), we then conclude that

ord,— KS(("=3/2) ud =1+ 2ord;—o KS(("=3/2) 2 (4.8)
du dt
d d

1 + ord,—o KS(""D/2) [, = | = 2 ord,.g KS "D/ [ =] . 4.9)
du dt

In both (4.8) and (4.9), the order of vanishing of Kodaira—Spencer along the vector field u% is strictly
positive, since the restriction to O is the nilpotent operator N = 0. It follows that

ord—o KS(("=372) (ti) >0, ie, M2 > _
- dt) — 7 77 -
and

ord;—g KS((n—l)/z) ([i) >1 ie M((n—l)/2) >0
- 7 > 0.

Since all other M) > 0 as in the odd case, we conclude from (4.5) that all these inequalities are
equalities. m

5. The BCOV invariant of the mirror family

In this section, we prove the first part of the Main Theorem in the introduction to the effect that
the BCOV invariant of the mirror family encapsulates the Gromov—Witten invariants of a general
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Calabi—Yau hypersurface. The proof proceeds by applying the arithmetic Riemann—Roch theorem as
in Section 2, by choosing the algebraic trivialisations of the Hodge bundles studied in Section 3. This
is then worked out in terms of canonical sections of the Hodge bundles, whose existence is tied to
the limiting Hodge structure Hl'i’; at the MUM point. In the process, a transcendental expression built
out of periods arises, matching Zinger’s formula for the sought generating function of Gromov—Witten
invariants.

5.1. The Kronecker limit formula for the mirror family

For the mirror family f: Z — U, we proceed to prove an expression for the BCOV invariant tpcov(Zy)
in terms of the L? norms of the sections 7 (see Definition 3.15). The strategy follows the same lines as
for families of Calabi—Yau hypersurfaces §2.4.

We fix a polarisation and a projective factorisation of f, defined over Q. We denote by L the
corresponding algebraic Lefschetz operator, which is the cup-product against the algebraic cycle class
of a hyperplane section. We will abusively confound L with the algebraic cycle class of a hyperplane
section. With this choice of L, the primitive decomposition of the Hodge bundles R” f*QqZ e holds over
Q. Let 4 be a Kédhler metric and w the Kéhler form normalised as in (2.1), and assume that the fibrewise
cohomology class is in the topological hyperplane class. Hence, under the correspondence between
algebraic and topological cycle classes, L is sent to (271i)[w] € R f£.Q(1).

Below, all the L?> norms are computed with respect to w as in (2.2).

—X
Theorem 5.1. There exists a real positive constant C € n1€Q  such that

N 0k o/
TBCOV( ¢) - (1 —l/jn+1)b o 2(n—1-k) (_l)n—l )
(I el 2770
where y = x(Zy) and
_in(n=1) X

—(—)n (n(n B

a=(-1) 6 2n+1)
b= (_1)n_1n(3n—5)

24
_ 1 k+172
C_Ezk:(_l) Kby,

Proof. We apply the version of the arithmetic Riemann—Roch theorem formulated in Theorem 2.3 to
the family f: Z — U as being defined over Q.

Choices of sections. We need to specify the section 77 and the sections 77,  in (2.10). The section 7 is
chosen to be 79, as defined in Definition 3.15. We next describe our choices of 17, 4:

o If p+g #n—1and p # g, then the corresponding Hodge bundle vanishes by Lemma 3.4 and thus
gives no contribution.

e For2p # n— 1, Lemma 4.1 guarantees that det R? f, QZ /P (log) = det R?P f*’Q'Z, /51 (log) is trivial,
in the algebraic category over Q, and any trivialisation is flat for the Gauss—Manin. We choose 77, ,
to be any trivialisation defined over Q and then restrict it to U. Notice that the L? norm || popll2 is
then constant.

e Forp+¢g =n-1and p # q, the (p, g) Hodge bundle is primitive and has rank one. Then we take
Np.q = Nq in Definition 3.15. By Lemma 3.17, 14 is defined over Q.

e For p+¢g =n-1and p = g, which can only occur when n — 1 is even, the (p, g) Hodge bundle is
no longer primitive of rank one. We employ first the algebraic primitive decomposition and then the
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minimal decomposition of Proposition 3.13 (2)

det R £,Q7 = det(R £.QF  Jorim ® det LRP™' £,Q77 !

Z/U
= det(R? £.Q% 1 Jprim ® det RV~ Lr, QZ U (5.1

Z/U

=~ det(R” £.QF / Jmin ® detV ® det R”~ Ly, QZ/U

We define el
any algebraic flat trivialisation v € det V), defined over Q, provided by Lemma 4.2. We claim that

n-1 as the element corresponding to Mot @V @1 ns ns under this isomorphism, for

70zt wa 1% ~0x Mot I IVIG 72z ns I, (5:2)

where ~gx denotes equality up to a rational number. For this, we bring together several facts.
The first is that the Lefschetz decomposition is orthogonal for the L> metrics regardless of the
normalisation of the Kihler forms. The second is that the algebraic cycle class of L corresponds
to (27i)[w] in analytic de Rham cohomology. The third fact is that the operator [27w] A

an isometry up to a rational constant, since 27w is the Hodge theoretic Kéhler form (see, for
instance, [Huy05, Prop. 1.2.31]). The last fact is that the minimal component decomposition of
Proposition 3.13 is also orthogonal for the L? norm, since it is orthogonal for the intersection form
by construction. This settles (5.2). Furthermore, we notice that as for i 3 n3, the L? norm of v is
constant, since it is flat by construction and it is the wedge product of a collection of sections of pure
Hodge bidegree ((n — 1)/2, (n — 1)/2). Therefore, the norm ||nnT_1’n,T_1 ||L22 equals ||77n,T_1 ||L22 up to a
constant.

Determining the rational function A. To establish the theorem, we need to specify the element
A € Q(¥)* ® Q in (2.10) (formal rational power of a rational function), which satisfies

X
log Tpcov = log |A|2 + 1 log ”U”Lzz - Z(_l)p+qp log ||77p,q||L22 +log Cy. (5.3)
p.q

We will determine A up to an algebraic number. To this end, it suffices to know its divisor. Unless
W =0ory =& where &' = 1, A has no zeroes or poles by construction, since the sections 7 p.g are
holomorphic and nonvanishing, and log T3¢0y is smooth. Hence we are led to consider the logarithmic
behaviour of the right-hand side of (5.3) at these points. Since for 2p # n — 1 the sections 77, ,, have
constant L? norm, we only need to examine the functions log || pgllz withp+g=n-1.

Behaviour at ¥ = 0. This corresponds to a smooth fibre of f: Z — U. Hence log Tgcoy is smooth at
W = 0, as are the L? metrics. However, the sections 7 p.q With p + g =n — 1 admit zeros at y = 0 (see
Remark 3.16), with ordg 7, ; = ¢ + 1 = n — p. This means a in the theorem is given by

(n+1)a= (- l)"IZp(n p-E=(- ”“LQM—%

Behaviour at y = & € 1. This corresponds to a singular fibre of f: Z — P!, which has a unique
ordinary double point. By Theorem 4.8, we control ord¢ 175 according to the parity of n — 1. Here we
encounter the additional problem that the L? norms might have contributions from the semi-simple
part of the monodromy 7. More precisely, consider the local parameter t = ¢ — £ around &, and write
Np.g = tPra0, 4, where o, 4 trivialises det R7 £.Q” _ (log). Then by construction of 7, , and by
[EFiIMM21, Thm. C], we have

2/ /P!

log ||77p,q||52 = (bp,q + a’p,q) log |t|2 +o(log |t|2)
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with

1 ¢ -1
Upg = —%tr( log Ty | Gry. Hyi ) €Q.
Here ¢ log refers to the lower branch of the logarithm: that is, with argument in 27(—1,0]. Let us
combine all this information:

0dd case: If n — 1 is odd, according to Theorem 4.8, if k < % —1l,ordg x = 0 and ordg ni = —1
otherwise. In this case the monodromy is unipotent, so that a), , = 0 for all p + g = n — 1. Moreover, by
[EFiIMMZ21, Thm. B], we have that log Tscov = 77 log |7]? + o(log |t]?). Putting all these contributions
together, we find that

n-1
n _ n(3n-15)
—bh=—+(=1)"! —1=k)-(=1)= ——Z,
SHEDT Y (-1-k - (D) = =
k=n/2
Even case: If n — 1 is even, according to Theorem 4.8, if k < "T_3,ord§ N = 0 and ordg e = —1

otherwise. Also, unless p = g = (n - 1)/2, ap 4 = 0. In the remaining case p = g = (n - 1)/2,
by [EFiIMM21, Prop. 3.10], we have a), , = 1/2. Finally, from [EFiMM21, Thm. B], we have that
log Tgcov = 32_—4" log |¢|> + o(log |t]?). Putting all these contributions together, we find that

ion n- S _ n(3n-75)
b= o + (-1 (n—1)/2(—1+1/2)+k=(;)/2(n_1_k).(_1) =D

Rationality considerations. To complete the proof of the theorem, we still need to tackle the constant C.
Two sources contribute: i) for 2p # n — 1, the L? norms In7p.pll2 are constant; and ii) if n — 1 = 2p,
after (5.2), there might be extra contributions from ||77an3 n3 |l;2 and from ||v]| 2.

