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CONTINUUM-WISE EXPANSIVE HOMEOMORPHISMS

HISAO KATO

ABSTRACT  The notion of expansive homeomorphism 1s important 1n topological
dynamics and continuum theory In this paper, a new kind of homeomorphism will be
introduced and studied, namely the continuum-wise expansive homeomorphism The
class of continuum-wise expansive homeomorphisms 1s much larger than the one of
expansive homeomorphisms In fact, the class of continuum-wise expansive homeo-
morphisms contains many important homeomorphisms which often appearn “chaotic”
topological dynamics and continuum theory, but which are not expansive homeomor-
phisms For example, the shift maps of Knaster’s indecomposable chainable continua
are continuum-wise expansive homeomorphisms, but they are not expansive homeo-
morphisms Also, there 1s a continuum-wise expansive homeomorphism on the pseu-
doarc We study several properties of continuum-wise expansive homeomorphisms
Many theorems concerning expansive homeomorphisms will be generalized to the case
of continuum-wise expansive homeomorphisms

1. Introduction. By acontinuum, we mean a compact metric connected nondegen-
erate space. Let X be a compact metric space with metric d. Let Z be the set of integers.
A homeomorphism f: X — X is expansive (see [6, p. 86]) if there is a positive number
¢ > Osuch that if x, y € X and x # y, then there is an integer n = n(x, y) € Z such that

d(f"@).f"») > c.

This property has frequent applications in topological dynamics, ergodic theory and con-
tinuum theory.

A homeomorphism f: X — X is continuum-wise expansive if there is a positive num-
ber ¢ > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer
n = n(A) € Z such that diamf™(A) > ¢, where diam$§ = sup{d(x,y) | x,y € S}
for any subset S of X. Such ¢ > 0 is called an expansive constant for f. Clearly, every
expansive homeomorphism is continuum-wise expansive. Since a continuum-wise ex-
pansive homeomorphism of a continuum is “chaotic”, the continuum admitting such a
homeomorphism may contain considerably complicated subspaces.

In this paper, we study several properties of continuum-wise expansive homeomor-
phisms. We will know that there are many important homeomorphisms of continua which
are continuum-wise expansive, but not expansive. However, many theorems concerning
expansive homeomorphisms will be generalized to the case of continuum-wise expan-
sive homeomorphisms.

Received by the editors May 22, 1991

AMS subject classification Primary S4F50, 54B20, secondary 54H20, 54B25, 58F15

Key words and phrases expansive homeomorphism,verse limit, shitt map, sensitive dependenceon inital
conditions, topological entropy, tree-like, crooked, indecomposable

(© Canadian Mathematical Society 1993

576

https://doi.org/10.4153/CJM-1993-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-030-4

EXPANSIVE HOMEOMORPHISMS 577

We use hyperspace theory, which is very convenient for this study. We refer readers
to [1], [6] and [27] for some basic properties of expansive homeomorphisms and to [21]
for hyperspace theory.

2. Definitions and preliminaries. In this section, we give some definitions and
results which will be needed in the sequel.

Let X be a compact metric space with metric d. By the hyperspace of X, we mean
2¥ = {A| Ais a nonempty closed subset of X} and C(X) = {A € 2¥ | A is a nonempty
subcontinuum of X'} with the Hausdorff metric dy, i.e., dy(A, B) = inf{s > 0| U.(A) D
Band U.(B) D A}, where U.(A) denotes the e-neighborhood of A in X. It is well-known
that if X is a continuum, then 2X and C(X) are arcwise connected continua (e.g., see [21]).
For any subsets A and B of X, let d(A, B) = inf{d(a,b) | a € A and b € B}.

Let f: X — X be a homeomorphism of a compact metric space X. For any £ > 0, let
W¢ and W¥ be the local stable and unstable families of subcontinua of X defined by

We = {A € C(X) | diamf"(A) < ¢ for each n > 0} and
W¢ = {A € C(X) | diamf"(A) < ¢ for each n > 0}.

Also, define stable and unstable families W* and W* of C(X) as follows:
W= {A € C(X)| lim diamf™(A) = 0} and
n—o0
W' ={A € C(X)| lim diamf~"(A) = 0}.
n—00

Then we have

PROPOSITION 2.1 (¢f. [20, P. 315]). Let f: X — X be a continuum-wise expansive
homeomorphism of a compact metric space X with an expansive constant ¢ > 0 and let
c>e>0.IfA € W (resp. A € WE), then A € W’ (resp. A € W*). In particular,
WS ={f"™A)|A €W, n>0}and W = {f"(A) | A € W*, n > 0}.

PROOF. LetA € W:. Suppose, on the contrary, that there is a sequence n(1) < n(2) <
- -+, of natural numbers such that diam f”(i)(A) > 6 for some positive number § > 0.
Since C(X) is compact (see [21]), we may assume that lim; ., f"(4) = B € C(X).
Since lim;_» n(i) = oo and A € W?, we see that§ < diamB < ¢ and diamf*(B) < ¢
for any integer n € Z. Since f is a continuum-wise expansive homeomorphism with the
expansive constant c, this is a contradiction. Hence A € W°*. Similarly, if A € W¥, then
A e W

PROPOSITION 2.2 (cf. [20, P. 318]). Let f: X — X be a continuum-wise expansive
homeomorphism of a compact metric space X with an expansive constant ¢ > 0. Let
0 < 2e < c. Then there is 6 > 0 such that if A € C(X), diam A < § and for some n > 0,
e < sup{diamf/(A) | j = 0,1,...,n} < 2¢, then diamf"(A) > é.

PROOF.  Suppose, on the contrary, that there are a sequence {8; } of positive numbers
with lim; .,,8; = 0, a sequence {A;} of subcontinua of X and a sequence {n(i)} of
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natural numbers such that diam A, < §, foreachi = 1,2,..., ¢ < sup{diamf/(4,) | j =
0,1,...,n()} < 2¢ and diamf"(A,) < §,. We may assume that n(1) < n(2) < ---.
Choose 0 < m(i) < n(i) such that £ < diam f™"(A,) < 2¢. Then lim, . (n(i) — m(i)) =
00 = lim,_, m(i). We may assume that lim,_, f™”(A,) = B € C(X).Itis easily checked
that B is nondegenerate and diam f"(B) < ¢ for any integer n € Z. This is a contradiction.

PROPOSITION 2.3 (cf. [16, (2.8)]). Letf, c, €, 6 be as in Proposition 2.2. If A is any
nondegenerate subcontinuum of X such that that diamA < 6 and diamf™(A) > € for
some integer m, then one of the following conditions holds:
(a) Ifm > 0, thendiamf"(A) > é foranyn > m. More precisely, there is a subcontin-
uum B of A such that sup{diamf/(B) | j = 0, 1,...,n} < € and diamf"(B) = 6.

(b) If m < 0, then diamf "(A) > é for any n > —m. More precisely, there is a
subcontinuum B of A such that sup{diamf~“(B) | j = 0,1,...,n} < ¢ and
diamf~"(B) = é.

PROOF. Let A be as in Proposition 2.3. Choose a point a from A. Suppose m > 0.
It is well-known that there is an arc a: [0, 1] — C(X) from {a} to A in C(X) such that if
x <y, then a(x) C a(y) (see [21, (1.26)]). Let n > m. Define a map F: [0, 1] — [0, 00)
by
F(x) = sup{diamf’(a(x)) lj=0, l,...,n}.

Choose xo € [0,1] such that x, € F~'(¢). Put B = «(xp). By Proposition 2.2,
diamf"(A) > diamf"(a(xp)) > é. Define a map D: C(B') — [0,00) by D(C) =
diam f"(C). Since C(B') is connected, we can choose B € D~'(§). Clearly, B satisfies
the desired conditions. The case m < 0 is the same as before.

COROLLARY 2.4. Letf, ¢, € 0 be as in Proposition 2.2. Then for each ¥ > 0 there
is N > 0 such that if A € C(X) and diamA > v, then diamf"(A) > é foralln > N or
diamf~"(A) > é foralln > N.

