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We review the history of Bayesian chronological modeling in archaeology and demonstrate that there has been a surge
over the past several years in American archaeological applications. Most of these applications have been performed by
archaeologists who are self-taught in this method because formal training opportunities in Bayesian chronological modeling
are infrequently provided. We define and address misconceptions about Bayesian chronological modeling that we have
encountered in conversations with colleagues and in anonymous reviews, some of which have been expressed in the published
literature. Objectivity and scientific rigor is inherent in the Bayesian chronological modeling process. Each stage of this
process is described in detail, and we present examples of this process in practice. Our concluding discussion focuses on the
potential that Bayesian chronological modeling has for enhancing understandings of important topics.

En este artículo se reseña la historia de la modelización cronológica bayesiana en arqueología y se demuestra que en los
últimos años arqueología americana ha experimentado un auge en su aplicación. La mayor parte de los análisis han sido
desarrollados por arqueólogos que son autodidactas en el aprendizaje del método, ya que las oportunidades de formación en
el análisis bayesiano son muy limitadas. Se explica cuáles son los errores más comunes en la aplicación de la modelización
cronológica bayesiana, algunas de los cuales ya han sido señaladas en otros trabajos, que hemos encontrado al conversar
con compañeros y en revisiones anónimas. La objetividad y el rigor científico resultan inherentes al proceso de modelización
cronológica bayesiana. Se describe en detalle cada etapa de este proceso, presentando ejemplos de su puesta en práctica.
Nuestra conclusión se centra en torno al potencial de este método para mejorar nuestra comprensión sobre temas de gran
relevancia.

The past five years have witnessed an
explosion in archaeological publications
from all corners of the world employ-

ing Bayesian chronological modeling (Bayliss
2015), a practice that has been in place in the
United Kingdom (especially in England through
the work of Alex Bayliss and others at English
Heritage/Historic England) for over 20 years.
The body of well-sampled and well-dated sites
subjected to Bayesian modeling in the United
Kingdom is quite large, allowing for the first
time generational narratives for many periods of
British prehistory (Bayliss 2015; Hamilton et al.
2015). Much of this work has been undertaken in
collaboration with a small group of archaeologi-
cal specialists experienced in constructing robust
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chronologies (Bayliss 2015). In many cases,
they have produced chronologies of a higher
accuracy, transparency, and reproducibility than
those created through informal interpretation.
The adaptation of Bayesian frameworks has also
allowed for the estimation of detailed settlement
histories and precise evaluations of the timing
and tempo of social change.

The adoption of Bayesian chronological mod-
eling outside Britain has occurred more slowly,
but the method is now used regularly in many
areas throughout Europe, Asia, and other parts
of the world (Bayliss 2015; Buck and Meson
2015). The impact this work is beginning to have
on European prehistory has been profound and
has been referred to by some as a radiocarbon
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revolution (Bayliss 2009). The majority of these
applications are for site chronologies (Bayliss
2015), but the method is also used to create envi-
ronmental (Blaauw and Christen 2011; Bronk
Ramsey 2008; Dye 2011), historical (Levy et al.
2010; Tipping et al. 2014), seriation (Denaire
et al. 2017; Whittle et al. 2016), and typological
sequences (Conneller et al. 2016; Garrow et al.
2009; Krus 2016).

The shift to chronological interpretation via
Bayesian modeling has happened in large part
because of the development of freely available
computer programs, which provide user-friendly
statistical modeling tools (Buck and Meson
2015). The most widely used Bayesian chrono-
logical modeling software programs are BCal
(Buck et al. 1999) and OxCal (Bronk Ramsey
1998, 2001, 2008, 2009a), and while the majority
of applications are done in OxCal (Bayliss 2015),
other computer programs do appear (Jones and
Nicholls 2002; Lanos et al. 2016). Additionally,
more specialized Bayesian chronological model-
ing software exists, primarily for age-depth mod-
eling of paleoenvironmental sequences (Blaauw
and Christen 2011; Haslett and Parnell 2008).
Nevertheless, the popularity of OxCal is due in
large part to its capability for use in a wide range
of applications.

The rapid growth in the implementation of
Bayesian models within archaeology outside
of the United Kingdom, combined with the
dearth of practical learning materials, has led
to confusion about the Bayesian process, the
propagation of common myths, and in some
cases outright skepticism. This story is familiar
from a European perspective, even more so
when examined from the perspective of bringing
Bayesian modeling from England into standard
archaeological practice in Scotland (which we
have witnessed firsthand).

We believe it is both necessary and timely to
provide a commentary on the state of Bayesian
modeling in American archaeology to steer the
discipline toward best practice approaches, espe-
cially since we have encountered skepticism and
misconceptions in conversations with colleagues
and in anonymous reviews, and because some of
this is expressed in published literature. Many of
these beliefs concern what is required to create
proper and meaningful Bayesian chronological

models, while others concern how to evaluate
those models. Here we take to task six of these
misconceptions.

We further provide a brief overview of the his-
tory of the use of the methodology in American
archaeology. We describe in detail the Bayesian
process, which is critical for understanding this
methodology. We provide examples of the use of
Bayesian chronological modeling in practice and
a commentary on how Bayesian chronological
modeling could be used in the future of American
archaeology. Our goal in doing this is to bring a
greater awareness of the key issues so that the
practice can reach levels of quality comparable
to that found in the United Kingdom and Europe.

