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Abstract

One way of realizing representations of the Heisenberg group is by using Fock representations, whose
representation spaces are Hilbert spaces of functions on complex vector space with inner products
associated to points on a Siegel upper half space. We generalize such Fock representations using inner
products associated to points on a Hermitian symmetric domain that is mapped into a Siegel upper half
space by an equivariant holomorphic map. The representations of the Heisenberg group are then given
by an automorphy factor associated to a Kuga fiber variety. We introduce theta functions associated to
an equivariant holomorphic map and study connections between such generalized theta functions and
Fock representations described above. Furthermore, we discuss Jacobi forms on Hermitian symmetric
domains in connection with twisted torus bundles over symmetric spaces.

2000 Mathematics subject classification: primary 22E45, 11F55, 11F27; secondary 14K10, 14K25.

1. Introduction

Let Jfn be the Siegel upper half space of degree n consisting of complex symmetric
n x n matrices with positive imaginary part. Then the symplectic group Sp(n, R) acts
on Jf?n, and the quotient F"\ Jffn of Jf?n by an arithmetic subgroup f of Sp(n, K) can be
regarded as the moduli space for a certain family of polarized abelian varieties, known
as a universal family (see for example [5, 10, 13]). Such a family of abelian varieties
can be considered as a fiber variety over the Siegel modular variety X' = T'\Jfn,
and the geometry of a Siegel modular variety and the associated universal family of
abelian varieties are closely connected with various topics in number theory including
the theory of Siegel modular forms, theta functions and Jacobi forms.
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202 Min Ho Lee [2]

Let G = <C(R) be a semisimple Lie group of Hermitian type that can be realized
as the set of real points of a linear algebraic group <G defined over Q. Thus the
quotient S> = G/ K of G by a maximal compact subgroup K has the structure of
a Hermitian symmetric domain. Let r : S> —> J ^ be a holomorphic map, and let
p : G -*• Sp(n, K) be a homomorphism of G into a real symplectic group of degree
n such that r(gz) = p(g)r(z) for all z e & and g € G. Let T be an arithmetic
subgroup of G such that p ( r ) c I"", and let X = T\@ be the associated arithmetic
variety. Then r induces a morphism r* : X - • X' of arithmetic varieties, and by
pulling back the fiber variety over X' via rx we obtain a fiber variety over X whose
fibers are again polarized abelian varieties (see Section 2 for details). Such fiber
varieties over an arithmetic variety are called Kuga fiber varieties (see [12, 22]), and
various geometric and arithmetic aspects of Kuga fiber varieties have been investigated
in numerous papers (see for example [1, 2, 8, 14, 16]). Various objects connected
with Siegel modular varieties and the associated universal families of abelian varieties
can be generalized to the corresponding objects connected with more general locally
symmetric varieties and the associated Kuga fiber varieties.

One of the important nilpotent Lie groups is the Heisenberg group whose irre-
ducible representations were classified by Stone and von Neumann (see for example
[11,19,23]). One way of realizing representations of the Heisenberg group is by using
Fock representations, whose representation spaces are Hilbert spaces of functions on
complex vector spaces with inner products associated to points on a Siegel upper half
space (see [21]). In this paper, we generalize such Fock representations using inner
products associated to points on a Hermitian symmetric domain that is mapped into a
Siegel upper half space by an equivariant holomorphic map. The representations of
the Heisenberg group are then given by an automorphy factor associated to a Kuga
fiber variety. We introduce theta functions associated to an equivariant holomorphic
map and study connections between such generalized theta functions and Fock rep-
resentations described above. Furthermore, we discuss Jacobi forms on Hermitian
symmetric domains in connection with twisted torus bundles over locally symmetric
spaces (see [15]).

This paper is organized as follows. In Section 2, we describe the construction of
Kuga fiber varieties over an arithmetic variety. In Section 3 we review the notion of
canonical automorphy factors for groups of Hermitian type, and automorphy factors
associated to products of semisimple groups and Heisenberg groups are discussed in
Section 4. In Section 5, we construct twisted torus bundles over arithmetic varieties
which are circle bundles over Kuga fiber varieties. We then study their connections
with Jacobi forms on Hermitian symmetric domains. Section 6 is devoted to the
discussion of Fock representations of Heisenberg groups on the space &z of certain
functions on vector spaces associated to each z e S>- We prove that such repre-
sentations are unitary and irreducible. In Section 7 we introduce theta functions on
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[3] Theta functions on symmetric domains 203

Hermitian symmetric domains and prove that certain types of such theta functions
generate the eigenspace of the Fock representation associated to a quasi-character.

2. Kuga fiber varieties

In this section we review the construction of Kuga fiber varieties associated to
equivariant holomorphic maps of symmetric domains. They are fiber bundles over
locally symmetric spaces whose fibers are polarized abelian varieties. More details
can be found in [12] and [22].

Let G be a Zariski-connected semisimple real algebraic group of Hermitian type
defined over Q. Thus G is the set of real points <G(R) of a semisimple algebraic
group defined over Q, and the associated Riemannian symmetric space Qi = G/K,
where AT is a maximal compact subgroup, has a G-invariant complex structure. Such
a space can be identified with a bounded symmetric domain in C* for some k, and
is called a Hermitian symmetric domain. Let G' be another group of the same type,
and let & be the associated Hermitian symmetric domain. A pair (p, T) consisting
of a homomorphism p : G -> G' and a holomorphic map x : Qi —> & is said to be
equivariant if x(gz) = p(g)x(z) for all g e G and z € Ql.

