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Abstract

The aim of this paper is to resolve Taylor’s question concerning certain regularity conditions on a Borel
measure. The proposed solution is given in the framework of Brown, Michon and Peyriére, and Olsen.
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Introduction

Let {%,}.>1 be a sequence of finite partitions of [0, 1[ by intervals, semi-open to the
right. These partitions need not be nested. If x € [0, 1[, 1,(x) stands for the intervals
of the family .%, which contains x. The length of an interval J is denoted by [J|. We
suppose that, for any x € [0, 1[, lim,_, » |1, (x){ = 0.

We consider two indices dim and Dim which are defined as Hausdorff and Tricot
dimensions [7], but only considering coverings and packings by intervals in the family

{yn}nzb

A Borel probability measure y is called regular uni-dimensional if

log (1)) _

o :
e Tog (o)l

For ¢, t € R, define
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H,(g.) = lim inf {Zuu,)"”ujr' ([0, 1[= U1, I; € U, &, |I;| < 3} ,
J

P.(q.1) = lim sup !Zu(lj)q“u,-r' : (I)); disjoint, I; € U, &, |I;] < s} :
j

b,(q) =sup{t e R: H,(q,1) =0}, B,(q) =sup{t e R: P,(q, 1) =0},
where X' is the sum over those j with p(l;) # 0. The detailed properties of the
functions b, can be found in [3, 4, 5], and detailed properties of the function B, can

be found in [4].
For any function f, we consider the following Legendre transform of f:

Ffx) =infyeg(x(y + 1) — f()).

If we put

_ C e logu(l(x))
A:_{xem’l[' e Tog 11, (0] _s}’

then the theorems in [4] imply that

B
Dim A; < B (s) for a, = sup k(@) <s <a,= inf "(q),
q>—]q+1 ‘l<—lq+1
and the theorems in [3, 4, 5] imply that
b b
dimA, <b(s) for ¢, = sup bu(q) <s§s <c¢,= inf _’f@
# q>—lq+1 q<'1q+1

The aim of this paper is to resolve the following open problem of Taylor [6]: Find a
regular uni-dimensional ¢ such that a; < a,, ¢; < ¢; but

dim A, # b} (s), Dim A; # B/ (s), dim A; = Dim A; for some s.

Moreover the Borel measure 1 which we propose satisfies the regularity condition
suggested by Olsen [4]: b,(q) = B,(q) for all q.
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Example

Let o7 be the set of finite words over the alphabet {0, 1}. The concatenation, just
denoted by juxtaposition, endows & with the structure of a semigroup. The empty
word, which is the unit, is denoted by w. The set of words of length » is denoted by
&,. For every j € o, we denote by N,(j) the number of times the letter k appears
in the word j. Let & U 3/ be the natural compactification of 2 (32 is the set
of infinite words). For any j € &/, we define C; to be the cylinder formed by the
elements of 0.7 starting with j.

Take o, B € Rsuchthat 1/3 <a < 8 < 1/2. A cylinder C; of order n (j € <,)
is called of a-type (respectively 8-type) if we have:

INo(j)/n —a| < 1/n  (respectively [No(j)/n — B| < 1/n).
For any cylinder C;, j € &, of a- or B-type, we define:
Ej ={C, :l € H,46, C; C C; and C, is of the same type as C;}.
It is easy to check that
Ing:  Vazn, Vjed, C; =2

For each k € N we select, in a random way, 2**! cylinders of order ng + 6k. The
selection is done in steps. In the first step, we select two cylinders of order n,, C;, and
C;;, with C;; of a-type and Cj; of B-type. From the nth step to the (n + 1)st step, we
choose two elements of C ; for every C; of the nth step.

Let ly, 1;, po and p, be a real numbers such that

(1) O0<l <ly, 0 < po < m, bh+hL=1, po+pr =1,
B log(po/p1) + log p
B log(lo/1,) + log [,

We construct a sequence {#, = {[;}jca, }n>o Of finite partitions of [0, I[ in semi-
open intervals in the following way. The first partition contains the unique interval
I, = [0, 1[. We obtain the (n 4+ 1)st partition from the nth one by cutting each interval
I;, j € o, into two intervals {/;},—o.1 such that:

L = Lz if C; contains a selected cylinder,
TNz otherwise.

Now define a measure u in the following way. For j € & and k € {0, 1} let

Pt (1}) if I; contains a selected interval,

L) =
wlli) {M(Ij)/z otherwise.
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(1; is selected if C; is selected).
Then clearly w is regular uni-dimensional of index 1:

log u(ln(x)) _

1m Mn-a. e.
n—oo log |1, (x)|

Note that the measure p is not quasi-Bernoulli, that is, there is no positive number M
such that, for any j and k in &7, we have

M~ () < ulp) < M.

