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Abstract

Generalized Poisson (GP) distribution was introduced in Consul & Jain ((1973). Technometrics, 15(4),
791-799.). Since then it has found various applications in actuarial science and other areas. In this paper,
we focus on the distributional properties of GP and its related distributions. In particular, we study the
distributional properties of distributions in the H family, which includes GP and generalized negative
binomial distributions as special cases. We demonstrate that the moment and size-biased transformations
of distributions within the 7 family remain in the same family, which significantly extends the results
presented in Ambagaspitiya & Balakrishnan ((1994). ASTINBulletin: the Journal of the IAA, 24(2), 255-
263.) and Ambagaspitiya ((1995). Insurance Mathematics and Economics, 2(16), 107-127.). Such findings
enable us to provide recursive formulas for evaluating risk measures, such as Value-at-Risk and conditional
tail expectation of the compound GP distributions. In addition, we show that the risk measures can be
calculated by making use of transform methods, such as fast Fourier transform. In fact, the transformation
method showed a remarkable time advantage over the recursive method. We numerically compare the risk
measures of the compound sums when the primary distributions are Poisson and GP. The results illustrate
the model risk for the loss frequency distribution.

Keywords: Generalized Poisson distribution; generalized negative binomial distribution; compound random variables;
moment transforms; recursive formulas; risk measures

1. Introduction

A discrete random variable (rv) N is said to follow a generalized Poisson (GP) distribution with
parameters (X, 0), i.e., N ~ GP(A, ), if its probability mass function (pmf) is given by

A+ ng)!

Pu(1,0) = PN =m) = ==

exp{—A — né}, n=0,1,2,...,

where A > 0 and max (—1, —A/4) < 6 < 1. The mean and variance of the GP rv are E[N] = ﬁ
and Var[N] = ﬁ, respectively. Thus, it exhibits “overdispersion” or “underdispersion” when

0 > 0 or 6 < 0, respectively.
The GP distribution was introduced in Consul & Jain (1973) as a limiting form of a generalized
negative binomial (GNB) distribution whose pmfis

_ a a+bn n a+bn—n _
pn(a,b,oc)—a+bn< " >oz(1—ot) , n=0,1,2,...,
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for 0 <a <1 and |ab| < 1. Note that when b =0, it reduces to a binomial distribution; when
b =1, it reduces to the NB distribution. When the parameters (g, b, o) are chosen such that ac = A
and ba =0, as o goes to 0, the limiting distribution of GNB becomes GP. Another relation-
ship between GP and GNB distributions is that they both belong to the so-called H family of
distributions introduced in Ambagaspitiya (1995), whose pmf are characterized by a recursive
relationship.

From the probability point view, Consul & Shoukri (1988) showed that the GP distribution
can be viewed as the distribution of the number of served customers in a busy period of a queue
with Poisson arrival and constant service time. The GP distribution can also be viewed as the
distribution of the total progeny in a branching process, where the initial number of a species
follows a Poisson(A) distribution and the number of offspring an individual produce follow a
Poisson(#) distribution.

The GP rv has found applications in actuarial science. For instance, Gerber (1990) showed
that the number of jumps it takes for a classical compound Poisson risk process with constant
claim size p to reach a level x > 0 follows GP(cx, cit), where c is the ratio of the Poisson arrival
rate and the constant premium rate. Consul (1989) compared the GP distribution with several
well-known distributions and concluded that GP is a plausible model for claim frequency data.
Goovaerts & Kaas (1991) made use of the connection between the GP distribution and the Galton-
Watson branching process to derive many distributional properties of GP and a recursive method
to compute the distribution of a compound GP distribution. Later, Ambagaspitiya & Balakrishnan
(1994) presented a different recursive method for the compound GP distribution.

The concept of the moment transform of distributions has a long history and is widely used
in statistics (see, e.g., Patil & Ord, 1976; Arratia & Goldstein, 2010, and references therein). Its
relevance to the study of actuarial risk measures has been exploited in the risk theory litera-
ture. Furman & Landsman (2005) showed that moment transforms can be used in computing the
conditional tail expectation (CTE). More recently, Denuit (2020) presented formulas for the first-
moment transform of compound distribution and illustrated their applications in determining
the CTE. Ren (2022) further studied the moment transform of multivariate compound sums.

In this paper, we first show that the moment transform of distributions in the # family is
still in the family. Then we apply the results in determining the CTE and higher tail moment for
the compound GP rv. These results extend those in Ambagaspitiya & Balakrishnan (1994) and
Ambagaspitiya (1995). In addition, we show that the risk measures can also be calculated by mak-
ing use of transform methods, such as fast Fourier transform (FFT). In fact, the transformation
method showed a remarkable time advantage over the recursive method. The applications of FFT
in the compound models were discussed in, e.g., Wang (1998) and Embrechts & Frei (2009), and
FFT’s applications in capital allocation were studied in detail in Blier-Wong et al. (2022).

The rest of the paper is organized as follows. Section 2 reviews various distributional prop-
erties of the GP rv and its compound sums. Section 3 studies the moment transform (and
size-biased transform) of the GP distribution and more general distributions in the H family,
defined herein. Section 4 applies the results in computing the tail moments of compound GP
distribution. Section 5 provides methods for evaluating tail probability and risk measures of the
compound GP distribution, with applications in performing the CTE and Euler capital allocations.
Finally, numerical examples are provided in Section 6 to illustrate our results.