First for 2p # n — 1. Let ¢ € Q be in the smooth locus so that we have the period isomorphism
2 . - 2
H p(Z%’QZq,O/Q) ®qQ C—H p(Z¢0’ QeC.

Taking rational bases on both sides, the determinant can be defined in C*/Q*. It equals (27i)P?2r . Since
17, pl 2 is constant, it can be evaluated at ¥ = . We find

17p.plI5 ~ox (21)*PP2 vol,2 (H?P (Zy,, Z), w). (5.4)

Now recall from (2.13) that with the Arakelov theoretic normalisation of the Kih-
ler form, and under the integrality assumption on its cohomology class, we have
vol,2 (H?*P (Zyy, Z), w) ~gx (2r)~2Pb2» . All in all, we arrive at the pleasant

||Tlp,p||52 ~gx L. 5.5)

If n — 1 =2p is even, we will show that

||77nT—l,nT—I||fz ~Q ||77nT—1||fz, (5.6)
namely that both ||nnT_3 13 ||L22 and ||v||L22 are rational. For Mn3 ns, this is already known after (5.5).
We will now see that formally the same argument yields the case of v. Since the norm of v is constant,
it is enough to consider the value at any ¥ € Q in the smooth locus. The results in §3.3 and §3.5
show that (V,, Vy,) behaves like the pair formed by the rational Betti and algebraic de Rham primitive
cohomologies in degree n— 1 of a smooth projective algebraic variety defined over Q, of dimension n—1.
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In particular, we have a period isomorphism and a Poincaré type duality induced by the intersection
form. From this, one derives the analogue of (5.4) for v: for any rational basis v’ of det V,, we have
VI ~ge @O DVIE,  d = dimVy,,
Now we use that the Hodge structure on V, is concentrated in bidegree ((n —1)/2, (n — 1)/2), by
Proposition 3.13, and we take into account the Arakelov theoretic normalisation of the Kihler form. We
readily deduce [|v/[| ~gx (27)~*"D4. All in all, we conclude that ||v[|%, ~gx 1 as desired.
Finally, plug (5.3) into (5.5) in the cases 2p # n — 1 and into (5.6) in the case 2p = n — 1. Also plug

in the value of C, furnished by Theorem 2.3, and recall that A was determined only up to algebraic
number. We conclude that C has the asserted shape. O

Corollary 5.2. As y — 0, log Tecov(Zy) behaves as
log Tacov(Zy) = koo log Y| 2+ oo loglog || + continuous, 5.7

where

_ o+l ((n=1D)n+2) 1= (-n)™!
Koo = (_1) 12 ( 2 + (n + 1)2 )7

00 = (-1)"! (n

D(n+1) ((—n)"+1 -1

“on+1).
2 ez T )

Proof. The general shape (5.7) was proven in [EFIMM?21, Prop. 6.8]. The precise value of ks is
n+])a

(n+1)(b — a) entirely due to the term |(1(‘_”T)b in Theorem 5.1. Indeed, by Theorem 4.5, the sections

N trivialise R¥ f*Q’;/l]glk (log)min at infinity, and moreover the monodromy is unipotent there (Lemma

4.3). This entails that the functions log ||7x ||L22 are O (log log [|~?) at infinity and hence do not contribute
to K. For the subdominant term, the expression of [EFIMM?21, Prop. 6.8] can be explicitly evaluated
for the mirror family, thanks to the complete understanding of the limiting Hodge structure at infinity
(again Lemma 4.3) and the known value of y (Lemma 3.4). m]

5.2. Canonical trivialisations of the Hodge bundles at the MUM point

The Picard-Fuchs equation of the mirror

For the mirror family f: Z — U, we review classical facts on the Picard—Fuchs equation of the
local system of middle-degree cohomologies. The discussion serves as the basis for the construction
of canonical trivialising sections of the middle-degree Hodge bundles close to the MUM point, which
differ from the 77, by some periods.

The starting point is the construction of an invariant (n — 1)-homological cycle at infinity for the
mirror family f: Z — P'. Recall the Dwork pencil #: X — P!, which comes with a natural embedding
in P" x P!. We obtain a ‘physical’ n-cycle I in P"* as follows: we place ourselves in the affine piece xg # 0
and define I by the condition |x; /x| = 1 forall i. If ¢ € C and ||~! is small, then the fibre X,, does not
encounter I'. Therefore, I' induces a constant family of cycles in H, (P" \ Xy, Q). Notice that these are
clearly G-invariant cycles. The tube map H,,—1 (Xy, Q) — H, (P"\ Xy, Q) is surjective and G-equivariant
and induces an isomorphism H,,_1(Xy, Q)prim = H, (P" \ Xy, Q) by [Gri69, Prop. 3.5]. Therefore, we
can find a T-invariant cycle yo € H,_1(Xy, Q)¢ corresponding to I'. Finally, through the isomorphism

prim
H,1(Xy, Q)gim ~ Hy,_1(Zy, Q)min deduced by duality from Lemma 3.11 and Proposition 3.13, |G| -y
maps to a T-invariant cycle on Z,,, denoted yg. The convenience of multiplication by |G| will be clearina
moment.
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The period integral Io(y) := /y , o can be written as an absolutely convergent power series in ¢!

Indeed, taking into account the relationship between the cup-product on X, and Z, (see, e.g., Lemma
3.6) and the definition of 779 (see Definition 3.15), we find

1
lo(¥) =/ 770=—% ~ 490=—(ﬂ+1)l!//~ 6o
Y0 |G l-¥0 Y0

For the latter integral, we use that the residue map and the tube map are mutual adjoint and then perform
an explicit computation: if D c C is the unit disc around 0, we have

To(y) = / —(n+ Dydzy A ... ANdzy
’ (2ri)"™ J oDy Fy(l,z1,...,2n)
n J
1 1 / dz) dz,
= S 1+ ) 2% == A A= 58
jzz(:) ((n+ Dy)! (2mi)" (8D)" ( ; l {+1 Zilﬂ (5.8)

_ Z 1 ((n+ D)k)!
- & ((n+ Dy) Dk (kHn+t -
In these integrals, the parameters z; are the affine coordinates x;/xo. To obtain the last equality, we
expand the integrands in the second line with Newton’s multinomial formula and then evaluate the
resulting Cauchy integrals. We conclude that those with j # (n + 1)k for any k vanish, while those
with j = (n+ 1)k for some k equal ((n + 1)k)!/(k!)"*!. Equation (5.8) is the period integral used in
Theorem 4.5 to prove that g trivialises f.Kzp,, (log).

To the local system R"! £,C, there is an associated Picard—Fuchs equation, which coincides with
that of (R"~! £,C)min since the associated Hodge bundles of type (n,0) are equal. We make the change
of variable z = ¢~ ("*1) 50 that Iy becomes

k

Io(2) = Z z ((n+ l)k)!.

= (n + 1)(n+1)k (k!)"“

Define the differential operators ¢ = zd% and

= —zl_[(6+—) (5.9)

Differentiating Ip(z) term by term and repeatedly, one checks DIy(z) = 0. It is known (see [Gih13,
Thm. 6] and [CG11, Sec. 1]) that this is the Picard—Fuchs equation of (R™! h.C)prim, Which necessarily
coincides with that of (R""'h,C)%, . and hence R""' f.C.

We now exhibit all the solutions of the Picard—Fuchs equation. For dimension reasons, these will
determine a multivalued basis of homology cycles. Following Zinger (see, e.g., [Zin08, pp. 1214-1215]),
forqg=0,...,n— 1, we define an a priori formal series Iy , by

14+ Dw +r)

Zloq(t)wq —veZ ar11 T oy = R(w,1).

Let us also define F(w, 1) for the infinite sum on the right-hand side so that R(w, ) = e F(w,1).
Under the change of variable

e =(n+1)""Vz = (n+ Dy)~ "D, (5.10)

the series Iy o (¢) becomes Io(z) = Ip(¥) [Zin08, eq. (2-17)].
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Proposition 5.3. Under the change of variable in (5.10), the functions Iy 4(z), g =0, ...,n—1, define a
basis of multivalued holomorphic solutions of the Picard—Fuchs equation for the local system R"™' f.C
on0<|z] < 1.

Proof. We first recall that the Picard—Fuchs equations of R"~! £,C and (R"! £,C)min coincide, and the
latter is a local system of rank 7.