Let V be a real vector space of dimension 2/z defined over Q, and let p be a
nondegenerate alternating bilinear form on V defined over Q. Then the symplectic
group

Sp( V, 0) = {g € GL( V) | P(gv, gv') = P(v, v') for all v, v' € V]

is of Hermitian type, and the associated Hermitian symmetric domain can be identified
with the set J f = Jff( V, P) of all complex structures / on V such that the bilinear
form V x V —> K, (u, v') i-> P(v, Iv') is symmetric and positive definite. The
action of Sp( V, P) on J f is given by the map G x J f -> Jf , (g, I) H* glg~l.
Let [eu ... , «2n} be a symplectic basis of (V, P), that is, a basis of V satisfying the
condition

1 if i = j' + n,

— 1 if i =j — n,

0 otherwise

for 1 < i,j < 2/i. Then Sp( V, P) can be identified with the real symplectic group
Sp(n, K) of degree n, and Jif can be identified with the Siegel upper half space

Jfn = {Z e Mn(C) \'Z = Z, I m Z » O }
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of degree n on which Sp(n, K) acts as usual by

g(Z) = (AZ + B)(CZ + D ) - 1 for g=^ n ) 6 Sp(» ,

and Z eJft.
We now consider an equivariant pair (p, r) for the special case of G' = Sp( V, /J).

Thus the homomorphism p : G —> Sp( V, /$) and the holomorphic map r : Qi -> J ^
satisfies the condition t(gz) = p(g)r(z) for all g e G and z & &• Let F be a torsion-
free arithmetic subgroup of G, and let L be a lattice in V with VQ = L ®z Q such
that P(L, L) c Z and p(F)L c L. Regarding J ^ as the set of complex structures
on V, each element z 6 ^determines a complex vector space (V, /r(Z)), where 7l(z)

is the complex structure on V corresponding to r(z) € Jt°n. Let zo be a fixed element
of 9>, and let 70 be the complex structure on V corresponding to the element r(zo) of
Jifn. Let Vc = V ®R C be the complexification of V, and denote by V+ and V_ the
subspaces of Vc defined by V± = [v € Vc I A>u = ±'v}> so that we have

Vc = y+© V_, V+ =~V_.

Then each element v in (V, 7rW) determines an element

(2.1) Hz, v) = vz = v+ - T(Z)U_ = v+ - IT(z)v_

of the subspace V+ of Vc. where the elements v± denote the V±-components of
v e V c Vc = V+ © V_. We set

the disjoint union of the vector spaces (V, /T(z)) with complex structure /r(z) for the
elements z e S>. Then the map

(2.2) W -+ 9 x V+, (z, v) ^ (z, f (z, w))

determines a bijection W = ^ x V + and a C-linear isomorphism (V, /T(z)) = {z} x V+.
Thus the natural projection map W —>• ^ has the structure of a holomorphic vector
bundle with fiber V+.

Let GKP V be the semidirect product of G and V with respect to the action of G on
V via p. Thus G K̂ , V consists of the elements (g, v) e G x V and its multiplication
operation is given by (g, v)(g', v') = (ggr, p(g)v' + v) for g, g' e G and v,v' e V.
Then G txp V acts on W by

(2.3) (g, v)(z, w) = (gz, p(g)w + p(g)v)

for (#, w) € G Kp V, z 6 0 and w € (V, 7rW).
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REMARK 2.1. Let g be a fixed element of G. Then we have

- i= P(g)Ir(z)P(g)

for all z € S*. Consider the map <^ : V —> V defined by </>4(u) = p(g)v for all
u e V. Then 0X is an K-linear isomorphism of V such that Ix(gz) o ^>g = <pg o /T(z)

for all z e 0 , that is, <f>g is an isomorphism between the vector spaces with complex
structure (V, Ir(z)) and (V, IT(gZ))- Indeed, we have

( W ) ° 0«XU) = P(g)Iv(z)P(S)~1P(g)V = P(g)Ir(z)V = (4>g ° /r(z))(v)

for all z € ^ and v e V. Thus p(g)v in (2.3) is simply the element of (V, IT(gZ))
corresponding to the element v in (V, /T(z )).

Using the isomorphism between W and 0 x V+ given in (2.2), wee see that, if
w = £(z, M) with M € (V, /T(z)), G K p V acts on 9> x V+ by

(g, v)(z, w) = (gz, Hgz, p(g)u) + t-(gz, p(g)v))

= (gz, Hgz, P(g)u) + (p(g)v)gz)

for (g, v) e G Kp V and (z, iy) 6 ^ x V+. Since /o(g)v is the element of (V, IZ(gZ))
corresponding to v e (V, Iriz)) as was mentioned in Remark 2.1, we shall simply write
vgz for (p(g)v)gz. Thus we have

(2.4) (g, v)(z, w) = (gz, Ugz, P(g)u) + vgz)

for all (g, v) e GP<P V and (z, m) 6 ^ x V+, where M is an element of (V, 7r(z)) such
that w = £(z, «)•

Let the arithmetic subgroup F c G and the lattice L c V be as before. Then, since
p( r )L C L, the action of G t<p V on W induces an action of the discrete subgroup
P Kp L of G Kp V on W. Since F is assumed to be torsion-free, the quotient spaces
X = T\S> and Y =T Kp L\W are complex manifolds. The natural projection map
W —> @> determines the structure of a fiber bundle on the induced projection map
n : Y -> X whose fiber over Vz € X with z e ^ is the quotient (V, lX(Z))/L of
the complex vector space (V, ItU)) by the lattice L. The complex torus (V, IT(t))/L
is in fact an abelian variety because the alternating bilinear form {} can be used as a
Riemann form. Thus we obtain a fiber bundle n : Y -+ X whose fibers are abelian
varieties of the form (V, Ir{z))/L. The total space Y of such a fiber bundle is called a
Kuga fiber variety.
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3. Canonical automorphy factors

In this section we review the notion of canonical automorphy factors for semisimple
Lie groups of Hermitian type and describe some of their properties (see [20,22]). Let
G = G(K) be a semisimple real algebraic group of Hermitian type as in Section 2,
and let K be a maximal compact subgroup of G. Then the Riemannian symmetric
space Qi — G/K has a G-invariant complex structure J which determines a complex
structure on the tangent space Tz(Qi) for each z e Si. Let E be the Lie algebra of K,
and let g = t 4- p be the corresponding Cartan decomposition of g. Let zo € @ be the
fixed point of K, and let So be the complex structure on r a ( ^ ) = p. We set

P± = {X 6 pc I SoiX) = ±iX),

and denote by P+, /*_ the C-subgroups of Gc corresponding to p+, p_, respectively.
Then we have