2. The generalized Poisson random variable
2.1. The pgf and moments of the GP distribution

Consider arv N follow the distribution of GP(}, 6). Ambagaspitiya & Balakrishnan (1994) showed
that when 6 > 0, its probability generating function (pgf) could be written as

GnG)=E[N]= exp{—g [W(—@e_ez) +<9]} , (1)
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where W is the Lambert’s W function defined as
W(x) exp(W(x)) = x.
For more details about the properties of W function, see Corless et al. (1993).

Let M%) := E[N®)] be the ath factorial moment of N (see Definition 2). Because E[N®)] =
%GN(z) ‘z:l’ it is easy to see by differentiating that

(1) A
:]EN = —,
155N, [N] 1—9
2
Q) A A A
=E[N-(N-1)] = - :
u® =EIN - (N - 1)] (1_9)3+(1_9) _—
and thus the variance of N is
Var(N) = .
ar(N) 10y

2.2. Recursive formula for GP and a family of H distributions

Definition 1 (Ambagaspitiya, 1995). A rv N is said to belong to the H family characterized by
(h1(a, b), ha(a, b)), i.e, X € H(hi(a, b), ha(a, b)), if its pmf satisfies the recursive formula

hy(a, b)
n

Pula, b) = (hl(a, b) + )pn_l(a +b,b), n=12,.... )

It is easy to check that both GP and GNB belong to the H family. For GP(a, b), hi(a, b) = ab

atb
and hy(a, b) = -2, while for GNB(a, b, &), 1 (a, b) = 52U and hy(a, b) = 242 More
specifically, the pmf of GP(a, b) satisfies the recursive relation
a a
pn(a,b):m(b—i—;)pn_l(a—i—b,b), n=12..., 3)
and the pmf of GNB(q, b, ) satisfies the recursive relation
ao a+1
b)) =———(b—1 - b, b, ), =1,2,....
prl@ b, ) (l—oz)(a—i-b)( T )P e t+bba)

Remark 1. The # family reduces to the traditional Panjer family by setting the parameter b =0
in Equation (2).

2.3. The GP distribution as a compound Poisson distribution itself

The GP distribution is closely related to the Galton-Watson branching process (Goovaerts & Kaas,
1991), which models the spreading of certain objects (e.g., family names, viruses) as follows. For
example, suppose that there are M individuals originally. Each of these gives rise to L; other indi-
viduals,i=1,2, ..., M. These, in turn, give rise to L;; new victims, j=1,2, .. ., L;, and so on. Now
if M is a Poisson(A) distributed rv, and L;, Lj;, . . . are independent Poisson(0) (6 < 1) rv’s, the total
number N of people infected before extinction has a GP(4, 0) distribution.

If the original number of infected is fixed at one, then the total number of infected, B, has a
Borel (9) distribution, with pmf

(n9)"~ 1 e—nQ

IP’(B:n):T, n=12,...,

mean [E(B) = ﬁ and variance Var(B) = (1_0;9)3.
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Therefore, a GP(A, 0) is a compound Poisson sum of independent Borel(9) rv’s, i.e.,
M
N=) B )
i=1

where the primary rv M is Poisson distributed with parameter A, and the secondary rv is
independent and identically distributed (iid) as Borel(9).
Note that one relationship between the Borel and GP distributions is

BL1+N,
where N* ~ GP(6, 0). Therefore, the pgf of B~ Borel(9) is

Gp(2) = 2Gy+(2) = 2 C8@~D), (5)

where the compound form of N* using Equation (4) is applied here.

2.4. The compound GP random variable
Denote a compound GP rv X as

N
X=> "G,
i=1

where N follows GP(%, 8) and C; are iid rv’s independent of N.

Goovaerts & Kaas (1991) derived a recursive algorithm for computing the distribution of the
compound sum when C;’s take positive integer-valued using the representation in Equation (4).
Their derivation starts by rewriting the compound GP rv as

M B;
X=>3"Y, Y=Y Cj
i=1 j=1

where M is a Poisson(A) rv, B; is a Borel(¢) rv, and Cj; is an iid sequence of claim amounts having
the same distributions as C;. Each Y; has a compound Borel distribution. Hence, the pgf of X
becomes (see Equation (12) of Goovaerts & Kaas, 1991)

Gx(u) = exp(A[Gy(u) — 1])
= exp(A[Gp(Gc(u)) — 1])
=exp (A(t - 1)),

with = #(u) such that Go(u) = te ¢~ via Equation (5). This gives a two-step algorithm for
calculating the distribution of X. The first step is to compute the coefficients of Gp(G¢ (1)) (which
amounts to the pdf of Y;); and the second step is to evaluate the coefficients of Gx(u) by Panjer’s
recursion formula.