PROPOSITION 2.5 (cf. |20, P. 315]). If f: X — X is a continuum-wise expansive
homeomorphism of compact metric space X and dim X > 0, then there is a nondegener-
ate subcontinuum A of X such thatA € W* or A € W,

PROOF. Let C be a nondegenerate subcontinuum of X with diam C < ¢, where c, ¢
and 6 are positive numbers as in Proposition 2.2. Suppose that any nondegenerate sub-
continuum C’ of C is not contained in W¢. Choose a sequence C; D C, D - - -, of nonde-
generate subcontinua of C and a sequence n(1) < n(2) < -- -, of natural numbers such
that lim, ., diam C, = 0, sup{diamf/(C,) | j = 0, 1,...,n(i)} < £ and diamf"(C,) > ¢
foreachi = 1,2,..., (see 2.3). We may assume that lim, . f*"(C,) = A. Then A € W*
and A is nondegenerate. This completes the proof.

From continuum theory in topology, we know that inverse limit spaces yield powerful
techniques for constructing complicated spaces and maps from simple ones. Letf: X — X
be a map of a compact metric space X. Consider the following inverse limit space:

X.f)= {(xn)noi() ! X, € X and f(x,41) = xn}-
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The set (X,f) is a compact metric space with metric

d(F%,3) = 3 d(x,ys)/2", where ¥ = (xu);20, = (n)po € (X, /).

n=0
Define a map f:(X.f) — (X.f) by f((o.x...0) = (fGo).fGx)s...) (=
(f(xo),xo,xl, .. .)), where (xp,x1,...) € (X,f). The mapf is homeomorphism and it is
called the shift map of f.

Let A be a subset of a compact metric space X. A map f: X — X is called positively
expansive (or separated) on A if there is a positive number ¢ > 0 such that if x,y €
A and x # y, then there is a natural number n > 0 such that d(f"(x), f"(y)) > c A
homeomorphismf: X — X of a compact metric space X is expansive (or separated) on A
if there is a positive number ¢ > O such thatif x,y € A and x # y, then there is an integer
n € Z such that d(f"(x),f”(y)) > c (see [6, p. 38]). As before, such ¢ > 0 is called an
expansive constant for f|A.

A map f: X — X is called positively continuum-wise expansive if there is a positive
number ¢ > 0 such that if A is a nondegenerate subcontinuum of X, then there is a natural
number # > 0 such that diamf"(A) > c.

A compact connected 1-dimensional polyhedronis called a graph. Let F be a family of
compact polyhedra. A continuum X is [ -like if for any £ > O there is a map f from X onto
some member F of F such that diam f ~!(y) < e foreach y € F. A continuum X is arc-like
(= chainable) if X is {1}-like, where [ is the unit interval [0, 1] (see [2]). A continuum
X is tree-like if X is T-like, where T = { all trees}. A continuum X is decomposable if
X is the union of two subcontinua different from X. A continuum X is indecomposable
if X is not decomposable. A continuum X is hereditarily decomposable (resp. hereditar-
ily indecomposable) if each nondegenerate subcontinuum of X is decomposable (resp.
indecomposable).

Let f: X — Y be an onto map of compact metric spaces. Then f is said to be light
if dimf~'(y) = 0 for each y € Y. Also, f is said to be weakly confluent if for any
subcontinuum B of Y, there is a subcontinuum A of X such that f(A) = B.

By the definition of continuum-wise expansive homeomorphism, we can easily see
the following proposition.

PROPOSITION 2.6. (1) Iff: X — X is a continuum-wise expansive homeomorphism,
then for any integer k € Z, f* is also continuum-wise expansive.
(2) Iff: X— X and g: Y — Y are continuum-wise expansive homeomorphisms, then
the product f X g: X X Y — X X Y is also continuum-wise expansive.
(3) Let f: X — X, h: Y — Y be homeomorphisms and let p: X — Y be an onto map
making the following diagram commute:

x L x

el le
YT»Y
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If ¢ is light and h is continuum-wise expansive, then f is also continuum-wise
expansive. If @ is light and weakly confluent and f is continuum-wise expansive,
then h is also continuum-wise expansive.

EXAMPLE2.7. LetG = S'UA, where S' = {(x,y) € R* | ¥*+y* = 1},A = {(x,0) €
R? [ 1 <x < 2} and R is the set of real numbers. Define a map g: G — G such that
g|S': S' — S' is the natural covering map with degree 2 and g|A: A — G is a positively
expansive map such that g((1,0)) = (1,0),g((2,0)) = (2,0), g(4)) = S" and g(A2) = A,
where A| = {(x,0) | 1 <x <3/2}andA; = {(x,0) | 3/2 <x <2}.PutX = (G,g)
andf = g.Then f: X — X is an expansive homeomorphism (see [13,(4.1)] or [16,(2.6)]);
in particular it is a continuum-wise expansive homeomorphism. Set Z = (g|S',S') and
consider the quotient map ¢: X — Y = X/Z, where X /Z is obtained from X by shrinking
the subcontinuum Z to a point. Then Y is an arc and there is a homeomorphism h: Y — Y
such that ¢f = hy. Note that ¢ is a monotone map (i.e., ¢~ (D) is connected if D is a
subcontinuum of Y), but 4: Y — Y is not continuum-wise expansive. In fact, ¢ is nota
light map.

3. Continuum-wise expansiveness of shift maps of inverse limits of graphs. In
this section, we give a characterization of continuum-wise expansiveness of shift maps
of inverse limits of graphs (see 3.2), and we give some examples in order to clarify the
difference between expansive homeomorphisms and continuum-wise expansive home-
omorphisms. The similar characterization concerning expansiveness of shift maps of
inverse limits of graphs is more complicated (see [16, (2.6)]).

First, we show the following proposition.

PROPOSITION 3.1. Iff: X — X is a positively continuum-wise expansive map of a
compact metric space X, then the shiftmap f of f is a positively continuum-wise expansive
homeomorphism.

PROOF. Note that if C is any nondegenerate subcontinuum of X, f(C) is nonde-
generate, i.e., f is a light map. This implies that for any n > 0, there is m > n such
that diamf™(C) > ¢, where ¢’ is an expansive constant for f. Put ¥ = (X,f). Let
A € C(Y)be nondegenerate. Choose a natural number n such that p,(A) is nondegenerate,
where p,: Y — X is the natural projection. Choose m > 0 such that diam ™ (p,,(A)) >
¢’. Choose a positive number ¢ > 0 such that if B € C(Y) and diam B < ¢, then
diam po(B) < ¢'. Since po (™ "(4)) = f" "(po(A)) = f"(pu(A)) > ¢, diam f" "(A) >
c. Since we can choose m > n, f is a positively continuum-wise expansive homeomor-
phism.

THEOREM 3.2. Let f: G — G be an onto map of a graph G. Then the following are
equivalent.

(1) f:(G,f) — (G.f) is a continuum-wise expansive homeomorphism.

(2) f:(G.f) — (G.f) is a positively continuum-wise expansive homeomorphism.
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(3) f: G — G is a positively continuum-wise expansive map.

PROOF.  Suppose that f: G — G is a positively continuum-wise expansive map. By
Proposition 3.1, we see that f is a positively continuum-wise expansive homeomorphism.
This implies that (3) — (2). (2) — (1) is trivial.

We shall show that (1) — (3). Suppose that f is a continuum-wise expansive home-
omorphism. First, we shall show that there is 7 > 0 such that if A is a nondegenerate
subcontinuum of X = (G, f) with diamA < 7, then A € W, where c is an expansive
constant for f. Suppose, on the contrary, that there are subcontinua A, of X such that

(1) diamA, < 1/n, and

(2) A, is not contained in W.
We may assume that lim,_., A, = {x}. Let £ and § > 0 be as in Proposition 2.3. We
may assume that diam A, < ¢ for all #. Since A is not contained in W¥, there is a natural
number m(1) > 0 such that diamf " (A,) > ¢ > 2¢. Choose a neighborhood U, of
x in X such that there is a subcontinuum B; of A, such that diamf~"")(B,) > ¢ and
By NU; = (. Choose n(2) > 0 such that A,y C Uj. Since A, is not contained in
W, there is a natural number m(2) such that diamf " (A,2) > ¢ > 2¢. Choose a
neighborhood U, of x in X such that U, N B; = () and for some subcontinuum By of
A2y, diam f (B, 2)) > € and B, 2y U, = (). If we continue this procedure, we obtain
two sequences {m(i)}°, and 1 = n(1) < n(2) < - - -, of natural numbers, and a sequence
{Bu}°, of subcontinua of X such that

(3) Bn(t) N Bn(/) = @ (l # J) and

(4) diamf~"9(B,) > ¢ foreachi = 1,2,....
By 2.3, we see that

(5) diamf "(By) > 6 for all n > m(i).