The State of Affairs in the Americas

The first published studies using Bayesian
chronological modeling in the Americas
appeared in the 1990s, only several years
after the first published applications in Europe
(Bayliss 2015). The exposition of the Bayesian
method by Christen (1994) might contain
the earliest published Bayesian chronological
model for a site in the Americas—the Chancay
culture of Peru—but it is the chronological
modeling of Zeidler and colleagues (1998), with
its discussion of contextual and taphonomic
security and sensitivity analyses, that is more
akin to the practice of chronological modeling
that we outline in this article. While American
applications of Bayesian chronological modeling
continued to appear intermittently throughout
the 2000s, only a handful of archaeologists
used the procedures during that decade. From
2010–2015, there was an increase in the number
of studies in American archaeology presenting
applications, demonstrating that Bayesian
chronological modeling in the Americas is on
the verge of reaching critical mass (Figure 1,
Supplemental Text 1).

The rapid growth of Bayesian chronological
modeling in American archaeology over the
past several years and lack of formal training
opportunities has led to plug-and-play applica-
tions, seemingly used by archaeologists without
clear understanding of the Bayesian process
(see Buck and Meson 2015; Cowgill 2015a:10).
Likewise, there are problems with quality control
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Figure 1. Histogram for the number of published Bayesian chronological modeling applications in American
archaeology from AD 1990–1999, 2000–2009, and 2010–2015. See Supplemental Text 1 for a list of these references.

of published studies due to a scarcity of qualified
reviewers.

While there might not be a vocal demand for
formal training opportunities, the need is clearly
there. Whether they use Bayesian modeling or
not, it is possible that over the next decade
almost all archaeologists will see regional and
site chronologies transformed from Bayesian
modeling, and it is probably better that they be
critically informed sooner rather than later. Some
formal training opportunities we are familiar
with in the Americas include a free online booklet
about the basics of using OxCal (McNutt 2013),
training courses that we have offered at various
conferences, and a 2015 training course at the
University of Arizona. Other resources often
used for training are the OxCal Google Group
(Google Groups 2017) and the OxCal online
manual (Bronk Ramsey 2017).

These training opportunities provide good
introductions, but in many ways they barely
scratch the surface. Becoming proficient in
Bayesian chronological modeling takes a com-
bination of training and experience, requiring a
critical understanding of archaeology, methods
used in scientific dating, and statistics. For many
American archaeologists, training in how to use
OxCal has come from self-learning, studying
published literature, and discussing modeling
with experienced American archaeologists. This
has resulted in myths and misconceptions in the

American literature about Bayesian chronologi-
cal modeling.

Myths and Misconceptions

Misconception 1: Bayesian Statistics Is Overly
Complicated Hocus-Pocus That Is Not
Scientifically Objective

This belief is articulated by Stephen Lekson
(2015:166, 190–191) in several tongue-in-cheek
comments in the second edition of The Chaco
Meridian. For example:

Of course, there’s a reason statisticians
banned Bayes for a couple of centuries—
and why Bayes’ heresies have been revived
almost exclusively by the looser, weaker
sciences (i.e., the social sciences). Bayes
cheats: picking and choosing dates, modes,
and so forth that fit one’s preconceptions
(or the statistical preconceptions built into
OxCal) [Lekson 2015:191].

Contrary to Lekson’s (2015) claim, Bayesian
statistics are widely used in the physical/natural
sciences (see Supplemental Text 2 for an exten-
sive but nonexhaustive list of relevant refer-
ences). There is a degree of subjectivity in the
Bayesian process. This is contained within our
prior beliefs that combine to form the structure
of the model. These beliefs are our interpretation
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of the archaeology and the inferences we make
to relate the date of the death of a sample to the
date of the formation of the deposit from which
it was recovered. A “good Bayesian” does not
pick and choose dates to fit one’s preconception
but rather rigorously defends their interpretation
of the archaeology in a transparent manner to
provide weight to the resulting date estimates.
The central issue in this myth is the scientific
objectivity of the process, which allows us to
delve into the underlying mathematics, in brief.

While OxCal is a program with complex
underlying algorithms, the fundamental math-
ematics of all Bayesian applications follow
Bayes’s rule (following Bayliss 2009; Buck
et al. 1991, 1996). Bayes’s rule (also called
Bayes’s law or Bayes’s theorem; Equation 1)
was proposed by the English mathematician and
Presbyterian minister Thomas Bayes in the 1700s
(Bayes 1763; Kruschke 2014):

posterior = likelihood × prior

evidence
= p (θ |D )

= p (D |θ ) × p (θ )

p (D)
(Eq. 1)

Where: p(D) = ∑
θ p(D|θ )

The equation provides a model for estimating
the probability of a belief after the collection of
data that can test the belief. The key factors of
a model that follows Bayes’s rule are the belief
(θ ) being tested, the prior, the likelihood, the evi-
dence (D), and the posterior. In Equation 1, p(θ )
and p(D) are probabilities for observing these two
events independently of one another, whereas
p(D|θ ) and p(θ |D) are conditional probabilities
of observing the first event given the second event
is true.

It is too early in the article to lose readers, so
a simplified depiction of Bayes’s rule is shown
in Equation 2, where the relationship of the
likelihood and evidence is simply referred to
as the “standardized likelihood” (Buck et al.
1991:811).

Posterior Beliefs =
Standardized Likelihood× Prior Beliefs (Eq. 2)

This is further refined into terms recogniz-
able to archaeologists with the “standardized

likelihood” equivalent to our “dates” and our
“prior,” which equates to date probabilities in a
chronological model (Equation 3).

Posterior Beliefs

= The Dates (Standardized Likelihood)

× Archaeological Data (Prior Beliefs)

(Eq. 3)

Lindley (1985) provides a good overview of
Bayesian inference for the non-statistician, while
Kruschke (2014) is accessible to the mathemat-
ically minded reader. The Bayesian process is
very much like the way that we intuitively learn
as humans and change our beliefs to improve
our individual understandings. We start with our
prior beliefs about how and why things and
events happen. Then through our life experi-
ence, we modify our beliefs to suit what we
have experienced. If our experience confirms our
beliefs, then they are supported. If our experience
is contrary to our beliefs, then our beliefs may
change.