After the change of variable, one checks that F(w, z) is absolutely convergent on compact subsets
in the region |w| < 1 and |z| < 1. This implies that the functions /o 4 (z) are multivalued holomorphic
functions on 0 < |z| < 1. Again taking into account the change of variable, it is formal to verify that
R(w, ) solves the Picard-Fuchs (5.9), and hence so do the functions I ,(z). To see that they form
a basis of solutions, it is enough to notice that each Iy ,(z) has a singularity of the form (logz)?
asz — 0. O

An adapted basis of homological cycles
By Proposition 5.3, and because (R"~! f,C)min has rank », the functions Io,4(2) determine a flat multi-
valued basis of sections y, of (R™1£.C)Y. on0 < |z| < 1 by the recipe

min

lo4(2) = / 1o-
Yq(2)

See, for instance, [V0i99, Sec. 3.4 & Lemme 3.12] for a justification in an analogous situation. The
notation is compatible with the invariant cycle yy constructed above, as we already observed that
Io,0(z) = Ip(z). The flat multivalued basis elements y,, provide a basis of (H,—1)im Whose underlying
vector space is seen here as the (minimal) homology of the general fibre. We still denote by vy, this basis
of (Hy—1)iim- We next prove that it is adapted to the homological weight filtration, recalled at the end of
§4.1.

Proposition 5.4. Let W, be the weight filtration of the limiting mixed Hodge structure on (Hy_{)iim.

Theny, € W, \ W]

2g-2(n-1) g-1-2(n-1)"

Proof. By [Sch73, Lemma (6.4)], the Poincaré duality induces an isomorphism between the weight
filtration W, on H]’i‘r;l to the dual weight filtration Wr’_2 (n—1) N (Hy-1)iim- Therefore, it is enough to

establish 7:1 € Wy \ Wy, for the Poincaré duals 7’:,1 € Hl'il;ll.

On each fibre Z,, the Hodge decomposition and the Cauchy—Schwarz inequality imply

o.q(2)] = '/Z Ya (2 Aol < )" Hlyg (22 lImoll-

Now [Iy,4(z)| grows like (log |z|71)¢ as z — 0 along angular sectors (see proof of Proposition 5.3).
Because the monodromy is maximally unipotent at infinity and 7o is a basis of f.Kzp_ (log), the L?
norm ||7ol,2 grows like (log |z|~")*~D/2 (see [EFiIMM 18, Thm. A] or the more general [EFiIMM21,
Thm. 4.4]). We infer that as z — 0, along angular sectors,

2g—(n-1)

lyg(@ll2 2 (loglzl™) ™= .

By Schmid’s metric characterisation of the limiting Hodge structure [Sch73, Thm. 6.6], we then see that
721 ¢ WZq—l~

It remains to show that 7’(/1 € Wy, . First, starting with g = n—1, we already know y; _, € Wa,-2\Wa,-3.
We claim that y; , € W,_4. Otherwise y/_, € Wp,—2 \ Wp,—4. But the weight filtration has one-
dimensional graded pieces in even degrees, and zero otherwise (see Lemma 4.3). It follows that Wy,,_4 =
Wan-3 and y, | = Ay, _, + B, for some constant 4 and some B € Wy,_4. Integrating against 1, this

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2022.13

38 Dennis Eriksson et al.

relation entails

Tome1(2) = Aona(2) + / B(2) Ao,

Z:

where B(z) is the flat multivalued section corresponding to 3. Let us examine the asymptotic behaviour
of the right-hand side of this equality, as z — 0, along angular sectors. We know that |Iy ,—»(z)| grows
like (log |z|~!)"~2. By the Hodge decomposition, the Cauchy—Schwarz inequality and Schmid’s theorem,
the integral grows at most like (log |z|~!)"~2. This contradicts that |Io 1 (z)| grows like (log |z|~")"*~".
Hence y,_, € Ws,-4. Continuing inductively in this fashion, we conclude that y, € Wy, for all g, as
desired. O

A normalised basis of R"~1 f*Q’Z /D (10g)min
We construct a basis of holomorphic sections of R"~! [ Q% /D (log)min close to infinity, which corre-
spond to the period integrals I, ,(z). We proceed inductively:

1. Set 50 =1no. _ _
2. For p > 1, suppose that 9, ..., #,_1 have been constructed. Define
Ip—l,q(z) = / ﬁp—l-
Yq(2)

This notation is consistent with the previous definition of Iy 4;
3. As by [Zin09, Prop. 3.1], in turn based on [ZZ08], the integral /,_; ,_i(z) is holomorphic and

nonvanishing at z = 0, we can define 5p by

9, =V U 5.11)
b zd/dz Ip—lp—l(z) ’ '

One verifies, integrating (5.11) over vy, (z), that the period integrals I, ,(z) = f 5,, satisfy the

Yaq(2)
following recursion:

d ( Ip-14(2) ) . (5.12)

I, 4(2) =z2—
pa(?) dz (I,,l,,,l(z)

Taking into account the change of variable in (5.10), we see that this is the same recurrence relation as
in [Zin08, eq. (2-18)] (see also [Zin09, eq. (0.16)]). Hence the I, ,(z) above coincides with the 1, , ()
in [Zin08]. We further normalise

¥p

9, = .
i Ip,p(2)

Proposition 5.5.

1. For all k, the sections {9;};=o
Fn_l_kRn_lf*Q.z/Dw (log)min~
2. The periods of ¥ satisfy

k» constitute a holomorphic basis of the filtered piece

.....

/ﬂkzl and /ﬂkzO if g<k.
Yk 2

q
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3. The projection of ¥ to ka*Q’g/]lD_: (10g)min relates to ny by

(ﬂk)n—l—k,k _ (_l)k Nk

S+ DR 1 (2)

4. The sections {0} j=o,... n—1 are uniquely determined by properties in (1)-(2) above.

.....

Proof. We noticed that the period integrals /,, ,,(z) are holomorphic in z and nonvanishing at z = 0.
With this observation at hand, the claims in (1)-(2) then follow from properties of the Gauss—-Manin
connection and Kodaira—Spencer maps, Lemma 3.17 and Theorem 4.5. From ¥ = 19 = —(n + 1)¥/6g
and the recursion (3.12) for 6y, the definition in (5.11) further normalised gives

Ok

9 = (_l)k—l(n+ l)wk+l—
’ T 1.0 (2)

mod FrI-EDR™ .08 (log)uin

As 0, mapston, = —W in the Hodge bundle (R* f*Q’g/lU_ %) min, this proves (3). The uniqueness
property in (4) is obtained by comparing two such bases adapted to the Hodge filtration as in (1) and

then imposing the period relations in (2). O

Actually, the basis ¢, = {9;}-0
constant, as we now show:

n—1 is determined by the limiting Hodge structure Hl'ilr;ll, up to

.....

Proposition 5.6.

1. Let y, be an adapted basis of the weight filtration on (Hy,_1)im, as in Proposition 5.4. Then there
exists a unique holomorphic basis 9, of R""! Q% /Do (log)min satisfying the conditions analogous
to (1)-(2) with respect to y,.

2. There exist nonzero constants cy € C such that 19,’( = cpO%.

Proof. We prove both assertions simultaneously. We write y, and y, as column vectors. Since the graded
pieces of the weight filtration on (H,,— )i are all one-dimensional, there exists a lower triangular matrix
A € GL,(C) withy, = Ay,. If we decompose A = D + L, where D is diagonal and L is lower triangular,
we see that the entries of the column vector 9, := D~'4, fulfill the requirements. O

Definition 5.7. We define the canonical trivialising section of R¥ f*Q’g/}D;k (10g)min to be

k
7= (9, Rk = =D Ik ’
Mk = (9%) (n+ DETTS o 1p.p(2)

By the previous proposition, up to constants, the sections 17 depend only on (H,,—1 )jim, Or equivalently

leilr;l by Poincaré duality. These constructions are part of a wider framework about distinguished sections

for degenerations of Hodge—Tate type. It is discussed in more detail in §6.2.

5.3. Generating series of Gromov—Witten invariants and Zinger’s theorem

To state Zinger’s theorem on generating series of Gromov—Witten invariants of genus one, and for
coherence with the notations of this author, it is now convenient to work in the ¢ variable instead of z.
The mirror map in Zinger’s normalisations is the change of variable

o (1) /yl(z) 1o
oo (1) /yo(t) 170

(5.13)
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Notice that this differs by a factor 27i from the more standard Morrison’s mirror map [Mor93] used in
the introduction. The Jacobian of the mirror map is computed from (5.12)

ar

=1
o 1,1().

Let us introduce some last notations:

e X, denotes a general degree n + 1 hypersurface in P".

— (n=D(n+2) |, 1-(=m)™'\ _ 1 nn+l) | x(Xn+1)
L4 Nl(O)—_( 48 24(n+1)2)_24( -t n+1] )

e Nj(d) is the genus 1 and degree d Gromov-Witten invariant of X,,,; (d > 1).

From these invariants, we build a generating series:
FAT) = N1 (0)T + Z Ni(d)eT . (5.14)
d=1

It follows from [Zin08, Thm. 2] that this generating series satisfies

(n+1)?2 =1+ (-n)™!
24(n+1)

FA(T) = N1 (0)t + log 1o,0(7)

Felog(1— (n+1)"le’) + Z(" /2 (n- 2P ) log I, (1), if n even
22 log(l - (n+ 1)) + 272 w log 1, ,(1) if n odd .
This identity has to be understood in the sense of formal series. As an application of relations between

the hypergeometric series I, , (¢), studied in detail in [ZZ08], the following identity holds (for a version
of this particular identity, see [Zin09, eq. (3.2)]):

n('SZ8 )log(l (n+1)"e t)+2Z( )loglp,p(t)

Flog(l— (n+1)"'e!) + Z(" /2 (n- ZPZ) log 1, (1), if n even
% log(1 — (n + 1)n+let) n 2;7103)/2) (n+1—2p)8(n—1—2p) log I, ,(t) if n odd .