Let ng be a natural number and let n = 1(np,d) be a positive number such that if E is a
subset of (G, f) and diam p,,,(E) < 7, then diam E < §. Since G is a finite graph, we can
choose a natural number N(n) > 0 such that if {D, }jvj'{) is a mutually disjoint family of
subcontinuaof G, then there is D, with diam D, < 7). Consider the family B = {B,, | i =
1,2,... ,N(n)}. Choose a natural number N so that py(B,,)) N pn(Byg)) = 0 (i # j) and
N > max{m(i) | i = 1,2,...,N(p}. Then diam p,,n(Bny) = diam p,, (f’N(B,,(,))) >0
(i =1,2,... ,N(n)) and pp+n(Bn) M Prgan(Brgy) = () (i # j). This is a contradiction.
Therefore there is a positive number 7 > 0 such that if A € C(X) and diamA < 7, then
A € WY Consider the set C(X;7) = {A € C(X) | diamA = 7}. Note that C(X;7) is
compact and for any x € X, there is some A € C(X; ) such that x € A, because there is
an arc o: I — C(X) such that from {x} to X such that a(r) g a(t’y if t < t' (see [21]).

Choose a natural number N and a positive number ¥ > 0 such that if C is a subset of X
with diam py(C) < 7, then diam C < ¢. We may assume that diam py(A) > (3 for any
A € C(X; 1), where (3 is some positive number. Note that if x, € G, lim, ., x, = x € G,
X € Ay, € C(G), Ay, C pn(Ap) for some A, € C(X;7), and lim, ., A,, = C, then
x € Cand C C py(A) for some A € C(X;7). Note that py: X — G is an onto map.
By using these facts, we can see that there is a simplicial complex K such that |K| = G
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and if F is any edge of K, then there is A € C(X;7) such that py(A) D E. Let D be a
nondegenerate subcontinuum of G. Choose an edge E of K such that Intg(E N D) # (.
Choose A € C(X; 1) with py(A) D E. Then we can choose a subcontinuum B of A such
that py(B) is nondegenerate and py(B) C Intg(END). Since B € W¥, we see that there is
a natural number » such that diam f"(D) > diam f"(pN(B)) = diam pnf™(B) > 7. Hence
f is a positively continuum-wise expansive map with an expansive constant ¥ > 0. This
completes the proof.

ExAMPLE 3.3. The converse of Proposition 3.1 is not true. Let ¥ = C U I, where
C is a Cantor set and I is the unit interval such that CN I = @. Let g;:1 — I be a
constant map, i.e., g1(I) is a one point set, and g,: C — Y be an onto map. Define a map
gY — Ybygx) = g1(x) forx € I and g(x) = ga(x) for x € C. Let X be the cone of
Y,ie, X = (Y x1)/(Y x {0}), which is obtained from Y x I by shrinking ¥ x {0} toa
point. Define a map f: X — X by f([y,t]) = [g(y),f3(9)] for [y,t] € X, where f3:1 — [ is
the map as in Example 3.5 (see below). Then it is checked that the shift map f of f is a
positively continuum-wise expansive homeomorphism of a continuum (X, f), but f is not
a positively continuum-wise expansive map. Also, in the statement of Theorem 3.2, we
can not replace “a graph” by “n-dimensional polyhedron (n > 2)”. In fact, by [25] there
is an expansive homeomorphismf: T2 — T2, but f and f ~! are not positively continuum-
wise expansive, where 77 is the 2-torus. Note f is also expansive.

REMARK 3.4. Let f be a continuum-wise expansive homeomorphism as in Theo-
rem 3.2. Then it is positively continuum-wise expansive. But, the situation of expansive
homeomorphisms of compact metric spaces is different. In fact, it is well-known that if
f:X — X is a homeomorphism of a compact metric space X and positively expansive,
then X is a finite set (see [1] or [6]). In [16], we proved that for any ontomap f: G — G of
a graph G, f is expansive if and only if f is a positively pseudo-expansive map (see [16]
for the definition of positively pseudo-expansive map).

EXAMPLE 3.5. We will consider an interesting class of inverse limit spaces called
Knaster’s chainable continua. Let I denote the unit interval [0, 1]. For each natural num-
bern =2,3,...,letf,: ] — I be a map defined

nt—s, if s is even,
fn(t) - . .
—nt+s+1, ifsisodd,

fort € [s/n,s+ 1/njand s = 0,1,...,n — 1. Then K(n) = (I,f,) is the Knaster’s
chainable continuum of order n. It is clear that the map f,, is a positively continuum-wise
expansive map; hence the shift map f, is a (positively) continuum-wise expansive home-
omorphism. Since every chainable continuum can be embedded into the plane R, there
are many nonseparating plane continua admitting (positively) continuum-wise expansive
homeomorphisms. On the other hand, £, is not an expansive homeomorphism. In fact, it
is not known whether or not there exists a nonseparating plane continuum admitting an
expansive homeomorphism (see [15], (23] and [24]).
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REMARK 3.6. The pseudoarc P is a hereditarily indecomposable chainable contin-
uum. Then there is a positively continuum-wise expansive homeomorphism f on P. In
[19, Section 2], J. Kennedy proved that there exist a homeomorphism 4: P — P and
an onto map 6: P — [ such that /28 = 6h and 6 satisfies that if P’ is a nondegenerate
subcontinuum of P, then 8(P’) is also nondegenerate, i.e., 8 is a light map, where f; is
as in Example 3.5. Since f, is positively continuum-wise expansive, it is easily seen that
h: P — P is also a positively continuum-wise expansive homeomorphism (cf. 2.6).

By 3.1, we have the following corollary.

COROLLARY 3.7.  For any graph G, there is a positively continuum-wise expansive
map f from G onto G, and hence f: (G, f) — (G, f) is a continuum-wise expansive homeo-
morphism. Moreover, for any graph G there is a { G }-like and indecomposable continuum
X and a continuum-wise expansive homeomorphism on X.

OUTLINE OF PROOF. Take a simplicial complex K of G, i.e., |[K| = G. We can
choose an onto map g: G — G such that for each edge e = (V, V') of K, g is positively
continuum-wise expansive on e and g({V, Vo)) = g({Vo, V")) = G, where Vj is the mid-
dle point of (V,V’). Let X = (G, g) and f = &. Then f is a continuum-wise expansive
homeomorphism and X is {G}-like. Suppose, on the contrary, that X is decomposable,
i.e., there are two proper subcontinua A and B of X such that AUB = X. Choose a natural
number N such that p,(A) and p,(B) are proper subcontinua of G if n > N — 1. We may
assume that Vy € Ay = pn(A). Consider the following cases:

CASE (I). Ay contains V or V. We may assume that Ay D (V, Vp). Then py_i(A) =
g(An) D g((V, Vo)) = G. This is a contradiction.

CaSE (II). Ay does not contain V and V’. In this case, V, V' € By. Since By is
connected, there is an edge ¢’ of K such that By D ¢’. Then py—(B) = g(By) D g(e') =
G. This is a contradiction.

An onto map f: X — X of a compact metric space X has sensitive dependence on
initial conditions if there is 7 > 0 such that if x € X and U is any open set that contains x,
then there are some point y in U and a natural number n > 0 such that d(f"(x), f "(y)) > T

Then we have

PROPOSITION 3.8. (1) Iff: X — X is a positively continuum-wise expansive map of
a continuum X, then f has sensitive dependence on initial conditions.

(2) Let G be a graph. Then a map f: G — G is a positively continuum-wise expansive
map if and only if f has sensitive dependence on initial conditions.