Radiocarbon and other scientific chronolog-
ical information are used in Bayesian chrono-
logical modeling to calculate the standardized
likelihood and are modeled in different ways
to reflect the prior strength of our beliefs about
the functional relationship of the data (Bayliss
2009). The posterior probabilities estimated by
OxCal serve as posterior probabilities for func-
tions specified in the model such as individual
radiocarbon calibrations and model boundaries.
To do this, OxCal (version four and above)
uses a Markov chain Monte Carlo (MCMC)
and Metropolis-Hastings algorithm to generate
random draws from a target distribution and
produce a range of posterior probabilities (Bronk
Ramsey 2009a; Gelfand and Smith 1990; Gilks
et al. 1996). Bronk Ramsey (1998, 2001, 2009a)
describes the finer details about the algorithms
used for this process.

It is critical that users of Bayesian modeling
software understand the Bayesian modeling pro-
cess, the mathematics of the software packages
used, and how to avoid “black boxing” the
presentation and interpretation of their models.
If careless modeling is published due to lack
of a critical evaluation, then the results should
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be treated skeptically. Analytical transparency
is key for evaluation but also for expanding
upon the modeling in the future. Bayliss (2015)
and Buck and Meson (2015) describe in detail
what “good” Bayesian modeling studies should
include.

Misconception 2: Old Radiocarbon
Measurements with Large Errors Should Be
Ignored

Occasionally, we come across the belief that
legacy radiocarbon dates with large standard
errors are of little interpretative value because of
their greater imprecision. For example, Connolly
(2000) rejects radiocarbon measurements with
errors > 100 years in an analysis of dates from
Poverty Point. Additionally, it may be question-
able if a legacy radiocarbon date is even an accu-
rate measurement. For example, calibrations of
dates from Alaska made by the Dicarb laboratory
have been noted in some cases to be too young
(Reuther et al. 2005).

It is easy to understand why someone might
want to exclude these measurements. If the aim of
the Bayesian model is to improve chronological
precision, then the removal of measurements
with large errors gives the immediate appear-
ance of increased precision. This is because the
“traditional” methods of evaluating radiocarbon
dates (e.g., summed probabilities or “eyeballing”
calibrations) will be significantly affected by the
addition of these results; however, not only can
a Bayesian model handle these data effectively
but these dates may actually have the most secure
connection between sample and event (e.g., char-
coal in a hearth or animal burial). Despite their
issues, legacy dates with large standard errors
can be informative data for a Bayesian model
(see Bayliss et al. 2011; Jay et al. 2012; Krus
et al. 2015). We admit that modeling these older
radiocarbon dates can be difficult; it is sometimes
unclear exactly what was dated and what dating
methods were followed (a problem sometimes
associated with legacy dates of smaller errors
as well). Finding this information can involve
much research, including contacting the original
submitters and laboratories, but this is necessary
to fully evaluate the accuracy of the data and
to decide how to include them in a Bayesian
model. In cases where legacy dates are ques-

tionable, they could be cross-checked by redat-
ing the original samples or contemporaneous
material.

Additionally, one should consider alternative
models or sensitivity analyses, which are key
elements in Bayesian chronological modeling
(Bayliss et al. 2011; also see Kruschke 2014)
but which are often missing in archaeological
applications. With a sensitivity analysis, we
amend the prior information to determine which
of the model components are most critical in
estimating the posteriors. Bayliss and colleagues
(2011) praise the strength of this technique and
emphasize that it is useful for demonstrating the
robusticity of a preferred model.

Misconception 3: Stratigraphic Relationships
between Samples Are Needed to Make a
Bayesian Chronological Model

Following this belief, Bayesian chronological
modeling is not possible in circumstances where
there is little-to-no stratigraphy between radio-
carbon samples. On the contrary, there are
numerous models from radiocarbon data that
are not constrained by stratigraphic relationships
(e.g., Bayliss et al. 2007; Hamilton and Kenney
2015). This is possible because these models use
a uniform prior distribution (UPD) that assumes
that any event in the model is equally likely to
have occurred in any individual year covered
by the data (Bronk Ramsey 1998:470). Whereas
stratigraphic relationships are an informative
type of prior information, uniform prior distri-
butions are an uninformative belief that structure
data as a continuous period of activity (Bayliss
and Bronk Ramsey 2004:33; Bronk Ramsey
2009a:354). It is only justifiable to use a UPD
if the dated activity is believed to be continuous,
whether it be for a short or long time or at a slow
or fast tempo.

A couple of recent American studies have
approached modeling without stratigraphy by
placing dates in a sequence from oldest to
youngest (e.g., R. Cook et al. 2015; Lekson
2015:190). Unfortunately, this informative prior
information is unsubstantiated. One should not
use priors that do not reflect the archaeology.
Even if they help provide more precise posterior
probabilities, the underpinning assumptions are
unfounded (Buck and Meson 2015:571).
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Misconception 4: The Date for a Diagnostic
Prehistoric Artifact or Expected Time Range of
Activity Should Be Included in the Model to
Provide a Chronological Constraint

Calendar dates can be used in a Bayesian model
to constrain the model results by specific years.
For example, a site containing an abundance of
artifacts of a presumed date could be modeled
to constrain independent dates from the site to
this specific period. However, results will then
conform to this expectation, such that you build a
model to ensure you never learn something new!