Ambagaspitiya & Balakrishnan (1994) made use of the recursion formula for GP in Equation
(3) and showed that, when claim sizes are discrete on positive integers (or have absolutely contin-
uous pdf), the pmf (or pdf) of the compound GP rv also satisfies a recursive formula. In particular,
their Theorem 5.1 stated that for the discrete claim size with pmf f(x) = P(C=x) forx=1,2,.. .,
the pmf of X can be calculated as

X

MX:mAﬁ)=I%5E:(9+kj)MX=x—ﬁk+a0y@, (6)
j=1
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with the initial values P(X=0;1+j0,0)=exp(—Ar —j0) for j=0,1,2,.... Later on,
Ambagaspitiya (1995) extended the recursive formula for the pmf of compound distribution
when N is in A family and C has support on positive integers,

X

P(X=x;a,b)= Z (hl(a, b) + hy(a, b)j—;) P(X =x — j;a+ b, b)f(j). (7)
=1

3. Moment transforms of generalized Poisson distribution

In this section, we show that the factorial moment transform of distributions in family # is still
in the family. This is, their distribution satisfies the recursive relation (2). We begin with the
definition of the factorial moment transform of discrete distributions.

Definition 2. Let N be a discrete rv having probability function py, k=0,1,2 - - -. Denote the ath
factorial moment of N by
uy = E[N©],

where for an integers I and o, @D=11-1)---I—a+1) if o <1 and zero otherwise. Then the
ath factorial moment transform of N is a discrete rv N, with probability function

8 _E[N®IN=K] k@p,

Y= P(Ny =k)= = , k=0,1,2,---,
8k ( ) E[N(oz)] Mg\?)

where 1(A) is the indicate function of event A.
m

In the case of & = 1, we simply write Ny = N, p\y’ = un and, etc. The rv N is referred to as the
size-biased transform of N.

Note that in this section, we sometimes use the notation ug\?)(a, b), when we need to specify
the parameters a and b in the distribution of N.

3.1. Recursive formula for the pmf of the moment transforms of GP

We have the following theorem regarding the size-biased transform of a general distribution in
the H family.

Theorem 1. For N ~ H(h1(a, b), h2(a, b)), let N be its size-biased transform and M = N — 1. Then
M ~ H(hi(a, b), h3(a, b)) with

hl(a) b) + hZ(a) b)
un(a, b)

Wi(a,b)=1—

>

and

hl(a’ b) + hZ(a’ b)
hi(a, b)

W3 (a, b) = K (a, b).

Proof. Equation (2) can be written as, fork=1,2,.. .,

kpi(a, b) = (h1(a, b)k + ha(a, b))pi—1(a + b, b)
= [(a, b)(k — 1) + (h1(a, b) + ha(a, b))] pr_1(a+ b, b). (8)
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Dividing both sides of Equation (8) by un(a, b), we have, fork=1,2, ...

un(a+b,b)

8gk(a, b) = hi(a, b) @)

gk—1(a+ b, b)

,LLN([Z + b) b) Pk—l(ﬂ + b) b)
pn(ab)  pn(a+b,b)
For k=2,3,..., multiplying both side by (k — 1) yields

+ [hl(a, b) + hy(a, h)]

b, b
(k —1gi(a, b) = hy(a, b)%(k —1)gr_1(a+ b, b)
b,b
+ [h1(a, b) + hy(a, b)] %gkl(a +b,b),

which can be written as

un(a+ b, b)
un(a, b)

un(a+b,b)

Kgks1(a,b) = (a, b) yin(a,b)

kgk(a + b, b) + [h1(a, b) + ha(a, b)] gka+b,b),

fork=1,2,3,.... 3 )
Now, since M := N — 1, we have its pmf denoted as fy_,(a,b) := PMM =k —1)=P(N=k) =

g(a,b)fork=1,2,3,. .., thus

un(a+b,b)
un(a, b)

which is equivalent to

MN(“ + b, b)

Kfi(a, b) = b1 (a, b) Kia(at b0+ [In@b) + ol D] = (a by b,

b, b b,b) 1
fila,b)= (hl(a, b)% + [h(a,b) + ha(a, b)] %E)fk_l(a +b,b)
- <h’f(a, b+ 12 b)>fk_1(a +b,b), k=1,23....

Hence, the distribution of M still satisfies the general recursive formula (2) as desired.
To further simplify the representation of hj(a, b), we write Equation (2) as

kPk(“a b) = hl(a’ b)(k - 1)pk71(a +b, b) + (hl(aa b) + hZ(aa b))Pkfl(a +b, h)) k=1,2,....
Summing up both sides from k =1 to oo yields
1N (a, b) = hi(a, bjun(a + b, b) + [hi(a, b) + ha(a, b)],

or equivalently

un(a, b) — [hi(a, b) + ha(a, b)]

b,b) =
un(a+ b, b) D)
Therefore,
un(a+ b, b) hi(a, b) + hz(a, b)
hi(a, b) = hy(a, b) =1- ,
! ! 1n(a, b) 1n(a, b)
which completes the proof. O

Since both GP and GNB distributions are in the family 7{, we have the following corollary as
the direct application of the above theorem.

https://doi.org/10.1017/51748499524000198 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499524000198

146 Pouya Faroughi et al.

Corollary 1.

(i) Ibe~ GP(a, b), then M=N —1 € H(hi(a, b), h3(a, b)) with hi(a,b)="b and h}(a,b) =
a-—+o.
(ii) If N~ GNB(a, b,a), then M=N-1 € H(h{(a, b), h3(a, b)) with hj(a,b)= (hl%zo‘ and

H(a, b) = @
Actually, Theorem 1 could be generalized to the ath factorial moment transform in a similar
manner. The result is stated in the following Theorem. Its proof is provided in Appendix A.
Theorem 2. Let N ~ H(hi(a, b), hy(a, b)). For an integer a > 1, let Ny be its ath factorial moment
transform and My, = Ny, — . Then My ~ H(hi(a, b), k5 (a, b)) with
M%[)(a +b,b)
uiy(a,b)

o -hi(a, b) + hy(a, b)
hi(a, b)

W (a, b) = hy(a, b) and  hi(a,b)= K (a, b).