Consequently, Zinger’s theorem takes the following pleasant form that we will use to simplify the task
of recognising F IA(T) in our expression for the BCOV invariant (see Theorem 5.1).

Theorem 5.8 (Zinger). Under the change of variables t +— T, the series F IA(T) takes the form

FAT) = Ny (01 + X o) ”“)1og1 o(t)

nGn—5) (5.15)

13 (-
_Tlog(l—(n+1)"+le’)—52( zp)logl,,,p(t).
p=0

A final remark on the holomorphicity of F IA(T) is in order. While Theorem 5.8 is a priori an identity
of formal series, the right-hand side of (5.15) is actually a holomorphic function in ¢, for Re < 0. Then
via the mirror map, F, 1A(T) acquires the structure of a holomorphic function in 7. One can check that
the domain of definition is a half-plane Re 7T <« 0.
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5.4. Genus one mirror symmetry and the BCOV invariant

We are now in position to show that the BCOV invariant of the mirror family f: Z — U realises
genus one mirror symmetry for Calabi—Yau hypersurfaces in projective space. That is, one can extract
the generating series F’ lA(T) from the function ¢ +— Tpcov(Zy). The precise recipe by which this is
accomplished goes through expressing Tscoy in terms of the L? norms of the canonical sections 77 (see
Definition 5.7). But first, we need to make Tycov(Zy) and F 1" (T) depend on the same variable. To this
end, we let

_ I (1)
Io,0(1)

Theorem 5.9. In a neighbourhood of Yy = oo, there is an equality

FE(y) = FAT), for and e = ((n+ 1))~ "D, (5.16)

~ 6
7ol

et = p2n-1-k) D
(I8 1)

12

Tacor (Zy) = Clexp (=D FF @) *

where y = x(Zy) and C € n°QZ%, ¢ = % S (=D)*1K2h,.

Proof. The proof is a simple computation, which consists of changing the variable T to i, using (5.16),
in the expression for F' IA(T) provided by Theorem 5.8. For the computation, recall that for a smooth
hypersurface X,,;1 in P", y(X,4+1) = (=1)""!y. Modulo log of rational numbers, we find

4F1A(T) _ (_n(nlz l) + /g((’j(:l-f-ll;) t + X()(6n+1) log IO,O(I)
3n-5 o S -
_ %log(l —(n+ 1)) —2;)(” 2”) log Iy, (t)

_ (”(”+ D) x(Xns1) N n(3n - 5)

n+1
12 6(n+1) 12 )log(‘” )

n(3n - 5) n+l X(Xn+l) = n—p
— Tlog(tﬁ bl 1)+T10g10'0(t)_2p2=0( 2 )loglp,p(l‘)
(l//n+1)2a

_ (_1\n-1
= (=1 log (T — 1)2

n-2
_ n—
+ (=1L log Io (1) —22( 2”) log I, (1).
p=0

Now, in terms of the canonical trivialising sections 77; given in Definition 5.7, Theorem 5.1 becomes

= 1x/6
rocon(Zy) = C’ (v ) oo (D/° 7011
BCOV - — —.
¥ (1_¢,n+l)b w2 2(”71,) (=nn-1 el 1= 12—k (-1)n-1 ]
Hp:() |Ip,p(t)| 2 nk:() |77k||L2

Remark 5.10.

1. In relative dimension 3, we recover the main theorem of Fang—Lu—Yoshikawa [FLYO0S8, Thm. 1.3].
Their result is presented in a slightly different form. The first formal discrepancy is in the choice
of the trivialising sections. Their trivialisations can be related to ours via Kodaira—Spencer maps.
The second discrepancy is explained by a different normalisation of F' lA: they work with two times
Zinger’s generating series. This justifies why their expression for the BCOV invariant contains
| exp(—FlB(zp)) |2, while our formula in dimension 3 specialises to | exp(—Ff W) *.
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2. The norms of the sections 7 are independent of the choice of crepant resolution. It follows that the
expression on the right-hand side in Theorem 5.9 is independent of the crepant resolution, except
possibly for the constant C. In [EFIMM21, Conj. B], we conjectured that the BCOV invariant is a
birational invariant. A proof of this conjecture has been announced in [Zha20, FZ20]. Thus C should
be independent of the choice of crepant resolution.

Corollary 5.11.

1. The invariant N1(0) satisfies

1

N (0) = — n—2(Xu+1) NH,

=55 [ enaun)
where H is the hyperplane class in P".

2. As iy — 0, 1og Tyeov (Zy) behaves as

(-n"

2 2+ 0(loglog |y/]). (5.17)

log Tycov(Zy) = ( / Cn-2(Xn+1) A H) log|¢_("+l)
Xn+]

Proof. The sought-for interpretation of N;(0), or equivalently for the coefficient ko in Corollary 5.2,

is obtained by an explicit computation of and comparison to fX 1 cn-1(Qx,,,) A H. Indeed, by the
n+

cotangent exact sequence for the immersion of X,,,1 into P", this reduces to

(_l)n—l
cn-2(Qx,, ) ANH = ——x(Xn+1) = | cn1(Qen) AH,
Xpe1 n+1 pn

and we have explicit formulas for both terms on the right. This settles both the first and second claims. O

Remark 5.12. The asymptotic expansion (5.17) has been written in the variable y~""*!) on purpose
since this is the natural parameter in a neighbourhood of the MUM point in the moduli space. In this
form, the equation agrees with the predictions of genus one mirror symmetry (see [EFIMM?21, Sec. 1.4]
for a discussion).

6. The refined BCOV conjecture

In this section, we propose an alternative approach to genus one mirror symmetry for Calabi—Yau
manifolds, which bypasses spectral theory and is closer in spirit to the genus zero picture. The counterpart
of the Yukawa coupling on the mirror side will now be a Grothendieck—Riemann—Roch isomorphism
(GRR) of line bundles built out of Hodge bundles. As in the case of the Yukawa coupling, one seeks
canonical trivialisations of these Hodge bundles, and the expression of the GRR isomorphism in these
trivialisations should then encapsulate the genus one Gromov—Witten invariants of the original Calabi—
Yau manifold. This is our interpretation of the holomorphic limit of the BCOV invariant. We refer to
this conjectural program as the refined BCOV conjecture.

6.1. The Grothendieck—Riemann—Roch isomorphism

Let f: X — § be a projective morphism of connected complex manifolds whose fibres are Calabi—
Yau manifolds. Recall from (2.6) that the BCOV bundle Agcoy(X/S) is defined as a combination of
determinants of Hodge bundles. Its formation commutes with arbitrary base change.

Conjecture 1. For every projective family of Calabi—Yau manifolds f: X — S as above, there exists a
natural isomorphism of line bundles, compatible with any base change,

GRR(X/S): Apcoy (X/S)®'2 — (fiKxs)®¥ . (6.1)
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Here y is the Euler characteristic of any fibre of f, and « only depends on the relative dimension of f.
Below, we present some arguments in favour of the conjecture.

e Applying this to the universal elliptic curve, the right-hand side becomes trivial in view of y = 0.
This suggests that the left-hand side is trivial. It is indeed trivialised by the discriminant modular
form A, with « = 1. For higher-dimensional abelian varieties, both sides are trivial, and the identity
provides a natural isomorphism.

e For K3 surfaces, both sides are identical, and the identity provides a natural isomorphism. See in
particular Proposition 6.14. The referee kindly communicated to us a proof of the analogue of the
conjecture for Enriques surfaces, relying on the works about analytic torsions and the Borcherds’
®-function by Kawaguchi—-Mukai—Yoshikawa [KMY 18], Dai—Yoshikawa [DY20] and Yoshikawa
[YosO4].

e In the category of schemes, a natural isomorphism of Q-line bundles up to sign exists by work
of Franke [Fra92] and the first author [EriO8]. It is compatible with the arithmetic Riemann—Roch
theorem but is far more general and stronger.

The following proposition establishes a version of Conjecture | in the setting of arithmetic varieties
(see Section 2.3). This is an application of the arithmetic Riemann—Roch theorem 2.3. Recall that
an arithmetic ring A comes together with a finite collection of complex embeddings X, closed under
complex conjugation. We will write A%-! for the group of elements u € A* with |o-(u)| = 1 for all
embedding o € X. For instance, if A is the ring of integers of a number field, then A>! is a finite group.
If A=QorR, then A! = {+1}.If A = C, then A*! is the unit circle in C.

Proposition 6.1. Let f: X — S be a smooth projective morphism of arithmetic varieties over an
arithmetic ring A, with Calabi-Yau fibres. Let X« be the generic fibre of f, and write ¥ = y(Xw).
Assume that S — Spec A is surjective and has geometrically connected fibres.