PROOF. Let f: X — X be a positively continuum-wise expansive map with an ex-
pansive constant ¢ > 0. Put 7 = ¢/2. Let x € X and U be an open set such that x € U.
Choose a nondegenerate subcontinuum A of X such that x € A C U. Take a natural
number n > 0 such that diamf"(A) > c. Clearly, there is a pointy € A C U such that
d(f"(x),f"(y)) > ¢/2 = 7. This proves (1). Next, we shall prove (2). Let f: G — G be
an onto map of a graph G which has sensitive dependence on initial conditions. Let A
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be a nondegenerate subcontinuum of G Choose an open interval J in A and x € J Then
there 1s y € J and a natural number n > 0 such that d(f"(x), f"(y)) > 7 This implies
that diam f"(A) > 7 Hence f 1s a positively continuum-wise expansive map with an
expansive constant 7 > 0

It 1s easily seen that an onto map f X — X has sensitive dependence on 1nitial con-
ditions 1f and only 1f the shift map £ has sensitive dependence on mitial conditions As a
corollary of Theorem 3 2 and Proposition 3 8, we have

COROLLARY 39 Letf G — G be an onto map of a graph G Then the following
are equivalent

(1) The shift map f of f 1s a continuum-wise expansive homeomorphism

(2) f1s a positively continuum-wise expansive map

(3) f has sensitive dependence on nitial conditions

(4) f has sensitive dependence on initial conditions

REMARK 3 10 We can easily see that 1f an onto map f X — X of a compact metric
space X has sensitive dependence on 1nitial conditions, then X 1s perfect, 1 e , x € CI(X —
{x}) forany x € X, andf X g X X ¥ — X x Y has also sensitive dependence on
intial conditions for any ontomap g ¥ — Y Let f; / — [ be as in Example 35 Then
f =/f3x11x1I—1IxIhas sensitive dependence on initial conditions, but 1t 1s not
positively continuum-wise expansive, where 1 [ — [ 1s the 1dentity map Hence (2) 1n
Proposition 3 8 1s not true for the case of 2-dimensional polyhedra Also, consider the
Cantor middle-third set C 1n the unit interval / Note that f3(C) = C Put X = I x {0} U
C x I ThendimX =1 andf[X X — X has sensitive dependence on 1nitial conditions,
but f]X 1s not positively continuum-wise expansive Hence (2) in Proposition 3 8 15 not
true for the case of 1-dimensional continua

4 Topological entropy and expansiveness of subsets of continuum-wise expan-
sive homeomorphisms. Let A4 and ‘B be finite open covers of a compact metric space
X, and let N(A4) denote the minimum cardinality of a subcover of 4 For any mapf X —
X,putf X)) ={f XU)| U € A} Define AVBby AVB={UNV|U¢€ 4,V € B}
Consider the following

h(f,A)= hm(1/n) logN(AVf "DV Vv " )
The topological entropy of f 1s then
h(f) = sup{h(f, A) | A 1s an open cover of X}

A subset E of X 1s (n, c)-separated 1f for each x,y € E, x # y, there 1s k (0 < k < n) such
that d(f’"(x),f"(_y)) > £ Let S(n, £) denote the maximum cardinality of (n, €)-separated
sets in X Consider the following

h(f,e) = lim sup (1 /n) logS(n,¢)

n--00
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Note that if e > ¢/, then hA(f,) < h(f,€’). Then the topological entropy is given by
h(f) = lim._ h(f, €) (e.g., see [27]).

In this section, we show that if f: X — X is a continuum-wise expansive homeomor-
phism of compact metric space X and dimX > 0, then the topological entropy h(f) > 0.
As a corollary, every expansive homeomorphism of any n-dimensional compact metric
space (n > 0) has a positive entropy. It is well-known that the topological entropy of ex-
pansive homeomorphism is finite (see [27, Theorem 7.11]). We give an example in which
some continuum-wise expansive homeomorphism of a chainable continuum has an in-
finite topological entropy. Also, we investigate expansiveness of subsets of continuum-
wise expansive homeomorphisms.

THEOREM 4.1. Iff: X — X is a continuum-wise expansive homeomorphism of a
compact metric space X with dimX > 0, then h(f) is positive.

PROOF. Note that h(f) = h(f~!). Let ¢ > 0 be an expansive constant for f. By
Proposition 2.5, there is a nondegenerate subcontinuum A of X such that A € W: or
A € W¥. We assume that A € WY. Let § > 0 be as in Proposition 2.3. By Proposition 2.3,
we may assume diamA = 6 / 3. Choose a natural number N such that if D € C(X) and
diamD > §/3, then max{diamf/(D) | |j| < N} > c. Hence we see that if D € W
and diam D = §/3, then diam fN(D) > 6 (see Proposition 2.3). Let n(m) = m - N. By
Proposition 2.3, it is checked that there is a finite collection {A,,,,, , } (ix = O or 1, and
Jj < m) of subcontinua of X satisfying the following conditions:

(1) A, (iy = Oor 1) is a subcontinuum of fN(A) such that 6/3 = diamA, and
d(Ao, A1) > 6/3.

(2) A, ,,, , 1s a subcontinuum offN(A,,
dAi i, 00 A, k11 2 5/3

3 A, ., 4 € W¢ (see Proposition 2.3).

Choose a pointa,, ,,. ,, €f ™ (A, 1. .,)- Thenthe set E, = {a,,, ., |i=0o0r1}
is (6/3,n(m) + 1)-separated. Hence S(n(m) +1,6/3)) > 2™, which implies that

) such that diamA4,,,, , = §/3 and

125 Sl

h(f,6/3) = lim sup (1/n) - log S(n,é/3)

> lim sup (1/(n0m)+ 1)) - 1og S(n(m) + 1,6 /3)
> lim (m/(mN +1)) -log2 = (1/N) -log2 > 0.

Then A(f) > 0. This completes the proof.

COROLLARY 4.2. Iff: X — X is an expansive homeomorphism of a compact metric
space X withdim X > O, then the topological entropy h(f) is positive.

REMARK 4.3. In [4], Fathi has already proved Corollary 4.2. However, his proof is
completely different from one of this paper and our proofis more general and elementary.

EXAMPLE 4.4. We will construct a map f:I — I such that f is a continuum-wise
expansive homeomorphism and h(f) =o00.Putl, =11 /(n +1), l/n] (n=1,2,...). Let
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g1:[1/2,11—[1/2,1] be the map defined by

[ —2x+2, xe[1/2.3/4]
81D =11, xe[3/a1].

Let g,: I, — I, UI,_; (n > 2) denote the piecewise linear map defined by the following

figure:
In~1
In
X0 X] X2 Xn-1 Xn
where 1/(n+ D=x<x<---<x, = l/n andx, —x,_| = 1/(n2(n+ 1)) for each i.
Define a map f: I — I by
0, ifx=0
f) = {g,,(x), ifx €1,.

It is checked that f is a positively continuum-wise expansive map and h(f) > logn for
all n. Hence A(f) = oo.

THEOREM 4.5. Let f: X — X be a homeomorphism of a compact metric space X.
Then f is continuum-wise expansive if and only if there is a positive number T such that
for any nondegenerate subcontinuum Y of X, there is a dense and uncountable subset D
of Y such that f is expansive on D with an expansive constant T.

PROOF.  Suppose that f is continuum-wise expansive. Let Y be any nondegenerate
subcontinuum of X. Let {U,}>°, be a countable open base of Y. Choose a point p; of
U,. Note that f is expansive on E; = {p;}. We assume that there are points p, of U,
(1 <i<k)suchthatifp, g € Ex = {p1,p2,...,.pi} and p # g, there is an integer n
such that d(f”(p),f”(q)) > §/4, where c, € and § are as in Proposition 2.3. By Corol-
lary 2.4, there is a natural number N > O such that if B € C(X) and diamB > § / 4,
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then diamf*(B) > 6 for all n > N or diamf"(B) > ¢ for all n > N. Take a non-
degenerate subcontinuum A of Y such that A C U,y and diamA < 6. We may as-
sume that for some m > N, diamf™(A) > 6 and diamf/(A) < ¢ (0 < j < m)
(see Proposition 2.3). Since diam f™(A) > 0, there is a subcontinuum A; of f™(A) such
that d(f’"(pl),Al) > §/4 and diamA,; = §/4. Next, consider the set f¥(A;). Since
diamA, < §, we see that diamf™(A;) > & (see Corollary 2.4). Then there is a sub-
continuum A, of f¥(A;) such that d(fm+N(p2),A2) > §/4 and diam A, = & /4. If we con-
tinue this procedure, we obtain A|,As, ..., A. Choose a point py,; € f~"«=DN(A,) If
P,q € Eryy ={p, | i=1,2,...,k+ 1} and p # g, then there is an integer n such that
d(f"(p).f"(q)) > 6/4.Put Dy = UE = {p1.p2....}. Then we see that CI(D) = Y
and f is expansive on D; with an expansive constant 4 /5 = 7. For a countable ordinal
number A > 2, we assume that for any a < A, there is a countable subset D, of Y such
that D S: Djsif a < 3 < A, and f is expansive on D, with an expansive constant§/5.