3.2. Generating function for the moment transforms of GP
As illustrated in Remark 2.5 of Blier-Wong et al. (2022), another way to study the moment trans-
form of distributions is through the generating function. This is due to the fact that the pgf of the
factorial moment transform of a discrete rv N is given by

z* d“

Gy, (2)

In particular, the pgf for a first-moment transformed GP distribution, N, is given by

/
Gy (2) = zgﬁ\(;) - E[ZN | {geﬂ W/(—He_ez)GN(z)}
=1 —0)e W (-0e2)zGn(2)
_1-0 W(—0e~z)
0 1+ W(—0e?2)
where we have made use of the identity for Lambert’s W function that
W(x)
A1+ W)

Gn(2),

W (x) =

Then the pgf for M =N — 11s

1—60 W(—0e?2) Gyn(2)

Gu(z) = —
@ 0 1+ W(—0e?2) =z

)

4. Size-biased transform of compound distributions

In this section, we discuss the size-biased transform of the corresponding compound GP rv’s. To
proceed, we provide a general definition of the moment transform which accounts for all types of
nonnegative rv’s.

Definition 3. Consider a nonnegative rv C with cumulative distribution function (cdf) Fc and
moments E[C*] < oo for some positive integer ar. A rv Cq is said to be a copy of the oth moment
transform of C if its cdf is given by
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O E[C*1(C<¢)] [y t“dFc(b)
~ (c) = =

Ca E[C¥] E[C?]
The first moment transform of C is commonly referred to as the size-biased transform, denoted by
C in the sequel.

, ¢>0.

We now consider a compound rv X defined as

N
=Y
i=1
where N is a counting rv and C; are iid claim number (or claim szie) rv’s having the same
distribution as the common rv C whose cdf is denoted as F¢.
Theorem 3. For a compound rv X = Zfil Ci,
(i) Let X denote its size-biased transform, then
~ d ~
X=C+Y,
where Y = Zf\il C; with M =N — 1 and C being the size-biased version of C.
(ii) Let X, denote its second-moment transform, then its distribution is given by

_ 1
T E[X?]

(10)

P(X; <x) (EIN®IEICHP(Y; + T <) + EINIEICIR(Y; + C1p <))

(11)
where Yy =32 Ciand Y, = Zf\izl Ci; C*2 is the twofold convolution of C (the first-moment
transform of C), and Cy ; is a copy of the second-moment transform of C.

This result follows directly from Ren (2021) and Denuit and Robert (2022)). Here we provide
an alternative proof via moment generating function (mgf) arguments provided existence.

Proof. Without loss of generality, we assume that C is a continuous rv. (The discrete or mixture
versions could be similarly argued.) Note that, for the size-biased and second moment transforms

of N and C, (denoted as N, N, and C, Cip, withM = N —1and M, =N, — 2), we have

o tGN() PG
GN(t)— E[N] > NZ( )—Wa
_ Gy Gy _ Gg, () GR(1)
G === g Gml0= " = g, (12)
o M) N (0
Mg(t) = EC]’ Mg, () = Bl (13)
The mgf of X, the size-biased version of X, is given as
M)
M= Fx
_ Gy(Mc®) - ML) ~ ~
=~ E[N].E[C] since Mx(t) = GN(Mc(t)), E[X] =E[N]E[C],
= Gm(Mc(t)) - M(2) by Equations (12) and (13) . (14)

This leads to Equation (10).
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Similarly, the mgf of X, the second moment transform of X, is given as
LMY GYM()

M= g0 = "B
_ Gy(Mc(8)) M (8)* + G (Mc(0))ME(D)
o E[X?]
E[N®IE2[C] 5 E[N]E[C?]
=y (G MME®) + = (GuMOIMg, 1),
which results in Equation (11). This completes the proof. g

Remark 2. For a convolution Z = Z; + Z, we have that
E[Zliz<y] El(Z1 + Z2)(z,42,<1)]
E[Z] E[Z1 + Z,]
E[Z1]

=—P(Z~1+Z2<t)+&
E[Z,] + E[Z;] - E[Z:] + E[Z,]

hence, from the probability point of view, we could interpret Z being a discrete mixture of Z; + Z,

[Z

and Z; + Z, with weights m and %, respectively. Equivalently, we could write

PZ<t)=

P(Z1+ 2, <t),

Z=1Z1+22)+ (1 = D(Z1 + Z2),
with I being an independent Bernoulli rv with mean %. This could be easily generalized

to the n-fold convolution, which results in Property 1 in Denuit (2020).
Furthermore, this provides an alternative proof for the above Theorem 3 from (i) to (ii) that

—~—

&=§=C+Y
—IC+Y)+(1—DE+7)
=I(Cia+V)+(1-D(C+C+Y,)
=1(Cio+ Y1)+ (1 - D(C?+Y), (15)

E[C] _ E[CYE[N]
E[C]+E[Y] =~  E[X?]

where [ is an independent Bernoulli rv with mean

Therefore, noticing that
E[X’] = E[N]E[C*] + EIN®](E[C])?,
we see from Equation (15) that the distribution of X, is a mixture of Y + C*2 and Y, + 61,2.