1. There exist an integer k > 1 and an isomorphism of line bundles on S
GRR: Aucoy (X/8)12 — (fKo/s) ™",

with the property of being an isometry for the Quillen-BCOV and L* metrics on Agcoy(X/S) and
f«Kx /s, respectively.
2. If GRR' is another such isomorphism, for another choice of integer k' > 1, then

GRR’ ®¢ = GRR ®¢

up to multiplication by some u € A*'. Consequently, the formation of GRR is compatible with any
base change between geometrically connected arithmetic varieties over A, up to the power k and
multiplication by a unit in A"

— 1
Proof. The first claim is a restatement of the identity in (2.9) in CH (S)g, together with the isomorphism

Cy: f’_i?:(S ) — (ffll (S) and the very definition of lsi:(S ) as the group of isomorphism classes of hermitian
line bundles over S.

For the second claim, notice that both GRR’ ®¢ and GRR e« induce isometries between the her-
mitian line bundles Apcoy(X'/S)®'2*%" and (f.Kx/s)®¥ ¥, endowed with the Quillen-BCOV and L?
metrics, respectively. These isomorphisms differ by multiplication by a unit u € I'(S, O%). The isome-
try property guarantees that the induced holomorphic function on S*" has modulus one and is constant
on the connected components. Hence, if we fix o € C, u is constant on S%'. If we see u in I'(S, Og(”),
we infer from this that it satisfies the descent condition with respect to S, — Spec C. It follows that u
already satisfies the descent condition with respect to S — Spec A. This is easily seen if S is affine by
the flatness of S — Spec A, and in general one may replace S by the disjoint union of the open subsets
of an affine covering of S. Because S — Spec A is actually faithfully flat by assumption, we conclude
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that u € A*. Now u has modulus one as a function on $*", which exactly means u € A%l The base
change property then follows from the compatibility of Agcov(X'/S) and f.Kx ;s with base change and
the fact that the Quillen and Hodge metrics are preserved as well. O

Remark 6.2.

1. If A% is a finite group of order d, then the second claim of the corollary entails
GRR’ ®¥* = GRR ®/*,

Therefore, after possibly adjusting «, the isomorphism is uniquely determined.
2. The proposition applies to the mirror family of Calabi—Yau hypersurfaces studied in Section 3. Here
A = Q, and therefore the resulting isomorphism is determined by the previous remark.

6.2. Strongly unipotent monodromy and distinguished sections

The below discussion is based on [Del] and [Mor97, §6.3, §7.1].

Hodge-Tate structures

Let (V, F*,W,) be a mixed Hodge structure on a Q-vector space V, where F* is the decreasing Hodge
filtration of V= and W, is the increasing weight filtration of V. We also write W, for the induced filtrations
on Vg and V.

Definition 6.3. A mixed Hodge structure is Hodge—Tate if the Hodge filtration is opposite to the weight
filtration, in the sense that for any k, the natural map

Fe Wy _p — Ve

is an isomorphism. Equivalently if the following two conditions are satisfied:

1. Grg,'( V = Wai /Wai— is isomorphic to a sum of Tate twists Q(—k). In other words, it is purely of

type (k, k).

2. Gryy,, V={0}.

According to [Del, §6], if a limiting Hodge structure has this property, it should be viewed as
maximally degenerate. An example of this situation is H]’}r;ll for the mirror family around oo, as explained
in the proof of Lemma 4.3. For Calabi—Yau degenerations over D*, this condition on the limiting middle
Hodge structure implies that the monodromy is maximally unipotent.

It follows from the definition of Hodge—Tate mixed Hodge structure that the natural map

FPIFPY s Vo [FP = (FP @ Wap) [P — Wap, — Wy, /Wapoo (6.2)
is an isomorphism and that there are natural isomorphisms
FP N W, = Gry, (Vc) (6.3)
and
FP N Wy, = Gry(Ve) 6.4)
compatible with the isomorphism in (6.2).
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Distinguished sections

Suppose now that we are provided a variation of integrally polarised Hodge structures (Vz, F°) of
weight w over DX = (D*)9. Here Vy is an integral local system, and F? is the Hodge filtration of
V := Vz ®z Opx. Denote by V the flat connection on V, and suppose the local monodromies are
unipotent. Denote by T the endomorphism of the local system V7 given by the monodromy around the
coordinate axis (s; = 0) of (D*)4. Consider the family of operators N; :=logT; over D*. Let Wy be
the associated increasing weight monodromy filtration of Vg, and also consider the associated vector
bundle Wi = W ® Opx. The bundle W is preserved by V and satisfies N; Wy C Wy_,, and for any
positive real numbers a; > 0, with N = 3 a;N;, we have an isomorphism

N*: GV, Vg — Gt V.

By the results of Schmid [Sch73], associated to (Vz, F°) and for any base point s € D*, there is a
limiting mixed Hodge structure Vi, on Vg . Its weight filtration is given by W ;. The following lemma
can be found in [Del, Sec. 6]:

Lemma 6.4. If Vi, is Hodge-Tate, then, after possibly shrinking D*, (Vz, F?,Wy) is a variation
of mixed Hodge structures over D* with the same Hodge numbers as Viim. In particular, the natural
morphism FP & Wh,_o — V is an isomorphism over D*.

Remark 6.5. The Hodge and the weight filtrations on V extend as subvector bundles of the Deligne
extension V over D. The extended filtrations continue to be opposite in the sense of Lemma 6.4.

From now on, we suppose the limiting Hodge structure is Hodge-Tate. In this setting, af-
ter Lemma 6.4, we have the analogues of the isomorphisms in (6.2), (6.3) and (6.4), namely

isomorphisms
FPIFPY S Wh, Wy, (6.5)
FP O Why, = Gr) V (6.6)
and
FP oW, = Gr? V. (6.7)

Since N;W,, € Wy, 2 € Wp,_1, N; and hence the monodromy act trivially on the local system
Gr;; Vq, which is thus constant. In particular, Grg‘; V is a trivial flat vector bundle. We abusively often

identify this trivial local system with the vector space H’(D*, Grg‘;) Vo).

Definition 6.6. The distinguished sections of F7/FP*! are the global sections corresponding to
Gr;); Ve € Grg‘l/7 (V) under the isomorphism in (6.5). A basis of distinguished sections will be called a
distinguished basis. It is unique up to a matrix transformation with constant complex coefficients.

For the determinant bundles, we have the following corollary:

Corollary 6.7. Keep the notations and assumptions of Definition 6.6. The exterior products of a distin-
guished basis provides a local frame for det(FP | FP*+!).

Any frame as in the corollary will be called a distinguished trivialisation. It is unique up to a scalar
constant in C*.

Remark 6.8. Using the integral lattice V7, one naturally defines an integral structure Grg‘]/( Vz on
Grg‘;c Vq. Accordingly, there are integral distinguished sections and trivialisations. The corresponding
integral distinguished trivialisation of det(F? /F P*!) is unique up to sign.
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Suppose now that we are in the geometric case of a projective family of complex manifolds
f : X — DX, endowed with a relatively ample line bundle. We assume that for any k, R* £.Z is a
local system with unipotent local monodromies. Each variation (R f. Q)prim is integrally polarised, and
Schmid’s theory in [Sch73] recalled above applies. By the Lefschetz decomposition, R¥ £,Q admits a
limiting Hodge structure and in particular a monodromy weight filtration W,. The constructions are
independent of the choice of ample line bundle.

In the geometric case, we can provide an alternative description of the distinguished sections in terms
of the behaviour of periods:

Lemma 6.9. If the local monodromies of R f.C are unipotent and the limiting Hodge structure is
Hodge—Tate, the distinguished sections of F P | F P*' uniquely correspond to elements n € FP such that

1. fy n = 0 for all multivalued flat homology cycles 7y in W'—zp—z C (R f.0)V.
2. fy n is constant for all multivalued flat homology cycles vy in W’_zp c (Rkf.C)V.

Proof. By definition of the dual weight filtration recalled at the end of §4.1 and (6.7), we can identify

Grf: VY with the set of sections of F” whose periods along cycles in W’_zp_z vanish. Moreover, by

(6.6), n. € FP N W, corresponds to a distinguished section exactly when Vi € W,, » ® Qll)x.
This in turn is equivalent to fy Vi = 0 for all y of W’_zp. The statement then follows from the

QORIAL

for flat multivalued homology sections 7. O

formula

Strongly unipotent monodromy degenerations

Definition 6.10. We say that a projective family f : X — D* of complex manifolds is of strongly
unipotent monodromy if

1. for all k > 0, all local monodromies R¥ f,Q are unipotent;
2. for all k > 0, the variations of Hodge structures associated to the local systems R¥ f,Q have limits at
0 that are Hodge—Tate.

In the situation of a family of Calabi—Yau manifolds in relative dimension 3 with one-dimensional
complex moduli, with 2% = 429 = 0 and unipotent monodromies, strongly unipotent monodromy
is equivalent to N3 # 0 on H13im' This is the usual definition of maximally unipotent monodromy. In
general, for a family of Calabi—Yau manifolds f: X — D* of relative dimension #, the definition of
strongly maximally unipotent monodromy is stronger than imposing that N # 0 on R" f,C.