P+ D KCP- = {1}, G C P+KCP-, G n KCP- = K

(see for example [22, Lemma II.4.2], [20]). If g € P+KCP_ c Gc, we denote by
(g)+ 6 P+, (g)o € KQ and (^)_ € P_ the components of g such that

8 = (g)+(g)o(g)-

We denote by (Gc x p+) , the subset of Gc x p+ consisting of elements (g, z) such
that gexpz e P+KCP~- Then the canonical automorphy factor is the map 7 :
(Gc x p+)t -> Kc defined by

(3.1) J(g,z) = (gexpz)0

for (^, z) e (Gc x p+), . If (g, z) € (Gc x p+)», we also define the element g(z) e p+

by

(3.2)

Furthermore, for z, z' € p+ with (expz')"1 expz 6 P+KCP~, we set

(3.3) *(z, z') = y((expz')-', z)"1 = (((expz')"1 expz)0)-' € Kc.

Thus we obtain a ATc-valued function /c(, •) defined on an open subset of p+ x p+

called the canonical kernel function for G, and it satisfies the relations

K(Z, Z) = K ( Z , Z ' ) \ AT(Z0, Z) =K(Z, ZO) - 1,

^ z')J(g,wyl
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for z, z' 6 p + and g e Gc for which K(Z, Z') and ic(g(z), g(z')) are defined (see for
example [22, Section II.5J).

Let (V, P) be the real symplectic space of dimension 2n defined over Q as is
described in Section 2. We extend P to a bilinear form on Vc and denote by pIo :
Vc x Vc ->• C the bilinear map defined by p/o(v, v') = P(v, IQv') for all v, v' e Vc.
Then we have P,o = i/3 on V+ x V+ and P,o = - ip on V_ x V_. Thus each of p,0 | v+ x v+

and )6/0| v.x v_ is both symmetric and alternating; hence we have

Plo I V+ x V+ = 0 , /3/01 v_ x V. = 0 .

On the other hand, since 70 e Jf?n, from the definition of Jif it follows that both
/9/olv+xv_ and y3/0|v.xv+ are positive definite. Therefore we can identify V_ with the
dual V^ of V+. Now we define a Hermitian form /? : Vc x Vc —»• C on Vc by

/3(v, v') = i/

for all v, v' e Vc. Then fi is positive definite on V+ x V+, negative definite on V_ x V_,
and is zero on V+ x V_ and V_ x V+.

Let {« i , . . . , «„} be an orthonormal basis of V+ with respect to the restriction of
the positive definite form /3 to V+ x V+, and define the elements un+1 M^ by
uj+n = iij for 1 < j <n. Then we have

//?(«„+; , Wj) = I^(«y , Uj) = J3(Uj , Uj) = 1,

i0(uk, un+k) = i/3(wt, «*) = -ip(uk, uk) = - / J (u t , Mt) = 1

for 1 < 7, )t < n. On the other hand, using Lemma l.l(iii), we obtain

i/8(H,,Kt) = /8(5,,iit)=O,

i P ( u n + j , M n + J l ) = i P ( u j , uk) = P(uj , u k ) = 0

for 1 <j,k<n. Thus {HI, . . . , u^} is a symplectic basis for (Vc. iP), and we have

Now we discuss the canonical automorphy factor for G = Sp( V, P). We shall
regard the elements of G and the elements of its Lie algebra as matrices using the
basis {«! , . . . , «2«} of Vc described above. Thus, for example, p + and P+ can be
written in the form

}' ^+=expp+-{(jZ e 5 " ( C )

where S n ( C ) d e n o t e s t h e se t o f c o m p l e x s y m m e t r i c nxn m a t r i c e s . S i m i l a r l y , w e h a v e

Z 6 Sn(Q ,
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We shall identify p+ with Sm(€) using the correspondence (° o ) H> %• Thus we can
write exp Z = (̂  f ) e P+ for Z € p+ = 5m(C), and Gc acts on p+ by

gZ = exp-'CC^expZ^) 6 p+

for all g e Gc, where exp-'( W) for W e P+ denotes the (1, 2)-block of the 2 x 2
block matrix W. Let g' be an element of Gc = Sp( Vc, f)) whose matrix representation
is of the form g' = (c &)• Then g' e P+KCP_ if and only if D' is nonsingular, and
in this case its decomposition is given by

, _ / I B'D'-l\ f'D'-1 0 \ / 1 0\
8 ~\0 1 ) \ 0 D'J \iy~lC 1/

LEMMA 3.1. Lefg = (^ g) e Gc, Z e p+ = Sn(€), andlet Js : (Gcxp+)t^Kc

be the canonical automorphy factor for the symplectic group G = Sp( V, /S). If
CZ + D is nonsingular, then we have

1-1

( 3 4 ) -/(^Z) = ( 0

PROOF. We have

'A AZ + BB\(\ Z\
D)[O I) =

Since CZ + D is nonsingular, gexpp belongs to P+KCP- and its decomposition is
given by g exp Z = (gexpZ)+(gexpZ)0(gexpZ)_,

'{CZ + D)-' 0
C

j
Hence it follows that

and gZ is the (1, 2)-block (AZ + B)(CZ + £>)"' of the matrix (gexpp)+. D
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Since the Siegel upper half space Jfn can be regarded as the set of complex
symmetric n x n matrices with positive definite imaginary part, there is a natural
embedding of Jfn into p+ = 5m(C). If g - (£ *) e G and Z € Jf?n, then CZ + D
is nonsingular; hence, using Lemma 3.1 we obtain the usual action Z h-> (AZ +
B)(CZ + D)-1 of G on J ^ . On the other hand, given g € G and Z € J ^ , the
associated complex n x n matrix Js(g, Z) can be regarded as a linear map of Vc into
itself.