Since the modified size-biased Poisson(}) distribution (i.e., in the form M =N — 1) is again a
Poisson(A) distribution, we have the following corollary directly from Equation (10).

Corollary 2. The size-biased transform of a compound Poisson distribution X is given by
XLC+x

Since GP distribution is a compound Poisson distribution itself, we could apply the above
corollary to the size-biased transform of GP as below.

Corollary 3. The size-biased transform of N ~ GP(A, 0) is
NLB4N,
the convolution of B (the size-biased transform of B~ Borel(9)) and an independent copy of N.
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Furthermore, for the compound sums with GP as the primary distribution, we have the
following result, whose proof is postponed to Appendix A.

Corollary 4. Let X = Zfil C; with N ~ GP(X, 0). Its size-biased transform is given by
xLC+v
Le1z4X, (16)

where Y = Zfi_ll CiandZ = Zf-é:—ll C; with B being the size-biased transform of B ~ Borel(6).

5. The actuarial applications of GP and its moment transforms

As discussed before, the GP distribution has been applied in different actuarial fields. In this
section, we discuss two applications for the compound GP distribution. First, we study the com-
putation methods for risk measures of the compound GP distribution, and then we discuss the
risk allocation for a portfolio of compound GP risks.

5.1. Application I: risk measures on compound GP distribution
Consider the aggregate loss model

N
X= Z G,
i=1

where N is the counting rv and C; follows some discrete distribution with P(C; = k) = f;. In this
section, we provide methods for computing the tail probability P(X > x) and the CTE defined as
E[X|X > x].

To calculate the CTE, we use the result from Denuit (2020), which states that, for any rv X and
a measurable function g,

E[Xg(X)] = E[X]E[g(X)], (17)

where 5(: is the size-biased transform of X. When X follows a compound distribution, the distri-
bution X is given by Theorem 3 in Equation (10). Hence, to evaluate the CTE, one could apply
Equation (17) with g(x) = I(X > x) being an indicate function and obtain

PX > x)
P(X >x)

Thus, the calculation boils down to the two tail probabilities P(X > x) and P(X > x). In what
follows, we provide three methods to carry out the calculation, namely, the recursive method, the
transformation method via FFT, and the simulation method. Note that the recursive method has
the restriction that the claim size distribution has positive support. The other two methods do not
have such a restriction.

E[X|X > x] =E[X]

5.1.1. Recursive method
The recursive formula for computing the distribution of a compound GP X with positive discrete
severity is given in Equation (6).

To compute the distribution of X, we need to use our main result in Theorem 3. Recall from
Equation (10) that

L4y,
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where Y = Zf\il C; with M=N — 1 and C being the size-biased version of C. When N is GP
distributed, we showed in Corollary 1 that the distribution of M still in H family, therefore, the dis-

tribution of Y = Zf\i 1 Ci can be evaluated recursively using Equation (7). Then, the distribution
of X can be computed through a direct convolution of C and Y.

5.1.2. Transformation method via FFT
The mgf of a compound GP rv X is given by

Mx(t) = E[e*] = Gn(Mc(1)).
Applying the pgf of the GP distribution in Equation (1), we have

MX(t):exp{—g [W(—Qe_gMc(t)) +9]} . (18)

Then by Equation (14), the mgf of X becomes
Mz (t) = Gu(Mc(t)) - M(t)

_1—-60 W(=6e'Mc(t) Gn(Mc(t) Mc'(£)
C 0 1+ W(=beMc(t) Mc()  E[C]’
where we applied the pgf of M given in Equation (9).
With the mgf of X and X given by Equations (18) and (19), respectively, both the tail probability

and the CTE can be computed through FFT. An algorithm is provided in the following; see Wang
(1998) and Embrechts & Frei (2009).

(19)

1. Parameter Definition: Define the parameters for the GP claim frequency and the claim
severity distributions.

2. Fourier Transform of Severity Distribution: Compute the FFT of the claim severity
distribution. If the severity distribution is continuous, it needs to be discretized.

3. Fourier Transform of Compound Distribution: The FFT of compound distribution X
(or X) can be computed according to Equation (18) (or Equation (19)). The Lambert W
function can be evaluated using, for example, the emdbook package in R programming
language.

4. Inverse Fourier Transform: In this step, we recover the aggregate loss distribution by
applying inverse FFT.

These steps together provide a practical and computationally efficient way of calculating the
compound GP distribution.

5.1.3 Simulation method via the branching process

Since the cdf of the GP distribution cannot be inverted analytically, when using the direct inver-
sion method to simulate GP rv’s, we use the recursive relation in Equation (2) to obtain the cdf
and then numerically invert it to generate pseudo numbers.