We now show that our results on the mirror family f: Z — DY provide an example of the previous
phenomena and constructions. In preparation for the discussion, recall the minimal decomposition
introduced in Proposition 3.13, and in particular the local system V and its associated flat vector
bundle V.

Lemma 6.11. The mirror family f: Z — DX has strongly unipotent monodromy.

Proof. Outside the middle cohomology n — 1, being Hodge—Tate follows from the fact that the variation
of Hodge structures associated to R?? f,Q is purely of type (p, p) (see Lemma 3.4), and the monodromy
is trivial by Lemma 4. 1.

In the middle cohomology, by the Lefschetz decomposition, it is enough to deal with the local system
(R"! £.Q)prim- This is a sum of (R""! £,Q)min and V. The limiting Hodge structure associated to V
is Hodge—Tate by Proposition 3.13 and Lemma 4.2. That (R"~! £,Q)n is unipotent and has limiting
mixed Hodge structure that is Hodge—Tate follows from Lemma 4.3 and its proof. O
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The following proposition summarises the results of §4.2 and §5.2, to the effect of describing
distinguished trivialisations of the Hodge bundles.

Proposition 6.12. The distinguished trivialisations of the determinants of the Hodge bundles RY QZ 1

are described as follows:

1. Suppose 2p # n — 1. Any basis of the trivial local system R>P f,C provides a distinguished triviali-

. p p
sation of det R f*QZ/Déo'

2. Suppose 2k # n — 1. Then 1y are distinguished trivialisations of RkQ’g/IlD_Xk.
3. Suppose 2k = n — 1. For any polarisation L, any basis u (respectively, v) of the trivial local systems
R4 fC (respectively, V), the section n; A (det Lu) A detv is a distinguished trivialisation of

k k
det R*£.Q8 ..

6.3. Relationship with mirror symmetry

We now present our refinement of the BCOV conjecture for degenerating families of Calabi—Yau
manifolds with strongly unipotent monodromy. The statement predicts that GRR realises genus one
mirror symmetry. We then show that the conjecture holds for the case of mirrors of hypersurfaces in
projective space as a consequence of our previous main theorems. The case of K3 surfaces is not covered
by those considerations, but a proof is also provided.

To prepare for the formulation of the conjecture, let f: X — D* = (D*)¢ be a projective mor-
phism of Calabi—Yau n-folds, with d = w11 the dimension of the deformation space of the fibres,
effectively parametrised and with strongly unipotent monodromy. We denote by 77, , an integral dis-
tinguished trivialisation of det RY f*Qi D% which is unique up to sign (see Corollary 6.7 and Remark
6.8). Using these, both bundles appearing in the conjectural Grothendieck—Riemann—Roch isomor-
phism in (6.1) admit canonical trivialisations. Precisely, up to sign, the BCOV bundle is canonically
trivialised by

— —@(=1)P+a
Mcov = ® 77,% D, (6.8)
p.q

Likewise, 1, trivialises the f.Kypx. Expressed in these trivialisations, we can write
GRR(X/D¥): 7y, — GRR(s) - 74 (6.9)

for an invertible holomorphic function s — GRR(s) on D*.

In the above situation, it is expected that there are canonical mirror coordinates q = (g1, ..., qq)
on D. In [Mor93], for one-dimensional moduli, this is constructed through exponentials of quotients
of well-selected periods. For mirrors of hypersurfaces, this amounts to Zinger’s mirror map recalled in
(5.13). A general alternative construction of mirror coordinates in the Hodge—Tate setting is suggested
in [Del, Sec. 14].

Conjecture 2. Let f: X — DX = (D) be a projective morphism of Calabi—Yau n-folds, with
d = h""1 the dimension of the deformation space of the fibres, effectively parametrised with strongly

unipotent monodromy. In the mirror coordinates = (qy, . ..,qq) of D, the function defined in (6.9)
becomes

24k
GRR(q) = C-eXP((—l)”FlA(Q)) ,
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where C is a constant,

d
1
FMq) =-= / Cro1 (XY) A wi |log gx + Z GW, (X", B) ‘@’
24 XV
k=1 BeH,(XV,Z)
is a generating series of genus one Gromov—Witten invariants on a mirror Calabi-Yau manifold X",
and
o w=(w,...,wgq) is some basis of H"'(X") N H*(X",Z) formed by ample classes.

o GW (X", B) is the genus one Gromov—Witten invariant on X" associated to the class f.
° q(ﬂsﬁ) = I_Ik q;{leB)

As supporting evidence, we consider the case of the mirror family of Calabi—Yau hypersurfaces in
P and settle the second part of the Main Theorem in the introduction:

Theorem 6.13. Let n > 4. Then Conjecture 1 and Conjecture 2 are true, up to a constant, for the mirror
Sfamily f: Z — DX in a neighbourhood of the MUM point.

Proof. First, the existence of a natural isomorphism as in Conjecture 1 is provided by Proposition 6.1
and Remark 6.2 (2). Secondly, for Conjecture 2, consider ncov defined as in (6.8). Since distinguished
trivialisations are equal up to a constant, for the purpose of proving Conjecture 2, we can suppose that
the sections 77, , are actually those determined by Proposition 6.12. By the isometry property of GRR
and the very definition of the BCOV invariant, we have

I GRR(72£,) 12

Mscov

24k
L2,BCOV

12k
BCOV — ~
17covll

In other words,

~ 6
e -1l

2
1.2,BCOV

Tocov = | GRR(q)| (6.10)

I7scov |l

As in the proof of Theorem 5.1 (see also [EFiIMMZ21, Prop. 4.2]), the quantity |[7zcovlli2 pcov €O-
incides with the factor HZ;(I) 17k | z‘[l‘k up to a constant. We conclude by comparing (6.10) with

Theorem 5.9. |

The cases of one- and two-dimensional Calabi—Yau varieties are not covered by the above result.
The one-dimensional case essentially corresponds to the Kronecker limit formula recalled in §1.5. We
now study the case of K3 surfaces. Since h""! = 20 for a K3 surface, our one-dimensional Dwork-type
family cannot be a mirror family. It is still expected that the mirror of a K3 surface is a K3 surface; a
systematic construction in terms of polarised lattices can be found in, for example, [Dol96]. We will
assume this below.

Proposition 6.14. Conjecture | and Conjecture 2 are true, up to a constant, for any mirror family of a
K3 surface. Moreover, k = 1.

Proof. The BCOV line takes a particularly simple form for a K3 surface X: its square can be
written as

Ascov(X)®2 = det HO(X)®* @ det H"' (X)®* ® det H>?(X)®* ~ det H>0(X)®*. (6.11)
The isomorphisms det H'!(X)®? ~ C and det H>?(X) ~ C are both induced by Serre duality and

are thus isometries for the L?> norms and standard metric on C. Since y(X) = 24, the square of the
right-hand side of Conjecture 1 is provided by the same object.
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Let f: X — D* be a family of K3 surfaces. The previous construction globalises to an isomorphism
of line bundles

/chov(X/DX)®2 o (f*KX/DX)®4

compatible with base change. Taking 6th powers and setting « = 1, this proves Conjecture | in this case.
We hence propose that GRR is induced by (6.11).
Following the proof of Theorem 6.13, to prove Conjecture 2, we need to construct distinguished

trivialisations of both sides. For H'"!, we choose the section of det R' £,Q, o = (det R?£.C) ® Opx
induced by a generator of det R” f,Z, and analogously for det R? f, Q%( px = (det R*£.C) ® Opx. Their

L? norms are locally constant by [EFiMM?21, Prop. 4.2]. Picking any distinguished section 77,9 of
f«Kxpx, it allows us to write down the section 77pcoy of (6.8).
The analogous formula to (6.10) becomes, in this case,

0l

2
L2,BCOV

Tacov = | GRR(q) |/ = C|GRR(q)|",

I7scov |l

for a constant C > 0. By triviality of the Gromov—Witten invariants for K3 surfaces (see, for example,
[LPO7, Cor. 3.3]), to prove Conjecture 2, we need to prove that Ty is constant. This is the content of
[EFIMM21, Thm. 5.12]. O

7. A Chowla-Selberg formula for the BCOV invariant

In this section, we discuss an example of using the arithmetic Riemann—Roch theorem to evaluate the
BCOV invariant of a Calabi—Yau manifold with complex multiplication, similar to the derivation of
the Chowla—Selberg formula from the Kronecker limit formula for elliptic curves. In such situations,
or more generally for Calabi—Yau manifolds whose Hodge structures have some extra symmetries, we
expect that the BCOV invariant can be evaluated in terms of special values of I'-functions or other special
functions.