COROLLARY 3.2. Let Z € JFn and g = ( J J ) e Sp(V, fi). Then the restriction

J+(g, Z) of the linear map Js(g, Z) : Vc —> C to the subspace V+ of Vc is given by

(3.5) jS(g,Z) =

PROOF. This follows immediately from (3.4). •

4. Automorphy factors for generalized Jacobi groups

In this section we describe canonical automorphy factors and canonical kernel
functions of generalized Jacobi groups associated to symplectic representations of a
semisimple Lie group that are equivariant with holomorphic maps of the associated
symmetric domains. We shall follow closely the descriptions of Satake given in [22].

Let p : G -*• Sp( V, /8) and r : Ql - • J ^ be as in Section 2, and let G be the group
of all elements of G x V x 0& whose multiplication operation is defined by

(4.1) (g, v, t)(g', v', t') = (gg1, p(g)v' + v,t + t' + P(v, p(g)v')/2)

for all (g, v, t), (g', v', t') e G x V x R. Thus the subgroup {0} x V x K of G is
the Heisenberg group associated to the symplectic space (V, fi). The group G is the
group of Harish-Chandra type in the sense of Satake [22] and can be considered as a
generalized Jacobi group since it reduces to a usual Jacobi group when p is the identity
map on Sp( V, fi) (see for example [3, 24]). We set

p + = p+ ® V+, p_ = p+ © V_,

and let P+, P_ be the corresponding subgroup of Gc = Gc x Vc x C, respectively.
If Kc = Kc x {0} x C, we have G C P+KCP_. The canonical automorphy factor J
for the group G and the action of G on p+ = p+ ® V+ is defined by

(4.2) J((g, v, t), (z, w)) = ((g, v, t) exp(z,
(4.3) exp((#, v, t)(z, w)) = ((g, v, f)exp(z, u;))+,
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assuming that (g, v, t) exp(z, w) € P+KCP— Here exp(z, w) is an element of G and
is given by

(4.4) exp(z, w) = (expz, w, 0)

for all z 6 p+ and w e V+. Since & is embedded into p+, the quotient space
@ = G/K = @ x V+ can be embedded into p+ = p+ 0 V+. Thus (4.3) defines the
action of G on $). We also define the canonical kernelfunction £(•, •) : p+xp+ ->• Kc

by

(4.5) ic((z, w), (z', w')) = 7((exp (FT^7))-1, (z, w))~'

= (((exp (z\ w'))-' exp(z,

for (z, w), (z', w') 6 p+ such that

(4.6) (expte'.u/))"1 exp(z, u;) €

The condition (4.6) is satisfied for (z, w), (z', u»') e ^ ; hence we obtain a canonical
kernel function on Q x Q).

LEMMA 4.1. The canonical kernel function ic((z, w), (z', w')) is holomorphic in
(z, w) and satisfies the relations

k({z', w'), (z, w)) = ic«z, w), (z', w')y\

ic(g(z, w), g(z', w')) = J(g, (z, w))ic((z, w), (z', w'))J(g, (z', w')yl

for (z, w), (z\ w') 6 Q> and g e G.

PROOF. The first relation is immediate from the definition of ic. As for the second,
let (z, w), (z\ w') e Q> and g e T. Then, using (4.2) and (4.3), we see that

|exp(z, w) = exp(|(z, w))7(g, (z, w))pu

gcxptf, w') = exp(|(z', w'))J(g, (z\ w'))p2

for some pi, p2 € P_. Hence we obtain

exp (z\ w') exp(z, w)

, (z', w')) ' exp (g(z\ w')) ' exp(|(z, w))J(g, (z,

Thus it follows that exp(z', w')~l exp(z, w) e P+KCP~, and by comparing the
components we obtain

, w), (z't w'))"1 = y(«. U', u;'))-1*(i(z, w), g(z, w'))J(g, (z, u;)).

Hence the proof of the lemma is complete. •
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We shall now describe below the action of G on S> and the canonical automorphy
'actor for G defined by (4.3) more explicitly. Given (g, v,t)eG and (z, w) e @> C
>+ © V+, we set

4.7) (g, v, r)(z, w) = (z\ w') € S>,

J((g, v, t), (z, to)) = (Ju0, J2) eKc = Kcx {0} x C.

ience we obtain a decomposition of the form

4.8) (g,u,r)exp(z, to) = (expz', u/,0)(y,,0, 72)(p_, iy_,0)

or some (p_, io_, 0) e P_. Using the multiplication rule on G, the right-hand side
)f (4.8) reduces to

((expzVi, w', 72)(p_, w_, 0) = (g", v", t"),

vhere

g" = (expzViP-, v" = w' + p«expz!)Ji)w_,

t" = J2 + p(w', p((expzVi)"O/2.

Dn the other hand, we have

(g, v, r)exp(z, u>) = (g, v, r)(expz, to, 0)

= (gexpz, i; + p(g)w, t + &{y, p(g)w)/2).

ience we obtain

4.9) gexpz = (expz')JxP-,
4.10) v + p(g)w = w' + (expz')J\W-,

t + P(v, p(g)w)/2 = J2 + 0(u/, p{.{txpz')Jx)w_)/2

-or (g, v, t) e G = G x V x K. and (z, w) e 9 = 9 x V+.

PROPOSITION 4.2. For (z, iu) € ^ we set p(Jdz, w)) = (U(z
0-

w)
 y_(° „,). 77ie« r/ie

icrion of G on 9 is given by

14.11) (f, w, /)(z, w) = (g(z), vgz + J+(z, w)w)

<br all (g, v,t) € G and (z, 10) e 9.