Another approach to generate GP rv’s is to utilize the branching process-based algorithm, as
described in Chapter 16 of Consul & Famoye (2006). Recall that a branching process generates the
GP rv as follows. Suppose that there are Y individuals originally. Each of these gives rise to L; other
individuals, i=1,2, ..., Y. These, in turn, give rise to L;; new victims, j=1,2, ..., L;, and so on.
Now if Y is a Poisson(A) distributed rv, and L;, Lj;, . . . are independent Poisson(6) (6 < 1) rv’s, the
total number N of people infected before extinction has a GP distribution with parameters (A, 6).
Thus, the algorithm for the branching process simulation method for GP is given by:
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1. Generate Y from Poisson distribution with mean A;

2. Let N=Y;

3. While Y > 0, generate Z from Poisson distribution with mean 6 Y, and update N = N + Z and
Y =Z. Repeat until Y = 0;

4. Return N.

Note that this simulation method does not require calculating any GP probabilities.

5.2. Application II: capital allocations for a portfolio of risks

In this section, we consider a capital allocation problem of a portfolio of n independent losses
(X1, X2, ..., Xn), each of which is a compound distribution. Specifically,

N;i
Xi=Y_ Ci i=1,...,n,
k=1

where N; ~ GP(%;,6;) and Cy, k=1,2, .. ., are iid with the common distribution C;. All rv’s are

independent. Fori=1,...,n, let X; and C; be the size-biased version of X; and C;, respectively,
and let
M;
Yi=> Gy
j=1

where M; = N; — 1. Then as shown earlier, we have
~ d ~
Xi=Y;+C,.

Now consider the aggregate risk of the portfolio, denoted as

n
$=Y_ X
i=1
We look into details of the CTE and Euler allocation rules in the following.

CTE allocation rule

Under the CTE risk measure, the total capital requirement for the portfolio is E[S|S > s], which
can be calculated using

PS> s)
PSS >s)’

E[S|S > s] = E[S]

where S denotes the size-biased transform of S.
Furthermore, from Property 1 in Section 3.1 of Denuit (2020), we have

where K is a discrete rv, independent of {X;} and {X;}, with pmf

P(K:i):I?:E[[_);]’ i=12,...,n
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Putting these together, the capital requirement for the portfolio becomes

_ PS> s)
E[S|S > s] = E[S] PS> 3)
"R X; n _
ZZIP’(S(>)S)P ZXj—i—Xi>s . (20)
i=1 i

In addition, according to the CTE capital allocation rule, the capital allocated to risk X; is

n
Pl Y X+Xi>s|. (21)
i=1,j£i

]E(Xl) P(S—X1+XI>S)= ]E(Xl)

EIXiIS>s1= 55275 PS> )

Euler allocation rule

When the distribution of S is discrete, we may study the conditional mean allocation E[X;|S = s].
This quantity is based on the Euler allocation rule and plays a unique role in peer-to-peer insur-
ance prices. It has been studied in the literature. For example, Denuit & Robert 2022) derived a
list of desirable properties of this allocation principle. Gribkova et al. (2023) proposed an empir-
ical estimator of E[X;|S = s] and established its asymptotic normality under minimal conditions.
Blier-Wong et al. (2022) presented an ordinary generating function of E[X; x Ijs—s )], which leads
a method to compute it using FFT.

Here, because the distribution of X; and its moment transform X; can be evaluated using recur-
sive or FFT methods as shown in Section 4, we took a different approach from Blier-Wong et al.
(2022) and propose to compute conditional mean allocation E[X;|S = s] by

E(X;
E[X;|S=s] = IP’(S(=)5)

n
P> X+Xi=s]. (22)
j#i

Numerically, in order to apply the recursive methods to evaluate Equations (21) and (22), all
the claim size Cj; has to have positive support, which is an inconvenient constraint. Therefore,
we recommend using FFT method because it can be flexibly used to compute the distribution
function of Xj, its moment transform, as well as the required convolution.

6. Numerical examples

This section provides numerical examples illustrating the practicality of our results. The first
example considers the computation of the tail probabilities and CTE of a compound GP dis-
tribution; while the second one considers capital allocations for a portfolio of compound GP
losses.

6.1. Example 1
Consider a compound GP distribution

N
X= Z Ci
i=1
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Table 1. Computation of tail probabilities and CTE of compound GP distribution using different methods

X 10 20 30 40 50 60 70 80 90 100
P(X > x)2 0.945 0.836 0.694 0.548 0.417 0.308 0.223 0.159 0.111 0.078
P(X > x)© 0.946 0.837 0.694 0.550 0.418 0.308 0.223 0.159 0.111 0.078
]P)(X>X)d I 0945 . 0836 e 0694 0548 0417 . 0308 I 0223 ..... 0159 0111 . 0078

E(XX>x)? 5291 5774 6432 7203 8044 8931 9849  107.88 11742  127.06
EXX>xP 5291  57.65 6431 7190 8019  89.18 9848  107.82 11748  127.01
E(XX>x© 5288  57.69 6433 7188 8030  89.16 9830 10751 11723  126.54
O

2 FFT method.

b N Simulated by Branching process based simulation.
¢ N Simulated by direct inversion simulation method.
9 Recursive method.