Let p > 5 be a prime number, and define n = p — 1. We consider the mirror family f: Z — U
to Calabi—Yau hypersurfaces of degree p in P". The restriction on the dimension here has been made
to simplify the exposition. The special fibre Zj is a crepant resolution of Xy/G, where Xj is now the
Fermat hypersurface

p

p _
0 t---+txy =0

X

The quotient Xo/G has an extra action of y, C C: a pth root of unity & € C sends a point
(x0: ...:xp) to (xo: ...: Xp_1: &x,). This action induces a Q-linear action of K = Q(up,) ¢ C
on H" '(Xp,Q)°. As a rational Hodge structure, the latter is isomorphic to H"'(Z, Q). For
this, see §3.3, and especially Lemma 3.11 and Proposition 3.13 (we are in odd dimension, and
all the cohomology is primitive now). Hence H"~'(Zy, Q) inherits a Q-linear action of K. Ob-
serve that [K: Q] = p — 1, which is exactly the dimension of H""!(Z,, Q). We say that Z, has
complex multiplication by K. Similarly, the algebraic de Rham cohomology H"‘I(ZO,Q'ZO /Q) af-
fords a Q-linear action of K. Indeed, this is clear for H”‘I(XO,Q;(O /Q)G, since the action of u,
on Xp by automorphisms can be defined over Q and commutes with the G action. Then we trans-
fer this to the cohomology of Zj via Lemma 3.11, which in this case provides an isomorphism

n—1 . ~ fgn-1 . G
H (ZO’QZQ/Q) ~H (XO’QXO/Q) .
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Let us fix a nontrivial ¢ € u,. If we base change H""'(Zy,Q) to K, we have an eigenspace
decomposition

p-1
H" (20, K) = ) H"™' (Zo, K) gr.
k=0

Hence, ¢ acts by multiplication by &* on Hn_l(Z(),K)gk. Similarly, for algebraic de Rham
cohomology,

p-1

H" (2, Q7 k)= @ H"'(Zp, Q7 k)ek-
k=0

If we compare with H"~! (X, Q;(O/K)G
§3.5), we see by inspection that £ acts on n; by multiplication by &%+ Therefore, we infer that the
nontrivial eigenspaces only occur when 1 < k < p — 1 and

, and we recall the construction of the sections 6y and 17} (see

H" (20,9 i )er = Knp_y = H (20, Q55 ).

Hence, the eigenspace H"~!(Z, Q.Z()/K)fk has Hodge type (n — k, k — 1).
The period isomorphism relating algebraic de Rham and Betti cohomologies decomposes into
eigenspaces as well. We obtain refined period isomorphisms

per: H''(Z0, QY i) er ®k C— H" (2o, K) e ® C.
Evaluating the isomorphism on K-bases of both sides, we obtain a period, still denoted per, € C*/K*.

Lemma 7.1. Fix an algebraic closure Q of Q in C. Then there is an equality in CX/@><

1 (k+1)\F
per;, = =I" (L) .
4 p

Proof. The claim is equivalent to the analogous computation on Xy. Hidden behind this phrase is the
comparison of cup products on Xy and Z accounted for by Lemma 3.6. On X, the formula for the period
is well-known and given, for instance, in [Gro78, Sec. 4, p. 206] (see more generally [DMOS82, Chap.
I, Sec. 7]). Notice that the author would rather work with the Fermat hypersurface x{ +...+x”  =x/.
However, as we compute periods up to algebraic numbers, by applying the obvious isomorphism of
varieties defined over Q, the result is the same. Also, we have used standard properties of the I"-function
to transform [Gro78] in our stated form. O

Theorem 7.2. For Zy of dimension p — 2, with p > 5 prime, the BCOV invariant satisfies

| L\@12 el peke1) PP N
Tacov (Z0) = e F(;) F(;) in R*/RNQ,
k=1

where

o=p (X(é(]) i 1)2(p _2)) +%;(‘1)k’<2bk~

Proof. We apply Theorem 5.1, written in terms of the sections 7; instead of 77; (which vanish at 0). Up
to rational number, this has the effect of letting down the term (4"*')¢ in that statement. We are thus
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led to evaluate the L2 norms of the sections UZ. By [MR04, Lemma 3.4], the L? norms satisfy
I3 117 = 2) =@~ | pery. .

It is now enough to plug this expression into Theorem 5.1, as well as the value of per, provided by
Lemma 7.1. o

Combining Theorem 2.3 and the conjecture of Gross—Deligne (see [Frel7, MR04] for up-to-date
discussions and positive results), one can propose a general conjecture for the values of the BCOV
invariants of some Calabi—Yau varieties with complex multiplication. For this to be plausible, how-
ever, it seems necessary to impose further conditions on the Hodge structure. Other recent exam-
ples of Calabi—Yau manifolds whose BCOV invariants should adopt a special form are given in
[CdIOEvVS20].

Acknowledgements. The authors extend their heartfelt gratitude to Ken-Ichi Yoshikawa for generously sharing his ideas and
insights into BCOV invariants. Special thanks are also extended to Nicholas Shepherd-Barron, who explained Proposition 3.1
to us and allowed us to include its proof in the article. We thank the referee for the diligent reading and criticism of the
article. In particular, it helped us write and expand Section 6.2 and correct many inaccuracies that appeared in the first version.
The first author thanks Michael Bjorklund and Hjalmar Rosengren for discussions relating to Picard—Fuchs equations and their
solutions.

Conflicts of Interest. None.

Financial support. The first author was supported by the ‘Svensk-Franska stiftelsen’, funding visits to France in 2019. The
second author was supported by the French research grant ANR PERGAMO (ANR-18-CE40-0017), as well as the Knut och
Alice Wallenberg foundation from Sweden (guest researcher program), funding stays in France and Sweden from 2019 to 2022.
Finally, this research was also supported by grants from the ‘Stiftelsen G S Magnusons fond’, grant ‘Higher-dimensional genus 1
mirror symmetry’ (MG2019 0003), funding visits of the second and third authors to Sweden in 2019 and 2021.

References

[Bat94] V. V. Batyrev. Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic
Geom., 3(3): 493-535, 1994.
[BB96] V. V. Batyrev and L. A. Borisov. Mirror duality and string-theoretic Hodge numbers. Invent. Math., 126(1),
1996.
[BCOV94] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa. Kodaira-Spencer theory of gravity and exact results for quantum
string amplitudes. Comm. Math. Phys., 165(2): 311-427, 1994.
[BD96] V. V.Batyrev and D. I. Dais. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry.
Topology, 35(4): 901-929, 1996.
[Beh97] K. Behrend. Gromov-Witten invariants in algebraic geometry. Invent. Math., 127(3): 601-617, 1997.
[BG14] G. Bini and A. Garbagnati. Quotients of the Dwork pencil. J. Geom. Phys., 75: 173-198, 2014.
[BvS95] V.V.Batyrev and D. van Straten. Generalized hypergeometric functions and rational curves on Calabi-Yau complete
intersections in toric varieties. Comm. Math. Phys., 168(3): 493-533, 1995.
[CdIOEvS20] P. Candelas, X. de la Ossa, M. Elmi, and D. van Straten. A one parameter family of Calabi-Yau manifolds with
attractor points of rank two. J. High Energy Phys., (10):202, 73, 2020.
[CG11] A. Corti and V. Golyshev. Hypergeometric equations and weighted projective spaces. Sci. China Math., 54(8):
1577-1590, 2011.
[CL12] K. Costello and S. Li. Quantum BCOV theory on Calabi-Yau manifolds and the higher genus B-model. arXiv
e-prints, page arXiv:1201.4501, January 2012.
[Del] P. Deligne. Local behavior of Hodge structures at infinity. In Mirror symmetry, II, volume 1 of AMS/IP Stud. Adv.
Math., pages 683-699.
[Del71] P. Deligne. Théorie de Hodge. II. Inst. Hautes Etudes Sci. Publ. Math., (40): 5-57, 1971.
[Del87] P.Deligne. Le déterminant de la cohomologie. In Current trends in arithmetical algebraic geometry (Arcata, Calif.,
1985), volume 67 of Contemp. Math., pages 93—177. Amer. Math. Soc., Providence, RI, 1987.
[DHZ98] D. I. Dais, M. Henk, and G. M. Ziegler. All abelian quotient C.I.-singularities admit projective crepant resolutions
in all dimensions. Adv. Math., 139(2): 194-239, 1998.
[DHZ06] D. 1. Dais, M. Henk, and G. M. Ziegler. On the existence of crepant resolutions of Gorenstein abelian quotient
singularities in dimensions > 4. In Algebraic and geometric combinatorics, volume 423 of Contemp. Math., pages
125-193. Amer. Math. Soc., Providence, RI, 2006.