We shall construct D) as follows:

CaASE (I). A = a+1.Let Dy = {q1,92,...}. As before, we can choose a sequence
A1,Al,A,, ..., of subcontinua of X such that Ag C Y, diamAg < 6, diamA, = 5/4
i>1)), d(f’"*‘”“N(q,),A,) > §/4 and fN(A,) D A,y for some integers m, N. Choose a
point p € N2, f~ " =DNA)). Put Dy = Do U {p}.

CASE (II). A is a limit ordinal. Put D) = J,<) D- Note that D) is a countable set.

Hence we obtain subset D, of Y for any countable ordinal A. Put D = [ J{D, | A is
a countable ordinal }. Then D is uncountable and f is expansive with expansive constant
/5. Clearly CI(D) = CI(D;) =Y.

The converse is obvious.

THEOREM 4.6. Let f: X — X be a homeomorphism of a compact metric space X.
Then f is continuum-wise expansive if and only if there is a positive number T such that
for any nondegenerate subcontinuum Y of X, Y contains a Cantor set C such that f or
£~V is positively expansive on C with an expansive constant T.

PROOE.  The proof is similar to the one for (4.1). Suppose that f is continuum-wise
expansive. Let ¢, € and 6 be as in Proposition 2.3. Choose a natural number N such that if
A € C(X)anddiam A > 6 /3, then diamf"(A) > é foralln > N ordiamf~"(A) > ¢ forall
n > N (see Corollary 2.4). We may assume that diam Y < §. By Proposition 2.3, we may
assume that there is a natural number m > N such that diam f™(Y) > 4. Take two sub-
continua Ag, Ay of f”'(Y) such that d(Ag,A;) > é/3 and diam A, = 6/3 fori = 0, 1. Note
that diamfN(A,) > 6 (i = 0, 1). For each i = 0, 1, take two subcontinua 4,9, A, of f¥(A,)
such that d(A,0,A,1) > 6/3 and diam A, = §/3 (j = 0, 1). If we continue this procedure,
we obtain A,,,, ,, (k =0,1landn =1,2,...). Put4,,, = ﬂj’,‘;,f‘(’"’*‘"")m(A,l,z, )

If for each sequence iy,iz,...,A,, isaone pointset, C = {A,,, |i = 0,1}isa
Cantor set in Y and f is positively expansive on C with an expansive constant 7 = § /4.
If for some sequence iyi,...,A,,, is nondegenerate, A,,, € W.By the same proof
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on C with an expansive constant 7. The converse is obvious.
Letf: X — X be a homeomorphism of a compact metric space X and let x,y € X. The
points x and y are said to be doubly asymptotic under f (see [6, p. 84]) if

lim d(f").f"()) = 0 = lim d(f"@).f 7).

THEOREM 4.7. Let f: G — G be an onto map of a graph G. Suppose that the shift
map f of f is a continuum-wise expansive homeomorphism and let X = (G, f). Then the
following are true:

(1) For any nondegenerate subcontinuum A of X, there are two points X and § (¥ # )
of A such that % and § are doubly asymptotic under f.

(2) Iff is null-homotopic, for any nondegenerate subcontinuumA of X and anyy > 0,
there are two points X and 5 (X # ¥) of A such that d(f’"(i),f"’()?)) < 7 for each integer
m € Z and % and § are doubly asymptotic under f. In particular, f is not expansive on
any nondegenerate subcontinuum A of X.

OUTLINE OF PROOF. (1) Let A be a nondegenerate subcontinuum of X. By the proof
of Theorem 3.2, there is a positive number 7 > 0 such that if B € C(X) and diam B <
7, then B € W, where c is an expansive constant for f Let A, = p,(A)and A_, =
f"(Ap) (n = 1,2,...). We may assume that diamA < 7, and hence A € W¥. Note that
lim,_, diamA, = 0. Note that A, is nondegenerate and f is a positively continuum-
wise expansive map (see Theorem 3.2). Hence, we see that for some natural number &,
f"|A0: Ay — A_, is not injective (see the proof of Theorem 3.2). Choose two points £
and j of A such that po(¥) # po(¥) and f* (po(i)) = f"(po@)). Clearly, £ and § are doubly
asymptotic under f.

(2) Next, suppose that f: G — G is null-homotopic. Let k be as before. Let n be a
sufficiently large natural number. Note that f"**|A,: A, — A_; is not injective. Consider
the universal covering p: G — G of G. Since f is null-homotopic, there is a liftingg: G —
G of f, i.e., pg = f. Since gf"**|A, is not injective and g(G) is a compact tree, we can
choose two points a and @’ of A, such that a # a’, a and a’ are sufficiently near and
gf"™*a) = gf"*(d’) (see the proof of [13, (3.5)]). Hence f"**!(a) = f"**(a’). Take
two points ¥ and ¥ of A such that p,(¥) = a and p,(¥) = a’. Since n is sufficiently large,
we see that f(x) and f™() is near for each integer m, because of A € W¥. Clearly, ¥ and
§ are doubly asymptotic under f.

THEOREM 4.8. Let X be a compact metric space and let f: X — X be an onto map
of X. Then the following are equivalent.

(1) f has sensitive dependence on initial conditions.

(2) There is a dense and uncountable subset D of X such that f is positively expansive
on D.

(3) There is a positive number ¢ > 0 such that for any x € X and any open subset U
of X, there is a Cantor subset C of U such that x € C and f is positively expansive on C
with an expansive constant c.
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OUTLINE OF PROOF.  The proof is similar to those of Theorem 4.5 and Theorem 4.6.
We shall prove that (1) implies (2). Let 7 > 0 be a positive number as in the definition
of sensitive dependence on initial conditions. Put ¢ = 7/2. Let {U,}>, be a countable
base of X. Suppose that f is positively expansive on a countable set E = {p,} with
an expansive constant c¢. Let i be an any natural number. Choose a point p € U,. If
d(ff(pl ),ff(p)) < cforeachj > 0, we can choose p’ € U, such that for some m > 0 such
that d(f’"(p),f"'(p’)) > 7. Then d(f’"(pl),f’”(p’)) > ¢. Choose a closed neighborhood
Wy of p’ in U, such that d(f"‘(Wl),f’"(p;)) > ¢. Otherwise, put p = p’ and choose a
closed neighborhood W, of p’ in U, such that d(f’"(Wl), f’"(pl)) > c¢. Next, we choose
p"” € W, and a closed neighborhood W, of p” in W such that d(f’"(Wz),f'"(pz)) > c
for some m > 0. If we continue this procedure, we have a sequence U, D W; D W, D
-+-. Choose a point g € (2, W,. Then f is positively expansive on E U {g} with an
expansive constant c¢. The remaining proofs are similar to the proofs of Theorem 4.5 and
Theorem 4.6, and we omit them.

Note that any homeomorphism of a 0-dimensional compact metric space is always
continuum-wise expansive. We have the following theorem.

THEOREM 4.9. If g:Z — Z is any homeomorphism of a 0-dimensional compact
metric space Z, then there exists an indecomposable chainable continuum X containing
Z and a continuum-wise expansive homeomorphismf: X — X such that f is an extension

of g.