Including calendar years within a model can
only be justified if they reflect the known time
of a historic or geological event strongly related
to the archaeology. Otherwise, this practice
becomes fuzzy, especially where the evidence
is diagnostic artifacts not obviously linked to
specific calendar years (e.g., pottery versus
coins). If applied loosely, this practice results
in a tautological loop, where the scientific dates
should produce independent estimates but are
modeled to fit the preconceived beliefs about the
timing of the associated artifacts. Further, there
are taphonomic considerations and the final (re-
)deposition of diagnostic artifacts may be greatly
removed from the timing of their creation, such
that their incorporation into a model often only
provides a terminus post quem (TPQ; limit after
which) for the formation of the deposit from
which they were recovered. If calendar years are
used to constrain the model, then a sensitivity
analysis should be used to show how the results
change when calendar year constraints are
removed.

Misconception 5: The Agreement Indices in
OxCal Are a Useful Tool for Determining
Which Competing Model Is More Probable

We occasionally see papers and presentations
where agreement indices are misinterpreted as
values indicating a most probable model (e.g.,
Riede and Edinborough 2012). OxCal’s agree-
ment indices are like Bayes factors, which is a
type of calculation used to compare the prob-
ability of Bayesian models (Gilks et al. 1996;
Kruschke 2014). Importantly, OxCal’s agree-
ment indices are not actual Bayes factors, but
rather pseudo Bayes factors, and should only
be used to determine if a model is consistent

or inconsistent (Bronk Ramsey 1995:427–428,
2001:355). The indices are numerical values for
the agreement between the OxCal model and
data. Values less than 60 indicate the chrono-
logical data and model are inconsistent, while
those greater than 60 indicate consistency (Bronk
Ramsey 1995:427–428), with the value of 60
similar to the 95% probability in a chi-square
test. Amodel provides a value for the agreement
of the entire model, and Aoverall is a function of
agreement indices of the individual dates.

Misconception 6: Bayesian Modeling Is Not
Necessary if You Have a Widely Accepted
Site/Regional Chronology

The final misconception is that Bayesian model-
ing is not necessary for a site or region where
a chronology is already established through
diagnostic artifacts or perhaps other forms of
scientific or historic dating. The reality is that it
is impossible to know the results from Bayesian
modeling if not attempted. If the modeling
produces the same interpretation as preexisting
chronological beliefs, then that is a noteworthy
finding as it makes those beliefs stronger. If the
modeling has a different interpretation, that too
is important. If it is between reaffirming older
interpretations and forging new ones, then the
application of Bayesian modeling should result
in a discussion worth having.

The Bayesian Process

In the previous section, we tied the major miscon-
ceptions regarding Bayesian modeling directly to
a lack of fundamental understanding regarding
how the process works both in theory and in prac-
tice. Here we wish to lay bare the process to make
clear that there is both objectivity and scientific
rigor inherent in the choices made throughout the
chain. The modeling approach can be distilled
into the schematic shown in Figure 2, which is
derived from and described in more practical
detail by Bayliss and Bronk Ramsey (2004).

Assess Existing Data and Knowledge

“Existing data and knowledge’” refers primarily
to legacy dating, but other forms of chronological
information should be noted (e.g., probable date
based on artifacts), as these can also be useful
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Figure 2. The Bayesian method in practice (after Bayliss 2009:Figure 9; Bayliss and Bronk Ramsey 2004:Figure 2.2).

to help inform some of the decisions made
further along. Any legacy radiocarbon dates—
old dates that a project has inherited from other
archaeologists—will need to be thoroughly
critiqued. Many archaeologists who have devel-
oped, or acquired, large radiocarbon databases
have recently been undertaking some form of
“data cleansing” prior to analysis and interpre-
tation, but this can be an exercise (i.e., if error
> 100, then reject radiocarbon age) that misses
the importance of holistically understanding the
sample, context, and date. At the very least, it
is necessary to have a description of the dated
sample, the specific laboratory methods, and the
sample’s provenience in relation to the archae-
ological features. As mentioned above, this
process can be very laborious. Recently, we were
faced with a series of radiocarbon dates from the
SunWatch site near Dayton, Ohio, that were not
chosen by us but that we wanted to model (Krus
et al. 2015). One of the dates (M-1965) had
contradictory information. While the Michigan
date list indicated the sample was made up of
“small pieces of charcoal from 6 or 8 of 20 refuse
pits excavated” (Crane and Griffin 1970:166), a
reevaluation of the site archive by Cook (Krus
et al. 2015) made it clear that this sample is
most likely from a single refuse pit, Feature 6/8.

The unidentified nature of the charcoal was still
problematic, since there could conceivably be
fragments that would otherwise incorporate an
old wood offset, but at least we were confident
that the material came from a single feature
and was not a composite from many different
features!

In critiquing legacy dates, the aim is to
produce a commentary of reasons why each date
accurately reflects the date of the deposit within
which its sample was found, and furthermore,
to provide clear explanations for the scientific
and/or taphonomic issues associated with any
dates that are deemed to provide unreliable
dating evidence for the formation of its context.
The connection between a sample, its context,
and the event under consideration is the most
critical and tenuous link in the Bayesian
modeling process (Dean 1978). Not only does
it apply to how we critique our legacy dates but
it also informs which samples are suitable for
dating and, ultimately, the types of chronological
questions we can approach.

Define Problems

The most basic and common problem or question
pertaining to site-based models concerns the
timing and span of activity; for many sites, in
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many periods, these can be answered satisfacto-
rily with as few as a dozen well-chosen dates
and no stratigraphy. As the archaeology and
models become more complex, more nuanced
chronological questions might arise, such as the
date when a specific transformation of the site
(e.g., building of a palisade or digging of a ditch)
or internal event (e.g., construction of a house)
occurred. Where there are multiple rebuilt houses
or re-dug ditches, we might be able to delve into
the realm of the tempo of change and search
for temporal regularities to activity that might be
interpretable within the scale of a single human
lifetime.