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://arxiv.org/abs/1201.4501
https://doi.org/10.1017/fmp.2022.13

52 Dennis Eriksson et al.

[DMOS82] P. Deligne, J. S. Milne, A. Ogus, and K.-Y. Shih. Hodge cycles, motives, and Shimura varieties, volume 900 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.
[Dol96] I. V. Dolgachev. Mirror symmetry for lattice polarized K 3 surfaces. volume 81, pages 2599-2630. 1996. Algebraic
geometry, 4.
[DY20] X. Dai and K.-I. Yoshikawa. Analytic torsion for log-Enriques surfaces and Borcherds product. arXiv e-prints,
page arXiv:2009.10302, September 2020.
[EFiIMM18] D. Eriksson, G. Freixas i Montplet, and C. Mourougane. Singularities of metrics on Hodge bundles and their
topological invariants. Algebraic Geometry, 5: 1-34, 2018.
[EFiMM21] D. Eriksson, G. Freixas i Montplet, and C. Mourougane. BCOV invariants of Calabi-Yau manifolds and degenera-
tions of Hodge structures. Duke Math. J., 170(3): 379-454, 2021.
[EriO8] D. Eriksson. Formule de Lefschetz fonctorielle et applications géométriques. PhD thesis, Université Paris-Sud 11,
2008.
[EZT14] F. El Zein and L& Diing Trang. Mixed Hodge structures. In Hodge theory, volume 49 of Math. Notes, pages 123—
216. Princeton Univ. Press, Princeton, NJ, 2014.
[FLYO8] H. Fang, Z. Lu, and K.-I. Yoshikawa. Analytic torsion for Calabi-Yau threefolds. J. Differential Geom., 80(2):
175-259, 2008.
[Fra92] J. Franke. Riemann—Roch in functorial form. Unpublished, 1992.
[Fre17] J. Fresan. Periods of Hodge structures and special values of the gamma function. Invent. Math., 208(1): 247-282,
2017.
[FZ20] L. Fu and Y. Zhang. Motivic integration and the birational invariance of BCOV invariants. arXiv e-prints, page
arXiv:2007.04835, July 2020.
[Gdh13] S. Gihrs. Picard-Fuchs equations of special one-parameter families of invertible polynomials. In Arithmetic and
geometry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst. Commun., pages 285-310. Springer,
New York, 2013.
[GKZ08] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants and multidimensional determi-
nants. Modern Birkhiuser Classics. Birkhduser Boston, Inc., Boston, MA, 2008.
[Gri69] P. A. Griffiths. On the periods of certain rational integrals. I, II. Ann. of Math. (2) 90 (1969), 460-495; ibid. (2),
90:496-541, 1969.
[Gro78] B. H. Gross. On the periods of abelian integrals and a formula of Chowla and Selberg. Invent. Math., 45(2):
193-211, 1978. With an appendix by David E. Rohrlich.
[GS90a] H. Gillet and C. Soulé. Arithmetic intersection theory. Inst. Hautes Etudes Sci. Publ. Math., (72): 93—174 (1991),
1990.
[GS90b] H. Gillet and C. Soulé. Characteristic classes for algebraic vector bundles with Hermitian metric. I. Ann. of Math.
(2),131(1): 163-203, 1990.
[GS90c] H. Gillet and C. Soulé. Characteristic classes for algebraic vector bundles with Hermitian metric. II. Ann. of Math.
(2),131(2): 205-238, 1990.
[GS92] H. Gillet and C. Soulé. An arithmetic Riemann-Roch theorem. Invent. Math., 110(3): 473-543, 1992.
[Har66] R. Hartshorne. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard
1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin-New
York, 1966.
[HSBT10] M. Harris, N. Shepherd-Barron, and R. Taylor. A family of Calabi-Yau varieties and potential automorphy. Ann.
of Math. (2), 171(2): 779-813, 2010.
[HuyO5] D. Huybrechts. Complex geometry. Universitext. Springer-Verlag, Berlin, 2005. An introduction.
[11194] L. Illusie. Autour du théoréme de monodromie locale. Astérisque, (223): 9-57, 1994. Périodes p-adiques
(Bures-sur-Yvette, 1988).
[KMY18] S. Kawaguchi, S. Mukai, and K.-I. Yoshikawa. Resultants and the Borcherds Phi-function. Amer. J. Math., 140(6):
1471-1519, 2018.
[KO68] N. M. Katz and T. Oda. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math.
Kyoto Univ., 8: 199-213, 1968.
[KPO8] A. Klemm and R. Pandharipande. Enumerative geometry of Calabi-Yau 4-folds. Comm. Math. Phys., 281(3):
621-653, 2008.
[LPO7] J. Lee and T. Parker. A structure theorem for the Gromov-Witten invariants of Kéhler surfaces. J. Differential
Geom., 77(3): 483-513, 2007.
[Mor93] D. R. Morrison. Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Amer.
Math. Soc., 6(1): 223-247, 1993.
[Mor97] D. R. Morrison. Mathematical aspects of mirror symmetry. In Complex algebraic geometry (Park City,
UT, 1993), volume 3 of IAS/Park City Math. Ser., pages 265-327. Amer. Math. Soc., Providence, RI,
1997.
[MRO4] V. Maillot and D. Roessler. On the periods of motives with complex multiplication and a conjecture of Gross-
Deligne. Ann. of Math. (2), 160(2): 727-754, 2004.

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://arxiv.org/abs/2009.10302
https://arxiv.org/abs/2007.04835
https://doi.org/10.1017/fmp.2022.13

Forum of Mathematics, Pi 53

[MR12] V. Maillot and D. Réssler. On the birational invariance of the BCOV torsion of Calabi-Yau threefolds. Comm.
Math. Phys., 311(2): 301-316, 2012.
[SC67] A. Selberg and S. Chowla. On Epstein’s zeta-function. J. Reine Angew. Math., 227: 86-110, 1967.
[Sch73] W. Schmid. Variation of Hodge structure: the singularities of the period mapping. Invent. Math., 22: 211-319,
1973.
[Ste77] J. Steenbrink. Mixed Hodge structure on the vanishing cohomology. In Real and complex singularities (Proc.
Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), pages 525-563. Sijthoft and Noordhoff, Alphen
aan den Rijn, 1977.
[Ste76] J. Steenbrink. Limits of Hodge structures. Invent. Math., 31(3): 229-257, 1975/76.
[Voi99] C. Voisin. Mirror symmetry, volume 1 of SMF/AMS Texts and Monographs. American Mathematical Society,
Providence, RI; Société Mathématique de France, Paris, 1999. Translated from the 1996 French original by Roger
Cooke.
[Voi07] C. Voisin. Hodge theory and complex algebraic geometry. II, volume 77 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, english edition, 2007.
[YasO4] T. Yasuda. Twisted jets, motivic measures and orbifold cohomology. Compos. Math., 140(2): 396-422,
2004.
[Yos99] K.-I. Yoshikawa. Discriminant of theta divisors and Quillen metrics. J. Differential Geom., 52(1): 73-115,
1999.
[Yos04] K.-I. Yoshikawa. K 3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli
space. Invent. Math., 156(1): 53—117, 2004.
[Yos17] K.-I. Yoshikawa. Analytic torsion for Borcea—Voisin threefolds. In Geometry, Analysis and Probability, volume
310 of Progress in Math., pages 279-361. Springer International Publisher, 2017.
[Zha20] Y. Zhang. BCOV invariant and blow-up. arXiv e-prints, page arXiv:2003.03805, March 2020.
[Zin08] A. Zinger. Standard versus reduced genus-one Gromov-Witten invariants. Geom. Topol., 12(2): 1203-1241,
2008.
[Zin09] A.Zinger. The reduced genus 1 Gromov-Witten invariants of Calabi-Yau hypersurfaces. J. Amer. Math. Soc., 22(3):
691-737, 2009.
[ZZ08] D. Zagier and A. Zinger. Some properties of hypergeometric series associated with mirror symmetry. In Modular
forms and string duality, volume 54 of Fields Inst. Commun., pages 163—177. Amer. Math. Soc., Providence, RI,
2008.

https://doi.org/10.1017/fmp.2022.13 Published online by Cambridge University Press


https://arxiv.org/abs/2003.03805
https://doi.org/10.1017/fmp.2022.13

	1 Introduction
	1.1 The classical BCOV conjecture at genus one
	1.2 Grothendieck–Riemann–Roch formulation of the BCOV conjecture at genus one
	1.3 Main results
	1.4 Overview of proof of the main theorem
	1.5 Applications to Kronecker limit formulas

	2 The BCOV invariant and the arithmetic Riemann–Roch theorem
	2.1 Kähler manifolds and L2 norms
	2.2 The BCOV invariant
	2.3 The arithmetic Riemann–Roch theorem
	2.4 Kronecker limit formulas for families of Calabi–Yau hypersurfaces

	3 The Dwork and mirror families, and their Hodge bundles
	3.1 The geometry of the Dwork family
	3.2 The mirror family
	3.3 Generalities on Hodge bundles
	3.4 The Kodaira–Spencer maps and the Yukawa coupling
	3.5 The middle degree Hodge bundles

	4 The degeneration of the Hodge bundles of the mirror family
	4.1 Generalities on geometric degenerations of Hodge structures
	4.2 Triviality of some variations of Hodge structures
	4.3 Behaviour of ηk at the MUM point
	4.4 Behaviour of ηk at the ODP points

	5 The BCOV invariant of the mirror family
	5.1 The Kronecker limit formula for the mirror family
	5.2 Canonical trivialisations of the Hodge bundles at the MUM point
	5.3 Generating series of Gromov–Witten invariants and Zinger's theorem
	5.4 Genus one mirror symmetry and the BCOV invariant

	6 The refined BCOV conjecture
	6.1 The Grothendieck–Riemann–Roch isomorphism
	6.2 Strongly unipotent monodromy and distinguished sections
	6.3 Relationship with mirror symmetry

	7 A Chowla–Selberg formula for the BCOV invariant