PROOF. We may assume that Z is a nowhere dense closed subset of the Cantor
middle-thirdset C. It is well-known that there is a homeomorphism g’ of C which is an ex-
tension of g. Let / be the unitinterval [0, 1]. Put/—C = JUU{J,,‘,Z‘ wlik=0landn =
1,2,...},whereJ = (1/3,2/3),Jo = (1/9,2/9),J1 = (7/9,8/9),Jo0 = (1/27,2/27),
Jog = (7/27,8/27),..., is a sequence of mutually disjoint open intervals such that
diamJ, ,, ,, = diamJy, 4, x, foreachnanddiamJ, , , , >diamJ,, ,, ,..Choose
amap g;: CI(J) — I such that g; is an extension of g’| Bd(J), gJ(Cl(J)) =Jand ifA is
a closed interval in C1(J), then diam g;(A) > 2 - diam A (see Example 3.5 and Exam-
ple 4.4). For each J,,,, ,, (n > 1), we can choose a map g&,,,,, ..:Cl(J;, 0, 1) — 1
such that g, ,, . is an extension of g’| Bd(J,, ,,, ,,), the image of g,, ,,, ,, contains some
Ji, ko, K, ,» and if A is a closed interval of J, ,, ., then diamg, ,, , (A) >'2-diamA
(see Example 3.5 and Example 4.4). Also, with careful constructions, we may assume
that lim,,_.o, diam g, ,,, ,,H(CI(J,,,,Z, _,n)) = 0 for any sequence iy, iz, . ... Define a map
G:1 — I by G(x) = gy(x) for x € Cl(J), G(x) = g1, ., (x) forx € Cl(J,,,,. .,), and
G(x) = g'(x) for x € C. Now, we shall show that G is a positively continuum-wise
expansive map. Let A be any closed interval in /. If there is m > 0 such that G™(A)
contains some CI(J,,,, ), we see that G""*1(A) D I. Otherwise, for any m > 0,
G™(A) is contained in some CI(J,, ,,, ), because C is a perfect set. Then we see that
diam G"(A) > 2" - diamA. This is a contradiction. Hence G:I — I is a positively
continuum-wise expansive map. Consider the shift map f = G:(I,G) — (I,G). By

sln sln
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Proposition 3.1, f is a continuum-wise expansive homeomorphism. Since G|Z = g, we
have the following commutative diagram:

T
|
(o))

a.¢) =% .o
T
Zg 5 (Ze

Po J lpu

Z — Z
8
Where po: (Z, g) — Z is the projection defined by po((z,,);,”‘;o) = 20, and i is the inclusion
map. Since g is a homeomorphism, py is also a homeomorphism. Hence f = G isa
desired homeomorphism. Also, (I, G) is indecomposable, because for any subinterval A
of I, there is a natural number m such that G™(A) = I. This completes the proof.

REMARK 4.10. By using Theorem 4.9, we can prove that there is a chainable contin-
uum X and a continuum-wise expansive homeomorphismf of X such that the topological
entropy h(f) = oo. In fact, it is easily seen that there is a homeomorphism g of a Cantor
set C such that h(g) = oo (e.g., see [27, Theorem 7.12]). Theorem 4.9 implies that there
is a chainable continuum X containing the Cantor set C, and a continuum-wise expansive
homeomorphism f of X which is an extension of g. Hence A(f) > h(g) = oo.

REMARK 4.11. If i C — C is the identity map of a Cantor set C, then there is an
extension f: X — X of i such that X is a chainable continuum and f is a continuum-wise
expansive homeomorphism. Then the set Fix(f) of all fixed points of f is uncountable.
Note that if f is an expansive homeomorphism of a compact metric space, then Fix(f) is
finite.

5. Generalization of Maiié’s theorem to continuum-wise expansive homeomor-
phisms and some properties of positively continuum-wise expansive maps. In [20],
Maii€ proved thatif f: X — X is an expansive homeomorphism of a compact metric space
X, then dim X < oo and every minimal set of f is O-dimensional. In this section, we show
that this theorem of Mafé concerning expansive homeomorphisms and dimension can
be generalized to the case of continuum-wise expansive homeomorphisms. Also, we in-
vestigate some properties of positively continuum-wise expansive maps.

Let X be a compact metric space. Then X has dimension < n, denoted by dimX < n,
if for every ¥ > 0 there is a covering U of X by open sets with diameter < 7y such that
ord U < n+1, i.e, every point of X belongs to at most n + 1 sets of U. Note that for
a compact metric space X, dim X < » if and only if for every ¥ > O there is a covering
F of X by closed sets with diameter < ¥ such thatord ¥ < n+ 1. If dimX < n and
dimX < n — 1 is not true, dimX = n. It is known that for a compact metric space X,
dim X = 0 if and only if each component of X is a single point.

We refer the reader to [8] for the properties of dimension of separable metric spaces.
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Let f: X — X be an onto map of a compact metric space X. A closed subset M of X is
a minimal set of f if M is f-invariant, i.e., f(M) = M, and for each proper closed subset
Cof M, f(C) # C.

First, we show the following proposition.

PROPOSITION 5.1.  Let f: X — X be a homeomorphism of a compact metric space X.
Then the following are equivalent.

(1) f is a continuum-wise expansive homeomorphism.

(2) There is a finite open cover a of X such that if for every bisequence {A,}3>_ . of
members of a, then dim( Z‘;ﬁoof’”(C](A,,))) <0.

(3) There is a finite open cover o such that for eachy > 0, there is N > 0 such that if
A,B € «, each component off"”(Cl(A)) ﬁf”(Cl(B)) has diameter less than 7 for each
n>N.

PROOF. First, we shall prove that (1) implies (2). Let ¢ > 0 be an expansive constant
for f. Choose a finite open cover « such that mesh o < ¢. Clearly, « satisfies the condi-
tion as in (2). Next, we shall prove that (2) implies (1). Let « be as in (2). Suppose, to
the contrary, that f is not continuum-wise expansive. Then there is a nondegenerate sub-
continuum A of X such that f"(A) is contained in some element A,, of o (—o0 < n < 00).
Hence dim ;2 __ f~"(A,) > 0. This is a contradiction. Clearly, (3) implies (2). Finally,
we shall show that (1) implies (3). Let ¢ and ¢ be as in Proposition 2.2. Choose a finite
open cover « such that mesh o < §/2. Let ¥ > 0. By Corollary 2.4, there is N as in
Corollary 2.4. If A, B € «, C is a subcontinuum of f~"(CI(A)) N f"(CI(B)) and n > N,
then diam C < 7. This implies that (3) is true.

THEOREM 5.2. Iff:X — X is a continuum-wise expansive homeomorphism of a
compact metric space X, then dim X < 0o and every minimal set of f is O-dimensional.

PROOF. The proof is similar to one of [20, Theorem], but there are some differences.
First, we shall prove that dimX < oo. Choose a finite open cover « as in (3) of
Proposition 5.1. Let

), =f"(ClA)) Nf"(CI(A)) for A, A, € wand n > 1.

Let ¥ > 0. Choose N > 0 as in (3) of Proposition 5.1. Since each component of Cf:', has
diameter less than 7, there is a finite closed covering 3,, = {Cﬁ']" , Cx'z, o CZ"‘(’J‘M } of
CY such that CZ"‘ N CZ”‘/ = () (k # k') and mesh 3,, < 7. Consider the closed covering
B3 ={C| Ce€p,andA,A, € a}ofX. Then we can easily see that ord § < |«|? and
mesh 3 = max{diam C | C € 8} < 7, where || denotes the cardinality of the set a.
Therefore dim X < |a|? — 1 < o0.

Next, we shall show that every minimal set of f is 0-dimensional. Suppose, on the
contrary, that X is a minimal set of f and dimX > 0. We need the following lemma.
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LEMMA 5.3 (cf. [20, LEMMA II]). If there is A € W* such that f"(A) N A # 0 for
some integer m, then f has a periodic point.

PROOE. Take y € A N f™(A) and let z = f~™y). Then z € A and
limy,—o0 d(f”(f’"(z)),f”(z)) = . Take a subsequence {i(n)} of natural numbers such that

limy oo ™@ = w. Then d(w,f"w) = lim d(F 7@ f"(F ")) =

lim, s d(f’(”)(z),f’(")(f’"(z))) = 0. Therefore w = f™(w).