Site-based questions can be scaled up to
consider the timing of events and temporality
of processes at regional, or even continental,
scales. Regional chronologies are constructed in
many ways, but the Bayesian approach almost
invariably starts with an evaluation of the dates
on a site-by-site and context-by-context basis.
The types of models that are not wedded to
site-based models are usually concerned with
the currency of an artifact type, whereby dating
an artifact directly (e.g., bone comb) or organic
material in direct association with the artifact
(e.g., organic residue on a pot) provides the
required connection between sample, date, and
question.

Identify Samples

Armed with the questions you want to answer,
it is time to identify the contexts that contain
samples suitable for dating, thereby giving you
the best chance at success. Bear in mind that
just because problems have been defined, sam-
ples suitable to achieve a satisfactory solution
may not be available, so that the availability of
suitable samples can dictate the range of possible
questions.

This is usually the point where we would
consider a sort of hierarchy of sample types, but
to rank the samples on a ladder is potentially
misleading, as a high-ranking sample might have
low utility for some questions (cf. Bayliss 2015).
The general point about ranking your samples
is to have samples that you can demonstrate, or
argue, provide an accurate date for the deposit
from which they were recovered. This does not
mean that simply because a deer femur was

recovered from a ditch fill, it dates when the
ditch was open or infilling. In many instances,
a disarticulated animal bone provides a low level
of confidence, especially the smaller ones that
easily can be bioturbated or anthropogenically
redeposited. However, if part of a deer was
recovered in articulation (e.g., foot bones) from
this ditch, then we could argue that it went into
the ground soon after the death of the animal and
should accurately date when that deposit formed.
Our disarticulated femur provides, at best, a TPQ
for the infilling of the ditch.

In addition to articulated remains, samples
functionally related to their deposit are usually
a sound choice. Here we might select charcoal or
charred grain from a hearth or oven, where we can
confidently infer that the material in the feature
had recently died and burned in situ. We might
also extend this to a discrete dump of burned
material in a pit or ditch interpreted as possible
hearth waste. While there is likely an unknown
lag between when the wood was collected and
used and when the hearth was cleaned out, this
offset is almost certainly negligible, and in this
example likely not to be even a year.

Build Simulation Models, Submit Samples, and
Assess Results

With a solid understanding of the questions to be
tackled and a list of the suitable samples avail-
able, it is time to construct simulation models
and assess the possible results given these inputs
and our current archaeological knowledge (see
Bayliss et al. 2007; Steier and Rom 2000). This
stage of the process is very much about trying
to understand how the number of dates available
(constrained either by physical suitable samples
or finances), the relevant area of the calibration
curve, and such information as the relationship
between samples or shape of the prior probabili-
ties applied to the dates all combine to produce an
answer. This stage of “getting a feel for the data”
is critical in the Bayesian process; it is the point
where the modeler becomes so familiar with how
the priors and data work together that they can
intuit how a change to one part of the model might
affect the outcomes (Buck and Meson 2015).

Guided by the simulation results, samples
are submitted. The role of the simulation is to
optimize the sample selection process, but only
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a portion should be submitted in the initial round.
Most dating programs following a Bayesian
approach will have several rounds of dating.
After receiving the results, we go back to our
pool of potential samples and begin to simulate
the results for adding radiocarbon results from
another round of dating and loop the process.
By going through a series of simulations before
submitting each round of samples, we can see
what effect results from additional samples in
specific areas of the model will have, thereby
enabling us to problem solve at each stage and
manage expectations.

Finalizing Models

Developed simulations should lead to the con-
struction of the primary model. If there are mul-
tiple readings of the archaeology or other prior
information that can be added to the analysis,
then additional models will be constructed for a
sensitivity analysis. Further, as part of the mod-
eling process, it is always important to undertake
quality assurance in the form of replication of
some of the dates. Replication might include
submission of two samples of the same type
(e.g., charcoal of different species) or different
types (e.g., grain and animal bone) from the same
context as a means of checking the security of
the deposit or to look for offsets. In some cases,
it may be desirable to split a sample and send
it to two different laboratories as a means of
independently verifying the results. While there
is no hard rule on the level of replication one
should undertake, we would suggest replicating
somewhere on the order of 10% of the dates, with
more replication occurring where there is greater
uncertainty in the taphonomic security or general
overall quality of the samples.

Publish Results and Interpretations

After all the work in dating samples and devel-
oping models, the results and interpretations are
written up for publication. It is at this stage
all the assumptions and choices that went into
constructing the models should be put forth in
an accessible manner, allowing the reader to
properly critique the work. Oftentimes, the nec-
essary level of transparency is lacking. While this
article is neither a how-to manual for Bayesian
modeling nor a set of best practice guidelines,

the following are a few tips that will be helpful
for a reviewer/reader:

1. Clearly define the model structure in the
publication and link the “death” of the dated
sample to the formation of the deposit or
archaeological event of interest. If a radio-
carbon date does not fit expectations, explain
why and determine the reason for the misfit
(e.g., contamination, insecure context, lab
error, or statistical outlier).

2. Include the full model figure that shows the
structure that has been described (e.g., the
OxCal brackets and keywords). This should
allow other researchers to re-create the model
precisely, for all but the most sophisticated
solutions. Consider including the raw code
used to create the model as supplemental
data. Similarly, consider including any prior
probabilities that are not clearly defined.