PROOF. Consider the elements (g, v, t) e G and (z, to) € §?, and assume that
(g, v, t)(z, w) = (z1, to') e ^ as in (4.7). Since expg(z) = (gexpz)+ by (3.2),
From (4.9) we obtain expV = expg(z) and Ji = (gexpz)_. Hence it follows that
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z! — g(z), and J\((g, v, t), (z, w)) = J(g, z), where J is the canonical automorphy
factor for the group G given in (3.1). Now we consider the matrix representations

for z € p_ relative to the decomposition V = V+ © V_. Applying p to both sides of
the relation (4.9), we obtain

[A B\fl r(z)\_fl r(z')\(J+ 0 \ / l 0
\C Dj\O \ ) \0 1 J\0 jJ\M l

for some matrix M. Thus we have

(A Ariz) + B\ = fJ+ + r(z')J-M r(z')/_\
\C Cx(z) + Dj \ J_M 7_ ) '

Hence we see that

(4.12) J+ = A- r(z')C, 7_ = Cr(z) + £>,

On the other hand, the matrix form of the relation (4.10) is given by

which implies that v+ + Aw = w' + T(Z')J~W_ and u_ + Cw = J_w_. Therefore
we obtain

w' = (v+ + Aw)- r(z')(v_ + Cw)

= (v+ - T(Z')V-) + (A - r(z')C)w = û  + J+w;

hence we have (z\ w') = (g(z), vgz + J+w). D

COROLLARY 4.3. Let Jf be the restriction of the canonical automorphy factor for
Sp( V, P) to V+ given in Corollary 3.2. Then, for (g, v,t)eG and (z, w) € $>, we
have

(4.13) - (g, v, t)(z, w) = (g(z), vgz + J*(p(g), r(z))w).

In particular, ifp(g) = ^ B
D") e Sp( V, 0), then we have

(4.14) (g, v, t)(z, w) = (gZ, vgz + ' (C ,T(Z) + Dp)~
lw).
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PROOF. From (3.1), for g e G and z e ^ . w e have

PU\) = P(A(g,z)) = p((gexpz)0) = (/o(g)expr(z))o.

Thus we see that p(J\)(g, z) = Js(p(g), T(Z)), where Js is the canonicalautomorphy
factor for the symplectic group Sp( V, ft) given in (3.4). Therefore, if J+ is as in
Proposition 4.2, we have

(4-15) J+(g,z) = Js(p(g),r(z)).

Using this and Proposition 4.2, we obtain (4.13). Then (4.14) is obtained by using (3.5).

•
From the multiplication operation on G given in (4.1) we see that the induced

operation on G x V by the natural projection G —> G x V is exactly the one on
G Kp V considered in Section 2. On the other hand, we considered an operation of
G IX p V on Q) x V+ in (2.4) to construct a Kuga fiber variety. This operation is in fact
compatible with the operation of G given in (4.11) as can be seen in the next lemma.

LEMMA 4.4. The operation ofGMpVon@iY.V+ given in (2.4) can be written in the
form (g, v)(z, w) = (gz, vgz+J+w)forall(g, v) e GKP Vand(z, w) e Q> = @x V+.

P R O O F . Le t (g, v) e GKPV and (z, w) € S> x V+. F r o m (2.4) , we have

(g, u)(z, w) = (gz, Hgz, p(g)u) + vgz),

where u is an element of (V, Il(z)) such that u; = f (z, u). Using (2.1) and p(g) =

{CD)> we have

= (Au+ + Bu_) - r(gz)(Cu+ + D«_)

= (A - r(gz)C)u+ + (B- x(gz)D)u_.

However, we have

r(z) = p(g)-lt(gz) = (^fc T^

= CDx(gz) - tB)(-'Cr{gz)+'A)-x.

Using this and the fact that r(gz) is symmetric, we obtain

B - x(gz)D = -(A - r(gz)C)r(z).
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Hence we see that

S(gz, P(g)u) = (A - r(gz)C)(u+ - r(z)u_) - (A - r(gz)C)w.

Since A — r(gz)C = J+ by (4.12), we obtain the desired formula. •

COROLLARY 4.5. Let Cp, Dp and J* be as in Corollary 4.3. Then the operation of
G Kp V on & x V+ given in (2.4) can be written in the form

(g, v)(z, w) = (gz, vgz + J*(p(g), T(Z))W)

PROOF. This follows from (3.5), (4.15) and Lemma 4.4. D

LEMMA 4.6. If(g, v, r)(z, w) = (z', ID'), then we have

P(v, p(g)w) - yS(iv, Cw) = P(v, Jxw),

where the matrix C is the (2, 1) block ofp(g) as in the proof of Lemma 4.2.

PROOF. Using vz- = v+ — x(z')v^ and the matrix representation of p{g), we have

0(v, p(g)w) - 0(iv, Cw) = 0(v, Aw + Cw)-P ((J - f >) v + u_, Cw).

Since Cw € VI and /S|V.XK. = 0. using the fact that fi is invariant under p(G), we
obtain

0(v, p(g)w) - P(v,., Cw) = P(v,Aw) + P(v, Cw) - $ (v, (> «f>) Cw)
= 0(v, Aw) + P(v, Cw) - P(v, Cw + r(z')Cw)
= P(V,AW-T(Z')CW).

Now the lemma follows from the fact that Jxw = J+w = Aw — r(z')Cw. O

PROPOSITION 4.7. The canonical automorphy factor J for G is given by

(4.16) J((g, v, t), (z, w)) = (/,((£, v), (z, w)), 0, J2((g, v, t), (z, w)))

for all (g, v, t) e G and (z, w) e $>, where J\ is the canonical automorphy factor for
the group G and

, v, t), (z, w)) = t + P(v, vgz)/2 + P(v, Jiw) + P(p(g)w, Jxw)/2.
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PROOF. If C is as in Lemma 4.6, then we have (v + p(g)w)_ = v_ + Cw. Using
this and the fact that P\ v+x v+ = 0, we see that

h = t + P(v, p(g)w)/2 - P(w', p((expzVi)u>-)/2
= t + P(v, p(g)w)/2 - 0(u/, v + p{g)w - u/)/2
= / + 0(v, p(g)w)/2 - 0(vt + J+w, v + p{g)w)/2

= t + 0(v, p(g)w)/2 - 0(vt, v)/2 - 0(vt, p(g)w)/2 - 0(J+w, v_ + Cw)/2
= t + fi(v, p(g)w)/2 - /J(iv, v)/2 - p{vt, p(g)w)/2

- P(J+w, v.)/2 - P(J+w, Cw)/2.

Using Lemma 4.6, we thus obtain

= t + p(v, y,w)/2 - P(v,, v)/2 - P(J+w, v_)/2 - P(J+w, Cw)/2
= t + P(v, Jtw) - Piy,., v)/2 - P(J+w, Cw)/2.