Choose a nondegenerate subcontinuum A of X such that A € W) or A € W (see
Proposition 2.5), where ¢, € and § are as in Corollary 2.4. We may assume that A € W,
and diamA = ¢ (see the proof of Proposition 2.3). Let N be as in Corollary 2.4, where
¥ = 6/3. Now, define

7= inf{d(f(C).,f(D)) | C € W.,D € W, d(C,d) > 5/3,
CUD is contained in some member E of W}, and 0 <i,j < N}.

where d(C,D) = inf{d(x,y) | x € Cand y € D}. Then 7 > 0, for otherwise there are
X €C, €Wy, €D, € Wand C,UD, C E, € Wi(n=1,2,...)suchthatd(x,, y,) >
/3 and lim,Hood(f’(")(xn),f/(”)(yn)) = O forsome 0 < i(n) < j(n) < N. We may assume
that lim,, ..o X, = X, lim,—o0 y, = ¥, lim,—, C,, = C, lim,,_ox D, = D, lim, . E, = E,
and i(n) = i, j(n) = jforall n > 0. Then f'(x) = f/(y) and d(x,y) > 6/3. Hence i < j
and f/"(E)NE D f7(D)N C # (). By Theorem 5.3, f has a periodic point. This is a
contradiction. Hence 7 > 0. Let U be an open set with diameter < 7/2 and UNA = .
Let Ay = A. Since A € W! and diamA = ¢, diamf~M(A) > 6. Choose a subcontinuum
E € Wi such that E C £ MA) and diam E = § (see Proposition 2.3). Then we have two
subcontinua C and D of f™(A¢) such that d(C,D) > §/3, diam C = diamD = §/3
and CU D C E. By the definition of 7, we may assume that U N (U,N:of’(C)) = {). Put
A, = C. If we continue this procedure, we have a sequence A, Ay, ..., of subcontinua
such that

(1) A, CfMA, ) foreachn=12,...,

2) UN(UYof(An) =D foreachn = 1,2,....
Choose a point p € ﬂ,,zof"N(A,,). Then f~'(p) is not contained in U for each i =
0,1,2,....Put F = Cl{f '(p) | i = 0,1,2,...}. Then f~'(F) C F. Choose a mini-
mal element Fy of {A € 2¥ | f~1(A) C A}. Then f'(Fyp) = Fy C F C X — U. This
implies that X is not a minimal set of . This completes the proof.

Similarly, we have the following theorem.

THEOREM 5.3. Iff: X — X is a positively continuum-wise expansive map of a com-
pact metric space X, then dim X < 0o and every minimal set of f is O-dimensional.

To prove Theorem 5.3, we need the following Lemma 5.4, Lemma 5.5 and Lemma 5.6,
whose proofs parallel those of Proposition 2.2, Proposition 2.3 and Corollary 2.4. We
omit the proofs.
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LEMMA 5.4. Let f: X — X be a positively continuum-wise expansive map of a com-
pact metric space X with an expansive constant ¢ > 0. Let 0 < 2e < c. Then there is a
& > 0 such that if A € C(X), diam A < § and for some n > 0, ¢ < sup{diamf/(A) | j =
0,1,...,n} < 2¢, then diamf™(A) > é.

LEMMA 5.5. Letf, ¢, € and § be as in Lemma 5.4. If A is any nondegenerate sub-
continuum of X such that diamA < § and diamf™(A) > ¢ for some m > O, then
diamf"(A) > 6 for each n > m. More precisely, there is a subcontinuum B of A such that
sup{diamf/(B) | j = 0,1,...,n} < € and diamf"(B) = 6.

By using Lemma 5.4 and Lemma 5.5, we have

LEMMA 5.6. Letf, ¢, € and 6 be as in Lemma 5.4. Then for any Y > 0 there is N > 0
such that if A € C(X) and diam A > 7, then diamf"(A) > 6 foralln > N.

In general, itis not true thatif g: ¥ — Y is an onto map of a compact metric space Y and
dim Y > 0, then dim(Y, g) > 0. For example, let g: ¥ — Y be a map as in Example 3.3.
Then g is an onto map of ¥, dim Y > 0, but dim(Y, g) = 0.

However, we have the following proposition.

PROPOSITION 5.7. Iff: X — X is a positively continuum-wise expansive map of a
compact metric space X and dimX > O, then dim(X,f) > 0, where (X,f) is the inverse
limit space of f.

PROOF.  Choose a nondegenerate subcontinuumA of X. Consider the set S = [17°, X,,
where X, = X. Let (y,) € S. For each n > 0 consider the following subset of S:

Af,n) ={(x) €S| xs €A x, =f(x1) for0<j<n—1landx, =y fori >n+1}.

Then A(f, n) is a subcontinuum of S. Since C(S) is a compact metric space, there is a
sequence n; < np < --- of natural numbers such that lim,_,,, A(f,n,) = C. Then C C
(X,f). By Lemma 5.6, we can easily see that there is a positive number A > 0 such that
diamA(f,n,) > X for almost all i. Then diam C > ), and hence C is a nondegenerate
subcontinuum of (X, f). Therefore dim(X, f) > 0.

OUTLINE OF PROOF OF THEOREM 5.3.  First, we shall prove that dim X < oo. Choose
a finite open cover o of X such that mesh o < 5/2, where § is as in Lemma 5.6. Let
G, = Cl(A) ﬂf’”(Cl(Aj)) forA,, A, € a. By Lemma 5.6, for any v > O thereis N > 0
such that each component of Cﬁ’] has diameter less than 7. As in the proof of Theorem 5.2,
we can prove that dim X < oo.

Next, we shall show that every minimal set of f is 0-dimensional. Let M be a minimal
set of f and let f|M be the restriction of f to M. Consider the inverse limit space (X, f)
and the shift map f of f. Note that f: (X,f) — (X,f) is a continuum-wise expansive
homeomorphism (see Proposition 3.1). Then (M, f|M) is also a minimal set of f , because
f((M,f‘M)) = (M,f|M) and the fact that if C is a closed f-invariant subset of (X,f),
then C = (pa(C).f|pa(C)), where p,: (X.f) — X is the projection. By Theorem 5.2,
dim(M, f|M) = 0. By Proposition 5.7, we can see that dimM = 0.

https://doi.org/10.4153/CJM-1993-030-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-030-4

594 HISAO KATO

Also, we have the following results (c¢f. Theorem 4.1, Theorem 4.5, Theorem 4.6 and
Theorem 4.9). The proofs are similar to those of Theorem 4.1, Theorem 4.5, Theorem 4.6
and Theorem 4.9. We omit the proofs.

THEOREM 5.8. Iff: X — X is a positively continuum-wise expansive map of a com-
pact metric space X with dimX > 0, then the topological entropy h(f) of f is positive.

THEOREM 5.9. Let f: X — X be an onto map of a compact metric space X. Then the

following are equivalent.

(1) f is positively continuum-wise expansive.

(2) There is a positive number T such that if Y is any nondegenerate subcontinuum
of X, then there is a dense and uncountable subset D of Y such that f is positively
expansive on D with an expansive constant 7 > 0.

(3) There is a positive number T such that if Y is any nondegenerate subcontinuum
of X, then there is a Cantor subset C of Y such that f is positively expansive on C
with an expansive constant T > 0.

THEOREM 5.10. If g:Z — Z is any map of a 0-dimensional compact metric space
Z, then there is a positively continuum-wise expansive map f:1 — [ such that f is an
extension of g, where I = [0, 1].

By Lemma 5.6 and a similar way as in Theorem 4.5, we can strengthen (1) of Propo-
sition 3.8 as follows.

COROLLARY 5.11. Iff: X — X is a positively continuum-wise expansive map of a
continuum X, then there is T > O such that ifx € X and U is any open set withx € U, then
there are some point'y € U and a natural number k > O such that d(fk"(x),f""(y)) >T
foralln=1,2,....

REMARK 5.12. Inthe statements of Theorem 5.2 and Lemma 5.3, we can not replace
the assumption that f is continuum-wise expansive, by the assumption that f has sensitive
dependence on initial conditions. Let 1: I°® — I*° be the identity map of the Hilbert cube
I°° and let f,: I — I be as in Example 3.5. Put g = 1 X fo: I*° X I — I*° X I. Then the shift
map g of g is a homeomorphism and g has sensitive dependence on initial conditions, but
dim(I® x I,g) = co. Let S' be the unit circle and let r,, denote the rotation of length 2o
on S'. Define amap f: S' x I — S! x I by f(x,1) = (r,a(x), t) forx € S' and ¢ € I, where
o is an irrational number. Then f is a homeomorphism and f has sensitive dependence
on initial conditions. Note that M = S' x {1} is a minimal set of f and dimM = 1.

6. Continuum-wise expansive homeomorphisms and indecomposability. There
are several theorems concerning the existence of expansive homeomorphisms (see the
references). In this section, we show that almost all results can be generalized to the case
of continuum-wise expansive homeomorphisms.

By Proposition 2.3 and Proposition 5.1, we obtain the following theorems. The proofs
are just the same as those of [10], {11] and [16], if we replace expansive homeomorphisms
by continuum-wise expansive homeomorphisms.
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THEOEREM 6.1 (cf. [16, (3.1)]). Iff: X — X is a continuum-wise expansive homeo-
morphism of a compact metric space X and dimX > 0, then there is a closed subset Z
of X such that

(1) each component of Z is nondegenerate,

(2) the space of components of Z is a Cantor set,

(3) the decomposition space of Z into components is upper and lower semicontinu-

ous, and

(4) all components of Z are members of W* or W".