3. Where durations are given in the text (e.g.,
span of an occupation, time between two
events), include a figure of that probability.
This is especially useful to demonstrate that
a span might be skewed to a younger or older
range.

In addition, there are a few conventions for
reporting the modeled probabilities that may
reduce readers’ confusion:

1. Round modeled probabilities outward to five
years. This is not a “rule” by any means, but
the IntCal13 calibration curve is constructed
using a five-year random walk algorithm, and
much of the data underpinning the curve are
from decadal tree-ring samples. In addition,
the rounding often accounts for slight differ-
ences in results from the different runs of a
model and is easier for most people to retain
in their heads.

2. Make certain to refer to any modeled or
calibrated dates as “cal BC/BCE” or “cal
AD/CE” (or “cal BP”).

3. Italicize modeled dates to set them apart from
simple calibrated dates and inform the reader
that you have done so because they are the
result of an interpretative model.

A final note: uncalibrated radiocarbon ages
are given as means and standard errors, thus
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approximating a normal distribution, making
reference to 1- and 2σ ranges perfectly accept-
able. However, calibrated radiocarbon dates and
modeled probabilities are in no way normally
distributed, and so their ranges should be referred
to by the percent of the area of the probability
represented below the curve (i.e., 68.2% or
95.4%). Oftentimes, when rounding the date
ranges, the precision of the percent beneath the
curve can be found to be truncated simply to 68%
or 95%.

The Bayesian Practice

While a discussion of the Bayesian process,
as abstracted above, will sit well with many
readers, we present here briefly an example
of the process in practice. We consider a site
consisting of negative (i.e., cut) features, with
a rectangular post-built structure with central
hearth, a few pits, and an enclosure ditch. The
aim with this hypothetical example is to elucidate
the thought process of the Bayesian modeler,
while highlighting those areas of the modeling
process that can be especially challenging. In this
example, we use the terminology implemented in
the OxCal program, but the ideas remain the same
whether using OxCal, BCal, or other programs.
For ease, we use boldface font to denote the
specific OxCal commands.

Defining the Problem

The first thing is to define the archaeologi-
cal questions. In this case, we might want to
know (1) when did activity begin, (2) when
did activity end, and (3) for how long did this
activity take place? These are the most basic
questions asked of any site-based model because
they refer to the broadest level of chronological
inquiry. We cannot stress enough that these
questions are almost never answerable by a
single radiocarbon date but are estimates derived
from a chronological model that is composed
of dates related to the activity that occurred
between the actual start and end date at the site.
While there may be instances that the modeled
probability for a specific radiocarbon date is
important or interesting (e.g., a burial, material
associated with a specific artifact), more often
than not it is the “events” that occur before, after,

and between the archaeological residues, which
form the sampled material, that have particular
meaning.

The two main building blocks of models are
the ordered (Sequence) and unordered (Phase)
groups. Thinking of the site described above, we
might feel safe in assuming it is all a single
period of occupation (there may even be arti-
factual evidence from across the site to suggest
that it is all broadly contemporary). We have
no defined relative ordering (e.g., stratigraphy)
between any of the features, and so we can begin
thinking about our radiocarbon dates “existing”
as an unordered group—a Phase. Given our
assumption that the features are all related to
a single period of activity, we can progress
and add two elements in the form of a “start”
and “end” Boundary, and situate these three
elements within a Sequence. By doing this, we
have explicitly instructed the computer program
that at some point in time in the past, for which
we do not have a date, activity began on the
site. The activity went on for some unknown
duration, and then it ended. Furthermore, we
have also defined that activity began before it
ended.

At the most basic level, a Boundary defines
the time that the dated activity begins and ends
(Bronk Ramsey 2001; Steier and Rom 2000).
They are placed within a Sequence as this sets up
the necessary ordered relationship that activity
begins, material that can be dated is deposited,
and activity ends. Often boundaries are used
to represent that start or end of activity at a
settlement or of a phase of discrete activity within
a settlement. Crucially, the time of a Boundary
is estimated in a Bayesian chronological model,
which provides archaeologists probabilistic esti-
mates for events (such as the start of activity
at a settlement) that cannot be directly dated.
Figure 3 visually demonstrates how Boundary,
Phase, and Sequence are incorporated into a
simple Bayesian chronological model for an
archaeological settlement with no dates from
intercutting features. Algebraically, this model
can be expressed as αsettlement > �settlement >

βsettlement, where �settlement is the set of dated
events θ1 . . . θn from the continuous phase of set-
tlement activity, represented by the radiocarbon-
dated samples.
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Figure 3. Bayesian chronological model structure demonstrating the use of radiocarbon measurements within
Boundaries, Sequence, and a Phase. The large square “brackets” along with the OxCal keywords define the overall
model exactly. The OxCal script for the model is shown below the model structure.

When using the standard Boundary parame-
ters in OxCal, the program will apply a uniform
prior distribution (UPD) to the radiocarbon dates
contained within the Phase. The UPD essentially
indicates that activity goes from nil to maximum
intensity, stays at maximum intensity for some
time, and then switches back to nil. This is
the simplest form of chronological model, with
the UPD being an uninformative prior, helping
to constrain the dates based on the statistical
scatter within the group. There are different
“boundaries” that can be used, enabling the start
and end to be modeled as a steady or steep
ramp, thereby altering the prior distribution being
applied to the dates (Lee and Bronk Ramsey
2012). Despite the ability to alter the prior that
is applied to the group of dates, the UPD is

extremely flexible and robust (Bayliss and Bronk
Ramsey 2004), and we suggest that in most cases,
if alternative priors are used, that the UPD be run
as a sensitivity analysis so that it is possible to
see the effect that different boundaries have on
the final results.