Table 2. Comparison of tail probability results

Method P(X > 100) Standard deviation Computation time (s)
FFT 0.077637 - 0.01
| ISiv}n'u'l'a'ti'bh .Vié 'b}a'n(':h'iﬁg' .......... 0..0.7 7819 ............. oooos 27 .................. 1623 .....
s|mulat|on v|a vi‘hvéfsiévhv e 0077487 e 0000734 e 1940
Recursive 0.077637 - 9.14

Table 3. Comparison of CTE results

Method E(X|X > 100) Standard deviation Computation time (s)
FFT 127.068243 - 0.01
| ISiv}n'u'l'a'ti'bh .Vié 'br'a'néﬁiﬁg' ......... 127 013513 ............. . 269607 .................. 2351 .....
s|mulat|on v|a vi‘hvéfsiévhv e 126955244 e 0299739 e 2053
Recursive 126.949588 - 10.30

where N follows GP(A = 5,6 =0.5) and C;’s are iid following zero truncated Poisson distribution
with parameter p = 5, that is
1 uke
Pg(k) =1 _on

o k=123
e :

This assumption of a zero-truncated claim size distribution allows the application of the recursive
method for computing the compound GP distribution.

In this example, we calculate the tail probability P(X > x) and CTE E[X|X > x] for different
risk levels x.

The computation is carried out using the recursive and FFT methods. The results are compared
with those obtained from the simulation methods with a sample size of # = 10°. The simulations
were performed using the inversion method and the branching algorithm. The results are shown
in Table 1, from which we observe that all methods result in nearly identical results.

In addition, in Tables 2 and 3, we report the computation time of the different methods and
the standard error of the simulation methods (estimated by repeating the simulation 100 times).
All computations are performed on a personal laptop with Intel Core i7 CPU and 16 GB RAM. It
is seen that the FFT method is by far the fastest, whereas the simulation methods are the slowest.
Based on these results, we conclude that the FFT method is reliable and efficient for evaluating the
risk measures of the compound GP distributions.
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Table 4. Tail probabilities and CTE of compound Poisson distribution

X 10 20 30 40 50 60 70 80 90 100
P(X > x) (Poi) 0.997 0.971 0.878 0.698 0.470 0.266 0.127 0.051 0.018 0.005

E(X|X > x) (Poi) 50.46 51.36 54.00 58.70 65.08 72.60 80.87 89.61 98.68 107.96

Table 5. The portfolio of three compound GP risks

Risk X1 X X3
GP(A;, 6)) (5,0.5) (7.5,0.5) (7.5,0.625)
L
P(C; =2) 0.2 0.5 0.5
ey e e

Furthermore, we compare our results with the compound Poisson case with a Poisson param-
eter 10 such that the mean of the frequency distribution equals. As seen in Table 4, the tail of
compound GP distribution is heavier, and its CTE risk measures are larger than the compound
Poisson case.

6.2. Example 2

Consider the capital allocation example in Section 4.2.4 in Denuit (2020). Let (X, X5, X3) be three
independent risks follow the compound GP’s whose parameters are given in Table 5. The sever-
ity parameters are the same as those adopted in Denuit (2020), whereas the claim frequencies
are assumed to be GP distributed instead of Poisson distributed while keeping the same mean.
The significance of using GP is that it has over-dispersion: the means of the frequencies are
(10, 15, 20), whereas their variances are (40, 60, 142). Consequently, compared with the case of
Poisson frequency, X3 is much more risky than X,, which in turn is more risky than Xj.

The portfolio aggregate risk is thus given by § = 21‘3=1 X;.

CTE allocation rule

The CTE-based total capital requirement is given as E(S|S > s), and the proportions allocated to
individual risk are

. E(X;|S>s)

e i Z S g s,
T RSS!

We implemented the capital allocation computation described in Section 5.2 using the FFT
method. The results are shown in Table 6, from which we conclude that:

e When the threshold s increases, the proportions of risk capital allocated to X; and X; slightly
decrease, whereas those allocated to X3 increase.

e The risks X, and X3 have the same loss severity but the frequency component in X3 is more
volatile. As a result, their proportions of risk capital allocated change with the risk levels s;
more precisely, a greater proportion is assigned to X3 as s increases. The ratio a3 /a3 decreases
from 75% to around 60% as s increases from 0 to 100. Note that oy /a3 = E(N,)/E(N3) = 0.75
when s =0.

Table 7 shows the CTE capital allocation and tail behavior for the compound Poisson sums
under the parameter setup in Table 5 (except changing the primary distributions to Poisson with
the same means), which is also calculated in Table 2 of Ren (2022). Comparing Tables 6 and 7, we
have the following observations:
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Table 6. CTE capital allocation for the portfolio of three compound GP risks
s 10 20 30 40 50 60 70 80 90 100
o] 0.174 0.174 0.174 0.173 0.171 0.168 0.163 0.158 0 152 O 146
az e ,.0354,. - 0354 - 0354 S 0353. - 0352 - .0 348. - 0344 . 0338 I 0330 . 0322
‘avgi ‘ 0.472 B (5.472 v 0472 ”04474 - 0478 v0.484v B 0;493 B Ov.50v4‘ 04517- v 0.532
(S\S > s) 80.50 80.57 81 13 82.92 86.45 91. 66 98 20 105 72 113 93 122 63
IP>(5>5) e 1000 i “o 999,. e o 989 S 0950. e ,..0 867,. e ,0 o — 0505 . 0446 S oa18 . o 217
Table 7. CTE capital allocation and tail risk for the portfolio of three compound Poisson risks
s 10 20 30 40 50 60 70 80 90 100
a3 (Poi) 0.174 0.174 0.174 0.174 0.174 0 173 0.172 0.170 0.168 0.166
v(.x,z. (Po|) T 0354 - 0354 - 0354 - 0354 — 0354 . 0 354 - 0355 0356 — 0357 o 0357
3 (POI) 0.472 0.472 0.472 0.472 0.472 0 472 0.473 0.474 0.475 0.477
| (S\S>s)(POI) “‘8050 ‘m‘8050m”‘8050‘” ‘8051m“‘8072 81968536 ‘9108‘“‘9845“ ‘10680
IP’(S>$) (Poi) . 100 h 100 . 100 B 100 B 0993 b .0.944. B 0776 .0.488. B 0216. N 0.066
Table 8. Euler capital allocation for the portfolio of three compound GP risks
s 10 20 30 40 50 60 70 80 90 100
B1 0 272 0.245 0.230 0 218 0.208 0 199 0 190 0 182 0.173 0.165
,32 . 0382 0390 0391 — 0388 0385 0380 0374 - 03660358 .0349
B3 0.346 0 365 0 379 0. 393 0.407 O 421 0.436 0. 452 0 469 0 486
IP’(S: s) ‘ 98906 o 2 9e 04 » 1 9e- 03 » 5 7e 03 o 10e—02 B 1 4e- 02 b 15902 o >1 4e- 02 » l 2e- 02 » 8 8e- 03