Since p(g)w = Aw + Cw with Aw € V+, we have

P(J+w, Cw) = P(J+w, p(g)w) = P{J\W, p(g)w) = -P(p(g)w, 7,10).

Hence the proposition follows using this and /J(v/, u) = P(vgz, v) = — P(v, vgz). D

Now we define the complex valued function / : G x ® -> C by

(4.17) J ((g, v, t), (z, w)) = e [J2«g, v, t), (z, w))]
= e[t+P(v, vgz)/2+P(v, JlW) + P(fi{g)w, Aw)/2]

for all (g, v, t) € G, where e [•] = e2*'0'.

PROPOSITION 4.8. The function ^ is an automorphy factor, that is, it satisfies the
relation

for g = (g, v, t), g' = (g'.v1, t') eGandz = (z, w) e 3.

PROOF. Let g,g' e G and z e i Since the map J = (•/,, 0, J2) : G x 9 -»• Kc

is an automorphy factor, using the multiplication rule (4.1) in G, we obtain

(J,(gg\z),O, J2(gg',z)) = (Ji(g,g'2),0, J2(g, g'z)){JxCg'rz),O, J2(g',z))
= (Ml g'z)Jdg\ z), 0, J2(g, g'z) + J2(g', z)).

Thus we have J2(gg', z) = J2(g, g'z) + J2(g', z), and hence / = e [J2] satisfies the
desired relation. ' D
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5. Twisted torus bundles and Jacobi forms

In this section, we construct twisted torus bundles over locally symmetric spaces, oi
circle bundles over Kuga fiber varieties, associated to generalized Jacobi groups. We
then define Jacobi forms associated to an equivariant pair, which generalize the usual
Jacobi forms (see [24]), and discuss connections between such generalized Jacobi
forms and twisted torus bundles. Similar Jacobi forms were also considered in [17]
and [18].

Let G = G x V x K be as in Section 4. Thus we have G/K = 9 = 9 x V+,
and there are embeddings Q) ^ p+ = p+ © V+ °-> Gc/KcP-- On the other hand,
since the elements of exp C and the elements of P+ commute, the exponential map
determines the natural embedding p+ © C = p+ © V+@C <-> GC/KCP- that induces
the embedding p+ <->• Gc/KcP_. Thus we obtain a commutative diagram

9xV+xC • GC/KCP-

I I
Q> x V+ • GC/KCP-

I I
9 • GC/KCP_,

arrows are
on 9 x V+ x C by

where the horizontal arrows are the natural embeddings and the vertical
the natural projection maps. Now we can define an action of G on 9 x
requiring that (g, v, t)(z, w, u) = (z', w', u') if and only if

(g, v, r)exp(z, w, u) e exp(z', w', u')KcP_.

More specifically, we define the action by

(g, v, r)exp(z, w, u) = exp(z', w', u')Jxp_

for all (g, v,t) e G and (z, w, u) e Q> x V̂  x C, where Jx e Kc is the canonical
automorphy factor for the group G and p_ is an element of P_. By considering the
natural projection 3> x V+ x C -*• S) x V+, we obtain

(g, u, 0 exp(z, 10) = exp(z', iv') exp(«' - u)Jxp-,

which implies that ((g, u, t) exp(z, u>))o = exp(w' — u)Jx = («' — u, 0, 7^. However,
using (4.2) and (4.16), we see that

((g, v, r)exp(z, w))0 = (J2,0, Jx).
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Therefore we obtain u! = u + J2, hence it follows that

(5.1) (g, v, 0(z, w, u) = (gz, vgz + J+w, u + J2),

J2 = t + 0{v, vgz)/2 + P(v, Jxw) + P(p(g)w, Jxw)/2.

Now we restrict the holomorphic action of G on & x V+ x C to the real analytic
action of G on <& x V+ x R. Let the arithmetic subgroup F c G and the lattice
L c V+ be as in Section 2, and consider the quotient 5 = F x i x I\& x V+ x R
of 0 x V+ x R by the action o f T x L x Z c G given in (5.1). We shall identify 9
with the quotient F x L\S> x V+ x (R/Z) by using the map

(z, IO, u) i-> (z, w, e [M]), ^ X V + X K ^ - ^ X V + X (R/Z),

where we identify DS./Z with the unit circle {z 6 C | |z| = 1} in C. Then the action of
r x Lon$> x V+x (R/Z) is given by

(5.2) (y, l)(z, w, k) = (yz, lyz + J+w, /{(y, I, 0), (z, w))k)

for all (y, I) e F x L and (z,w,\) e @ xV+x (K/Z), and the natural projection map
9 x V+ x (R/Z) -+ @xV+ equips & with the structure of a fiber bundle n' : & ->• 7
over the Kuga fiber variety F = T x L \ ^ x V+ whose fiber is isomorphic to the circle
R/Z. By composing with n : Y -*• X we can also consider & as a twisted torus
bundle over the arithmetic variety X = F\S* in the sense of [15].

DEFINITION 5.1. A holomorphic function / : & x V+ -> C is a Jacobiform of
weight ix and index v for (F, p, T) if it satisfies the relation

(5.3) / (yz, lYZ + J+w) = det(C,r(z) + DPY^[fi{l, lyz)/2

+ fiil, y,u>) + P(p(y)w, Jxw)/2]f (z,

for all (z, io) 6 31 x V+ and (y, /) e F x L with

(5.4)

where e" [*] = e [v(*)] = e21"'".

Let JS? be the line bundle on Y = F x L\9 x V+ defined by

JSf = F x L\@ x V+xC,

where the quotient is taken with respect to the action of F x L on S> x V+ x C given by

(5.5) (y, l)(z, w, f) = (yz, /^ + J+w, det(Cpr(z) + Dp)f)

for all (z, io, £) € Q x V+ x C and (y, /) e F x L with p(g) as in Definition 5.1.
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THEOREM 5.2. The space of Jacobi forms of weight fi and index v for (F, p, r) is
isomorphic to the space T0(Y, S£^ <g> ^®v) of sections of the bundle 5£m <g> &%v

over the Kuga fiber variety Y = F x L\@ x V+.