The simple model described above is often
referred to as a “Phase model” or “Bounded
Phase model” and takes its name from the
OxCal command that is similarly named Phase.
It is important to stress here that this is in no
way similar to a traditional archaeological phase
based on such things as ceramic or projectile
point typologies. This type of model is extremely
versatile and finds use in any situation where
there is no relative ordering between samples
(e.g., series of pits or the posts from a house).
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The Sequence is especially powerful, with
the temporal relationship it sets up between
dates acting as an informative prior. Like the
Phase, the Sequence can form the basis of the
model structure, such as with a series of dates
from an environmental core. But its versatility
lies in the ability to function as a building
block within a more complex model structure.
Thinking of our hypothetical site, if we dated
sequential charcoal lenses in the ditch, then we
could place those dates into a Sequence within
the overall unordered group of dates within the
Phase. The informative prior only affects those
stratigraphically related dates but allows them
to contribute to the mathematics applied to the
overall group.

Not only can Sequences exist within a Phase,
but a Phase can exist within a Sequence. This
nesting of ordered and unordered groups of dates
allows the construction of complex models from
complex archaeological sites. This level of model
complexity is beyond the scope of this article, but
we direct the reader to the work of Harris (1989)
for a discussion of single-context recording and
the production of Harris matrices, as well as Dye
and Buck (2015) for discussion of the use of
matrices and diagrams for developing models
and displaying their structure.

Creating models using the building blocks
(Phase and Sequence) is a straightforward exer-
cise since often what is being modeled are
the relationships observed or inferred between
samples or dated contexts. However, the ease
of this element of the process can have the
deleterious effect of leading people to take a plug-
and-play approach to chronological modeling
instead of focusing on the most tenuous element
of the entire chain: the relationship between
the date of the sample and the date of the
context.

Selecting the Samples

As the prior information becomes more infor-
mative (e.g., stratigraphic relationships are
included), it becomes increasingly important to
minimize the time lag between the date of the
death of the sample and the date of the formation
of the deposit. This is where the notion of the
hierarchy of samples, alluded to above, becomes
a useful device. While there is no strict best or

worst sample, our goal in almost every case is to
select a sample whose radiocarbon date is the
same as the date it was buried in the context
from which it was recovered. Taphonomic under-
standing is critical for understanding how the
dates of the two events (sample death and context
formation) are related, and for this reason, bone
that is recorded as articulated during excavation,
or noted as likely having been articulated when
undergoing post-excavation analysis, is often
considered to be the gold standard for site-
based models. These samples are unlikely to
have remained intact for any long duration before
burial. Unfortunately, these samples are a rarity
on most archaeological sites, and so many of the
modeled samples will either have a functional or
inferred relationship made between the sample
and formation of its context.

Defining a functional relationship between
a sample and context is not a difficult task,
and one that archaeologists regularly do as part
of the excavation process. Arguably, the most
ubiquitous sample from a site is charcoal, and if
that charcoal comes from a hearth, it is possible
to define this functional relationship to explain
both how and why that sample was recovered
from that feature. Another sample that has a clear
functional relationship is a charred food residue
on a sherd of pottery, the date from which should
reflect the date of the foodstuff that was burned
(this is barring any potential reservoir offset in
the date).

The next tier sample is where the relationship
to the context can be inferred, and here we
are referring to things such as discrete dumps
of charred material that may be interpreted as
the debris cleaned out from a hearth or charred
debris from the use of a structure that has filtered
down into the posthole that forms as an internal
post decays. In all cases, it is important that the
relationship be defined, and the more tenuous
the link, the more rigorously the taphonomic
relationship must be defended. Turning back
to our hypothetical site, we would look first
and foremost for samples such as articulated/ing
animal bone in the pits or ditch or short-lived
samples of charcoal or charred cereals in the
hearths, and finally for similar charred debris in
the postholes of the houses or as discrete fills in
the ditch.
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Dealing with Age Offsets, Outliers, and Misfits

Even after defining realistic problems and select-
ing and submitting secure samples for dating, it
is likely that some of the dates will not conform
to prior expectations. The results can be either
older or younger than expected, and as a rule of
thumb, all samples should be considered residual
(i.e., redeposited) until otherwise demonstrated.
Beyond reevaluating the probable taphonomic
history of a sample, we should consider other
potential sources for error, including the pos-
sibility for an in-built age offset or sample
contamination.

In-built age offsets describe instances where
the radiocarbon age is older than would be
expected, given the date the organism died.
Generally, when dealing with samples that have
not been mishandled or undergone any form of
conservation, there are two primary age offsets
that we must consider: (1) old wood offset, and
(2) reservoir offset, commonly in the form of a
dietary offset.

Demonstrated old wood offsets in charcoal
are often used as a reason to discount archae-
ologically unacceptable radiocarbon results. The
reality is that all wood samples that are not bark
or the final ring will have a radiocarbon age that
is a weighted mean (by mass) of the radiocarbon
content of all the rings in the sample. By selecting
short-lived species, or twiggy pieces of wood
from a sample, the offset is minimized, and when
the models also include animal bone and seeds,
the minor offset in the charcoal samples will be
negligible to the model results. Where there is
some confusion, or lack of documentation, about
what charcoal was dated, rather than exclude a
date from a model, it is completely acceptable to
include the result as a TPQ for the formation of
the deposit. Furthermore, formalized statistical
tools are available in OxCal that allow for an
old wood offset in charcoal to be modeled, in
the form of a Charcoal Outlier Model (Bronk
Ramsey 2009b). This form of model can be
especially useful when attempting to achieve
very high precision and nearly all the samples
are on charcoal (see Hamilton and Kenney [2015]
for a worked example), as the dates in the model
most likely to be outliers have their effect on the
results downweighted.