THEOREM 6.2 (cf. [11]). There are no Peano continua in the plane admitting
continuum-wise expansive homeomorphisms.

THEOREM 6.3 (c¢f. [10]). Let X be a Peano continuum which contains a
1-dimensional AR neighborhood. Then there is no continuum-wise expansive homeo-
morphism on X.

REMARK 6.4. In Example 4.4, we showed that there are many chainable continua
admitting continuum-wise expansive homeomorphisms. Note that each chainable con-
tinuum can be embedded into the plan and it is acyclic.

Next, we will consider continuum-wise expansive homeomorphisms on continua
which are not locally connected. We need the following notation. By a refinement of
a finite collection U of subsets of a space X, we mean, as usual, any finite collection of
subsets of X whose elements are contained in some elements of U. Let C;,Cy,...,Cy,
be a sequence of subsets of X. Then the sequence is said to be a chain and is denoted by
[C1,C,...,Cyl, provided that C,N C, # 0 if and only if |i — j| < 1 foreach 1 < i,
J < m. A chain [C}, Cy, ..., Cp] is said to be an n-chain if mesh({C}, Ca,...,Cp}) =
sup{diamC, | 1 < i < m} < n. Let [V, Va,...,V,] be a chain such that ¥V =
{Vi,Va,...,V,,} is a refinement of a finite open cover U of X. Let U; and U, be el-
ements of U. Then the chain [V}, V>, ..., V,,] is said to be crooked between U, and U, if
there are 1 < i(1) < i(2) < i(3) < i(4) < msuch that V) C Uj, Vo) C U, V3, C U
and V,4y C U,. A chain [V}, V,,...,V,] is said to be chain from x to y if x € V; and
yEV,.

We need the following key lemma.

LEMMA 6.5 (cf. [16, (4.3)]). Let f:X — X be a continuum-wise expansive home-
omorphism of a continuum X. Then there is 6; > O such that for any p > 0, there is
a natural number N > 0 and n > 0 such that if U is any finite open cover of X with
mesh(‘U) < nand Uy, Us,...,Uy,] is a chain of U withd(U,, Uy,) > p, then one of the
following conditions holds:

(1) d(fN(U).fNU,)) = 6 for some 1 <r <m.

(2) d(f NWU).fNUp) = 6 for some 1 < r < m.

PROOE. Let ¢, € and 6 be as in Proposition 2.2. Let 0 < §; < 6/3. We may as-
sume that p < §. Choose a natural number N such that if A € C(X) and diamA > p,
then ¢ < sup{diamf"(A) ' |n| < N}. We shall show that §; and N satisfy the desired
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condition. Suppose, on the contrary, that there is a sequence n; > 7, > - - - of positive
numbers with lim, ,, 7, = O for each i and there is a finite open cover U, of X with
mesh(U,) <, such that for some chain [U, 1, U,2,..., U ny] of U, d(U, 1, Uime) 2 p
and d(fN(U)MUW) < b1, d(f NU).f NM(U,g) < 6 foreach i = 1,2,..., and
1 < k < m(i). For each i, choose 0 < n(i) < m(i) such that d(U,, U,;) < p for each
1 < k < n(i) and d(U,1, Upps1) > p. Set A, = CULY, Usp). Since 2 = {C | Cisa
nonempty closed subset of X} is a compact metric space with the Hausdorff metric, we
may assume that lim,_,,, A, = A. Clearly, A is a subcontinuum of X with diamA = p.
By the definition of N, we see that diamf¥(A4) > 6 or diamf "(A) > § (see Proposi-
tion 2.3). On the other hand, diamf¥(A) = diamfV(lim,_.4,) < 26, < §. Similarly,
diamf~N(A) < é. This is a contradiction.

By using Lemma 6.5 and the same techniques as the proofs of [16, (4.4) and (4.5)],
we can prove the following lemma.

LEMMA 6.6 [cf. [16, (4.6)]). Suppose that X is a continuum and f:X — X is a
continuum-wise expansive homeomorphism of X. Then there exists 61 > 0 such that if
X,y € X, x # y, and U is any finite open cover of X, then there is a natural num-
ber N > 0and n > 0 such that if [V|,Va,..., V] is an n-chain from x to y, then
VDLV, NV or [FNVDL NV, . f YV s a refinement of U and
is crooked between U and U,, where U, U, € U and d(Us, U;) > 61 — 2 - mesh(‘U).

By using Lemma 6.6 and the same manner as in the proofs of [16, (4.1)] and [17,
(3.1)], we can prove the following theorems, if we replace expansive homeomorphisms
by continuum-wise expansive homeomorphisms. The proofs are just the same.

THEOREM 6.7. If a tree-like continuum admits a continuum-wise expansive homeo-
morphism, then it contains an indecomposable subcontinuum.

Note that there are many indecomposable tree-like continua admitting continuum-
wise expansive homeomorphisms (see Example 3.5, Corollary 3.7, Example 4.4 and
Theorem 4.9).

COROLLARY 6.8 (cf. [14]). There are no continuum-wise expansive homeomor-
phisms on dendroids (= arcwise connected tree-like continua).

THEOREM 6.9. Suppose that | is a finite collection of graphs and a continuum X
is F-like. If X admits a continuum-wise expansive homeomorphism, then X contains an
indecomposable (nondegenerate) subcontinuum.

COROLLARY 6.10. Let | be a finite collection of graphs. If a continuum X is home-
omorphic to an inverse limit of an inverse sequence {G,,, f,,+1} such that each G, is an
element of F, and X admits a continuum-wise expansive homeomorphism, then X con-
tains an indecomposable subcontinuum. In particular, if f: G — G is an onto map of a
graph G and the shift map f of f is a continuum-wise expansive homeomorphism, then
the inverse limit (G, f) of f has an indecomposable subcontinuum.
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EXAMPLE 6 11  In the statements of Theorem 6 2, Theorem 6 7 and Corollary 6 8,
we can not replace the assumption that f 1s continuum-wise expansive, by the assump-
tion that f has sensitive dependence on 1mitial conditions In fact, there 1s a homeomor-
phismf S' x I — S! x I such that f has sensitive dependence on 1nitial conditions (see
Corollary 5 11) Note that S' x /1s a Peano continuum 1n the plane Let D = {0,1}
and let C = [T oo<n<oo Dn, Where D, = D Let 0 C — C be the shift mapof C, 1 e,
U((a,,)n) = (an 1)n Let X be the cone of C,1e, X = (C x I)/(C x {0}), which 1s ob-
tained from C X I by shrinking C x {0} to a point X 1s called the Cantor fan Define a
map f X — X by f([a,t]) = [0(a),/t] fora € Cand ¢ € I Then f 1s a homeomorphism
and f has sensitive dependence on 1nitial conditions, but X 1s a dendrord Hence X 1s a
hereditarily decomposable tree-like continuum Note that A(f) = log2 > 0

The following questions remain open

QUESTION 1 If f X — X 1s a homeomorphism of a continuum X and the topo-
logical entropy A(f) 1s positive, 1s X not Suslinian? (Note that there 1s a hereditarily de-
composable continuum X admutting a homeomorphism f of X such that A(f) > 0 (see
Example 6 11))

QUESTION 2 If f X — X 1s a continuum-wise expanstve homeomorphism of a
continuum, then does X contain an indecomposable subcontinuum?

QUESTION3  What kinds of indecomposable continua admit continuum-wise expan-
sive homeomorphisms? What kinds of plane continua admit continuum-wise expansive
homeomorphisms?

QUESTION 4 Does the Menger’s universal curve admit a continuum-wise expansive
homeomorphism?

QUESTION 5 Is 1t true that if f X — X 1s a continuum-wise expansive homeomor-
phism of a continuum X, then there 1s a subset D of X such that f 1s expansive on D and
every nondegenerate subcontinuum of X has at least two points of D?

QUESTION 6  Is 1t true that 1f an onto map f X — X of a continuum X has sensitive
dependence on 1nitial conditions, then A(f) 1s positive?

QUESTION 7  Suppose that a continuum X admits a homeomorphism f which has
sensitive dependence on 1nitial conditions Is X not Suslinian? (Note that there 1s a hered-
itarily decomposable tree-like continuum admitting a homeomorphism which has sensi-
tive dependence on the 1nitial conditions of Example 6 11)
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