PROOF. From (5.2) and (5.5) it follows that the line bundle if®" <g> &*" can be
regarded as the quotient if®" <g> ^®" — TxL\S>x V+xC with respect to the action
of F x L on Qi x V+ x C given by

(y, l)(z, w, $) = (yz, lyZ + J+w, det(Qr(z) + DpTJ((y, I, 0), (z, w))vS).

Let s : y -> L®" <g> ^®v be an element of F0(r,i"®" ® ̂ ®l>). Then for
(z, to) e ^ x V+ we have 5([(z, u;)]) = [(z, iy, f(ZiU,,)] for some f(ZiU;) 6 R/Z, where
[(•)] denotes the appropriate coset corresponding to the element (•). We define the
function / , : Qi x V+ -*• € by fs(z, w) = £(ZiW) for all (z, w) e & x V+. For each
(y, I) € F x L, using the actions of F x L given in (5.2) and (5.5), we have

= [(y, l)~\yz, lYZ + J+w, f^^+y^)) ]

= [(z, «>, det(C,T(z) + ^ - " ^ ( ( y , /, 0), (z,

where Ĉ , and D^ are as in (5.4) and, as in (4.17),

(5.6) J((y, I, 0), (z, w)) =e[J2((y, 1,0), (z, u>))]

= e [ ^ a , / , z ) / 2 + ^(/, y,u;)

Therefore we obtain

f,(z, w) = det(Qr(z) + D p ) - "^ ( (y , /, 0), (z, i i0r

Hence fs satisfies the transformation formula (5.3) for a Jacobi form of weight (j,
and index v for (F, p, r). On the other hand, suppose that / : Qi x V+ -> C is a
holomorphic function satisfying the condition (5.3). We define the map Sf : Y —*•
L®» ® &®v by

(5.7) sf(l(z,w)]) = [(z,wj(z,w))]

for (z, w) e S> x V+. Then this map is well-defined because, for each (y, I) eF x L,
we have

= sf ([(yz, lYz + J+w)]) = [(yz,lYZ + J+w,f(yz,lyz + J+w))]

= l(yz, lYZ + J+w, det(Cpr(z) + DpTJ((y, I, 0), (z, w)Yf(z, w)

= [(y, 0((z, i« , / (z, u;))] = [(z, u; , / (z, w))].
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which is equal to sf ([(z, to)]) in (5.7). Thus sf is a section of jSf ®" <g> ^®u, and the
proof of the theorem is complete. •

EXAMPLE 5.3. Let W be a real vector space of dimension v > 2 defined over Q,
and let S be a nondegenerate symmetric bilinear form of signature (2, v — 2). Then
it is known (see [22]) that the associated spin group G = Spin( W, S) is a semisimple
Lie group of Hermitian type. Let ^ + be the even part of the Clifford algebra *£
of (W, S), and let a e <«f+ be an element with a' = —a, where i is the canonical
involution of *€. Then the bilinear form A on *if+ with A(x, v) = tr(ax'y) is nonde-
generate and alternating, and for each x e G the map x i-> gx determines an element
of Sp(^+, A). By identifying Sp(tf+,A) with Sp(2\ R) we obtain a homomor-
phism p : Spin( W, S) -*• Sp(2", R), which induces an equivariant holomorphic map
r : Qi —>• Ĵ 2« of the symmetric domain Qi associated to G into the Siegel upperhalf
space J?2v. Thus we obtain Jacobi form on the symmetric domain associated to spin
groups of type (2, n), and such Jacobi forms were studied recently in connection with
a number of topics (see for example [4] and [7]).

6. Fock representations

Let G = G x V x R be as in Section 4. Then the multiplication operation (4.1)
restricted to the subgroup {l}x V x l R = ^ x K of G is the usual multiplication
operation on the Heisenberg group V x R . Classically a Fock representation of such
a Heisenberg group is a representation in a Hilbert space of certain functions on Vc

associated to a point in the corresponding Siegel upper half space (see [21]). In this
section we construct similar representations of such a Heisenberg group in Hilbert
spaces associated to points in the Hermitian symmetric domain & and prove that such
representations are unitary and irreducible.

Let £(•,•) be the canonical kernel function for the group G = G x V x D&
given in (4.5). Thus we have ic((z, w), (z\ w')) = J((exp (z', w'))~\ (z, to))"1 for
(z, w), (z\ io') € &> = & x V+. Since 7 = (/,, 0, J2) € £c> by restricting ic to
^ x Qi we have

FTIiT))-1, (z, uO)~\o, 72((exp(zVi^)r\ (z, u;)))"'

zV^7))-1, (z, uOr'.O, -72((exp(z',«;'))-1
) (z, to))) .

Using (4.4), we obtain ((exp (z', w'))'1 = (expz', tD',0)-1 = ((expzT1, -to ' ,0),
and hence we see that
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where J and K are the canonical automorphy factor and the canonical kernel function
for the group G given in (3.1) and (3.3), respectively. Thus we obtain

K((Z, w), (z', w')) = (K(z, Z), 0, K2((Z, w), (z, u/'))),

where

(6.1) K2((Z, w), (z, w')) = -/2((exp(z',ii/')r1, (z, w))

= P(W',P(K1(Z,Z'))-1T(Z)W')/2

+ P(T(z')w,p(Ki(z,z')yiw)/2.

We set

(6.2) j?((z, w), (z', w')) = e [*2((z, w), (z', u/))]

for (z, w), (z', iw') e ^ .

PROPOSITION 6.1. Let ̂  = e [72] fee aj m (4.17). Then we have

(6.3) £((z', if'), (z, io)) =
(6.4) &{g{z, w), g(z', w')) = J(g, (z. w))^((z, u;), (z , w'))J?(g, (z\ W))

for all (z, w), (z', w') € 3> and g e G.