The second offset we consider is a result of
the carbon in the sample not being in equilib-
rium with the terrestrial biosphere, a reservoir
offset. This commonly occurs through a marine
reservoir effect (MRE), with the global average
marine offset equivalent to approximately 400
years, but can also take the form of a fresh-
water reservoir effect (FRE), usually the result
of dissolved geologic carbon (e.g., radioactively
“dead” in terms of 14C) in a freshwater lake or
stream. When plants photosynthesize in these
environments by taking in CO2 from the water,
they incorporate this age offset, which propa-
gates along the food chain. While MRE and
FRE add a layer of complexity to analyzing and
interpreting radiocarbon dates, it is possible to
accurately model the dates of species from the
marine environment (e.g., fish, seals, whales)
and even model the dates from omnivores that
received all or part of their dietary protein from
marine species (G. Cook et al. 2015). Correcting
for FRE is slightly more difficult as it requires
calculating the FRE for a specific place and time,
with the correction made to the uncalibrated
radiocarbon age. Using new Bayesian tools to
“unmix” the contribution of terrestrial, marine,
and freshwater protein to an individual’s diet,
it is possible to robustly model the dates of
individuals who consumed animals with both an
MRE and FRE (Sayle et al. 2016).

After considering these forms of offset and
error, it is important to remember that even radio-
carbon laboratories can make mistakes. While
labs have stringent internal quality assurance
protocols, there are instances where a date is
simply incorrect with no indication of what
went wrong. This is one reason why replication
is important, and if possible, the replication
should be made using a second laboratory as
the additional check. Finally, it is important to
remember that the radiocarbon dating process
is a statistical one, where the result received
from the laboratory is a probabilistic statement—
a measurement mean and standard error—that at
2σ (95.4% probability) should contain the real
radiocarbon age. Therefore, we should expect
one in 20 radiocarbon ages to fall outside of the
95.4% probability range and can only hope that
it is not so far outside that range as to make our
interpretations importantly wrong.

https://doi.org/10.1017/aaq.2017.57 Published online by Cambridge University Press

https://doi.org/10.1017/aaq.2017.57


200 [Vol. 83, No. 2, 2018AMERICAN ANTIQUITY

Conclusion

Many American archaeologists are now aware
of studies employing Bayesian chronological
modeling and are either experimenting with
applications for the first time or working with
collaborators. Recently, in a Latin American
Antiquity forum essay, Cowgill (2015b) strongly
encouraged American archaeologists to adopt
Bayesian chronological methods. In addition to
the published literature, this interest is evident
from the increasing number of presentations
making use of Bayesian chronological models
that we see each year at the Society for American
Archaeology meeting and regional conferences
in the Americas.

We hope this article brings a wider awareness
to the noted issues and that journal editors
and grant proposal reviewers familiarize them-
selves with these issues and the best practice
methods provided in Bayliss (2015) and Buck
and Meson (2015). We further recommend that
anthropology departments and regional archae-
ological organizations offer more courses and
other training activities that cover the funda-
mentals of Bayesian chronological modeling,
because these methods will soon be considered
part of the standard American archaeological
tool kit.

It is especially important that archaeologists
using these methods always consider that results
with low precision are likely accurate and that
preexisting beliefs, while sometimes very pre-
cise, might be inaccurate. Like Michczyñski’s
(2007) conclusions regarding best practice for
interpretations of probabilistic radiocarbon cal-
ibration, it is also important that 95% and
68% posterior probability ranges receive the
most interpretative weight, even when the model
results are largely imprecise. It is also important
that archaeologists understand how calibration
curve wiggles, such as the Hallstatt plateau and
others, affect the precision of their modeled
results. Poor awareness of calibration curve
wiggles can lead to misinterpretations (Baillie
1991; Guilderson et al. 2005; Krus et al. 2015).
While imprecise modeling results are unfortu-
nate, conclusions can still be drawn from those
situations and can include discussions of the
future scientific work to produce finer chronolo-

gies. Importantly, experiments with simulated
radiocarbon data should be run in Bayesian
chronological modeling software to precisely
estimate the number of radiocarbon dates needed
to produce precise and accurate models, which is
a highly effective practice for determining the
number of dates that are needed to overcome
calibration curve wiggles.

Finally, it is important that American archae-
ologists understand that Bayesian chronological
modeling is both a scientific and a theoretical
revolution for our discipline (Bayliss 2009).
Future work in the Americas has the potential to
improve our understandings of lived experiences,
temporality, and cultural change derived prob-
abilistically from posterior probabilities. When
discussing the future of Bayesian chronolog-
ical modeling, Buck and Meson (2015:577–
579) emphasize that radiocarbon simulations
have thus far been underused as a tool for
improving the research designs of chronology-
building programs and that these simulations are
enormously useful for informing the selection
of radiocarbon research designs. Similarly, at
the 2017 Society for American Archaeology
meeting, we noticed that most of the presented
chronological modeling dealt with the analysis
of legacy dates, with almost no discussion about
how the Bayesian process will be used to inform
the selection of new data.

We hope this article brings a greater awareness
of how the Bayesian process can be used to
shape all aspects of an archaeological research
design, from the initial formation of a data
collection strategy to the publication of results.
While this article can be read as an introduc-
tion, we encourage readers to review the lit-
erature in the references cited section to learn
more, and to contact established individuals who
are publishing Bayesian models for practical
advice.
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2016 A Vinča Potscape: Formal Chronological Models for
the Use and Development of Vinča Ceramics in South-
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