e Overall, the tail of the compound GP distribution is heavier than compound Poisson, and so
is the CTE risk measure.

e When the threshold s increases, the proportion of risk capital allocated to X, decreases under
the compound GP assumption, while it increases slightly under the compound Poisson case.

e At the same risk level s, more capital is allocated to the risk X3 under the compound GP case.

These differences show the model risk for the frequency assumption, which is one of the moti-
vations for future analysis on statistical modeling of the loss frequency distribution based on real
data. This will be a future research topic.

Euler allocation rule

We re-do the above calculation with Euler allocation rule, where the proportions allocated to
individual risks are

E(XlS=3s) _E(XS=s)

— > ':1723 3>
E(S|S=s) s :

Bi:=

where the numerator is given in Equation (22). The results for the GP case are shown in Table 8
and those for the Poisson case are shown in Table 9. We can observe that the capital allocation
patterns for the three risks are similar under the Euler and CTE capital allocation rules.
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Table 9. Euler capital allocation and tail risk for the portfolio of three compound Poisson risks

s 10 20 30 40 50 60 70 80 90 100

B1 (Poi) 0.271 0.232 0.212 0.199 0.191 0.184 0.179 0.174 0.171 0.168
52 (p°|) b oms om0 oser osso ossr oass omss  ossr
fs(Poi) 0417 0439 0450 0457 0463 0466 0460 0472 0474 0476

P(S=s) (Poi) 6.6e-13 4.4e-09 1.6e-06 9.4e-05 1.5e-03 9.0e-03 2.4e-02 3.1le-02 2.2e-02 9.6e-03
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Appendix A. Proofs

Proof of Theorem 2. Equation (2) can be written as
kpi(a, b) = (h1(a, b)k + hy(a, b))pr_1(a + b, b) (A1)
= [hl(a, b)(k — a) + (ahy(a, b) + hy(a, b))] pr—1(a+ b, b), k=1,2,....

For k > « + 1, multiplying both sides by (k — 1)@~ yields
Kpi(a,b) = (h1<a, D)k = 1@ + (ahi(a, ) + ha(a, ) (k = D) pe_y(a-+b,b),

Dividing both sides by M (a, ) we have, fork=a +1,a+2,...,
g (a,b) = h(a, pEN

‘”w+bbnk—nwmkga+bw

(ahl(a,b)+hz(ﬂ,b)) )( b) )( +0b,b)
a, a

Multiplying both side by (k — «) yields

(@) b, b
(k — a)g(a, b) = hi(a, b)%(k —a)gy_,(a+b,b)
m

>

1w a+bb)
(01)( a, b)

Now, since My, =N, —«, we have its pmf denoted as f* (a,b):=P(My=k—a)=
P(N, =k) = g; (@, b) for k> &, we have

+ (ahi(a, b) + ha(a, b)) &, (a+b,b).

(a)
(a+b,b)
kf (a, b) = h(a, b)kalf_l(a + b, b)
(a, b)
o)
a+bb
+(Olh1(a,b)+h2(a,b))%fk 1( +b b) k:1,2,3,...,
I‘LN ( )
which is equivalent to
h(a, b
(a0, b) = ( ta )+ 200 )>f,f‘_1(a+b,b), k=123...,
where
Wa+bb
hT(a’ b) = hy(a, b)w
()
MN (a) b)
and
()
b, b
5(a,b) = (@hi(@,b) + a(a, b 22 20D,
uy - (a, b)
Hence, the distribution of M, still satisfies the general recursive formula (2) as desired. O

Proof of Corollary 4. Since X is a compound distribution, by Theorem 3 (i), we have

L4y,
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where Y = Zfsl C;. Furthermore, thanks to the property of GP given in Corollary 3, we have
NiB—{—N,wehave

N—1 N+B—-1 B—1 N
Y:Zc,-i 3 c,»iZc,-JchiiZJrX.
i=1 i=1 i=1 i=1

where Z = Z?z_ll C; and B is the size-biased transform of B~ Borel (0). This completes the

proof. O

Cite this article: Faroughi P, Li S and Ren J (2025). Generalized Poisson random variable: its distributional properties and
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