Consider the following quantities.

1
Cu(g. 1) = —log Y u(L)™' L™,
e,
C(q,t) = lim supC,(q,t) and ¢(q) =sup{t; C(q,t) <O}
It is easy to check that ¢ is finite, strictly increasing on R and

2 ¢0) =0, ¢(q) <q forallg e R.

Since C is a convex finite function, the function ¢ is defined by the equality C(x, ¢(x))
= 0. We prove that

3) b, =B, =o¢.
Property (3) results immediately from the following proposition.

PROPOSITION. For g € R,

(1) lim,_,& Ca(q, ¢(q)) = 0 and lim, . inf nC,(q, ¢(q)) > —o0.
(2) b.(q) < w(g).

PROOF. We introduce the following notation: for positive functions ¥ and v, u = v
means that there exists a positive constant K such that K~'u < v < Ku.
Fix ¢ € R and put

l
A, =a ((q + 1)1og? — ¢(q) log 29) + (g + Dlog p; — ¢(g) logly,
1 1

I
Ay =8 ((q + 1) log ? —¢(q) log l—o) + (g + 1) log p1 — @(q) logl,,
1 1

A=200@0 g, =265 dp =25
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Let Y, denote the following mapping from [0, 1[ to R:
Y, (x) = p(L, ()71, (x)| 7.

Obviously, we have

/ Y,du = "t e@)

For k € N, write Z;, = Y, 46 and if j € &7, define

E{(j) = U{I‘ 11 € pex, I; € I; and ng + 6p is the largest order
of a selected interval containing /;}.

Note that E/ (j) could be reduced to the empty set.

Proof of Assertion 1

In order to establish the first assertion, we only need to prove

4) kadur%k or /de,u%L

We have

P 1. 1,01

Jo Jo jo' g

It is easy to see that

(6) / Zidu ~ Ak
T.01

o' iy

On the other hand,

VpeN, 0<p=<k, / deu%Ak“”Ag.
Ef (jo)

Since {E{ (jo)},.,., is  family covering I;, whose elements are mutually disjoint, it
follows that

k
(7N / Zidu~ ) AL
I

o p=0

In a similar way, we can show that

k
8 /1 Zidu D oAkl

jo p=0

Since C(gq, ¢(g)) = 0, the relations (5), (6), (7) and (8) imply (4).
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Proof of Assertion 2

Let us define a family of functions from [0, 1[ to R, in the following way:

o0
—6kt
8 = E e Z,.
k=0

This allows us to define the family

of probability measures on {0, 1.
Let j € &, +¢n; then we have

1 n—1 o0
©) Pl = | S e / Zedp+S e / Zedu |
(1) fg,du I:kZ:(; ; kAl § s kap

For a fixed k > n, in order to evaluate the integral fl Z, du, we need to distinguish
’
three cases.
1st case (/; is not selected).

(10) / Zidp = N (L) LTO9.
IJ
2nd case (/; selected, I; C I;)). We have
VpeN, n<p=<k, / Zidp = PR (LT (L]709.
E[(j)

Since I; = Uk_, E{(j) we get

k
(11) f Zidu = |:Z Ak_”kg‘"] /’L(Ij)q+1|1j|_¢(q).
1

4 p=n
3rd case (J; selected, I; C I;;).

I«

(12) / Zidp =~ {Z A""‘AZ“"] W (L@,
1

J p=n

When ¢ goes to 0, P, has at least a weak limit v. By using the first assertion and the
relations (4), (9), (10), (11) and (12), this weak limit v satisfies

v(I)) < K p(L)™ L@
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where K is a constant which does not depend on ;. Since the intervals of order
no + 6k, k € N, allow us to construct b,, we conclude that b, (g) < ¢(q).
This concludes the proof.

o Blog(po/p1) + log p,
Blog(ly/l) +logl,

and observe that A, # ¢, A; C I;;. Then (1) and (2) ‘imply thata, = ¢, < a, =
¢3. On the other hand, due to the theorem in [1], it follows from (1) and (2) that
Dim A; < B;(s).

Now, let us consider the Borel probability measure w on [0, 1[ suchthat w(l;) = 27*
for each selected interval I; of order ng + 6k, I; C I;;. Then w is concentrated on A,.
By using Billingsley’s theorem [2] for dim and the associated result [6] for Dim, we
obtain Dim A; = dim A;.

Put
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