PROOF. Let (z, w), (z', w') e Qi and g e G. Then by Lemma 4.1 the canonical
kernel function ic(-, •) satisfies the relations

k((z', u;'). (z, u>)) = *((z, u»), (z', û '

,z ')" ' , 0, -Jf2((z, ^ . (z ' .u ; ' ) ) ) ,

*(g(.z, w), g(z', w')) = J(g, (z, u>))ic((z, «;), (z', w'))J(g, (z', u;'))"1

= (7(g, z), 0, y2(£, (z, U;)))(K(Z, z'). 0, «2((z. U>). (Z1, U;')))

x (7(J7F)-1,0, -72(g, (z', w')))

where

•K'2 = 7 2 (« , (Z, W)) + K2((Z, W), (Z', W')) "

In particular, we obtain

, w), (z', u;')).

, w), i(z', u>')) = y2(«, (z, u;)) + «2((z, u>), (z', w')) - Mg, (z', «>'))•
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Thus it follows that

\ u/), (z, w)) = e [-/c2((z, w), (z', w'))] = £((z, w), (z', O ) ,

, w), g(z', w')) = e [J2(g, (z, w))]e [K2((Z, W), (Z\ u/))]e [-/2(f, (z',

, (z, JTI7^jJ
hence the proof of the proposition is complete. •

LEMMA 6.2. Let £({z, w), (z1, w')) be a 'C-valuedfunction on3i x !2) that is holo-
morphic in (z, w) and satisfies (6.3) and (6.4). Then £ is a constant multiple of&.

PROOF. For z = (z, io),z' = (z', u/) e ^ we set n(z,z') = £(.z,z')&(z,zYl-
Then, using (6.4), we obtain r)(gz, gz') = r)(z, I') for all g e G. Thus, if zo e ^ is
a base point, then we have r](gzo, ZQ) = r)(zo, g~lZo) for all g e G. Since r](z, z') is
holomorphic in z, by (6.3) it is antiholomorphic in z'. Therefore, using the fact that G
acts on Qi transitively, we see that rj(gzo, z0) = n(zo, |~'zo) = )?(zo, Zo) for all j e G .
Thus, if z,z' e 2> with z' = g%, we obtain r?(z,z') = r)((g')~lz, z0) = »?(zo,zo);
hence it follows that ^(z, z') = C£(z, z') with C = *?(zo. 2o)- •

Given elements z e ^ and ID, u>' € V+, we set

(6.5) ^(u; , u/) = ^((z, ID), (z, w')).

For each z € & we denote by ^ the space of holomorphic functions (j> on V+ such
that

(6.6) = f \(Hw)\2£z(w, w)-1 dzw < oo,
Jv+

where dzw = det(Imr(z)) ldw. Thus &z together with the inner product

(6.7) (</>, rjr)z -

is a Hilbert space.
For g = (g, v,t) e G and 0 e &gz, we set

, (z, w)rl<t>(pr2((g(z, w)))

for all (z, iu) € ^ x V+, where pr2 : Qi x V+ —*• V+ is the natural projection map onto
V+; hence we have

pr2((JKz, w))) = pr2(gz, vgz + J+(p(g), r(z))w)

) , r(z))w.
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LEMMA 6.3. For g = (g, v,t) e G and <j) e &gz, we have Tgz(g~l)<p e &z and

PROOF. Let z e 9>, g = (g, v,t) e G and </> e &gM. Then we have

\\T"(g-l)4>\\l= f \T*'(g-l)</>(w)\2

Jv+

However, by Proposition 6.1, we have

) , T(Z))W, Vgz + J*(p(g), T(Z))W)

= Jig, (z. «0)^(u>. w)jr(g,(z,w)) = \J{Jg, (z, w))\2£z(w, w).

Furthermore, we have

= det(Im r(gz))-'rf(^ + 7*(p(g), x(z))w)

= \J'+<J>(g), T(z))|2det(Im x(z)rld(vgz + J*(p(g), x(z))w).

where J'+ is the restriction of the canonical automorphy factor of Sp( V, 0) given
in (3.5) to V+. However, we have d(vgz + J*(p(g), x(z))w) = \J°(p(g), t(z))|-2,
which implies that dgz(vgz + J+(p(g), r(z))w) = a\w. Hence we have

v+

x i v K z + J+(p(g), x(z))w, vgz + J°(p(g),
X dgz(Vgz + J°(p(g), T(Z))UO

= / \4>(w)\2£gz(w,w)dgzw = \\ct>\\2
gz,

Jv+

and therefore the lemma follows. •

By Lemma 6.3 we see that Tgz(g~l) is an isometry of &gz into &z, and therefore
it follows that Tz(g) is an isometry of &z into &gz, and for </> e &z we have

(6.8) (Tz(g)<j>)(w) = (T*-'(gz)(g)(P)(w) = J{g-\ (gz, w)yi<p(pr2(g-\gz, w)))

for all z e ^ and w e V+.

PROPOSITION 6.4. Forg = (g, v, t), g' = (g', v', t') e G and<t> e &m, we have
T*'z(g) o Tz(g") = Tz(gg')forallz 6 9.
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PROOF. Let g = (g, v, t), g' = (g1, v', t') e G, (z, w) e 9 = 0 x V+ and

<p € &g(Z). Then from (6.8) we obtain

g'~\ (g'z,

Applying (6.8) once again, we see that

\ (gg'z, w)TxJCg'-\ (g'z,pv2(~g-\gg'z,

x <p(pr2(g'-l(g'z, vr2Cg~\gg'z, w))))).

On the other hand, we have

(Tz(gg')(<P))(w) = /({gg)-\ (gg'z, u>))<P(pr2((ggT\gg'z, w)))

= JCg"\ g-'igg'z, w))/(g-\ (gg'z, w))

x<P(pr2((ggTl(gg'z,w))).

Since we have

g~\gg'z, w) = (g~lgg'z, W2(g~x(gg'z, w))) = (g'z, pr2(g~l(gg'z, w))),

Ph(g'~l(g'z, pr2(g-l(gg'z, w)))) = pr2((g'-xg-\gg'z, w))

= pr2((ggTi(gg'z,w)),

it follows that (Tg'z(g) o Tz(g')(^)))(w) = (T(gg')(0))(w), and therefore the propo-
sition follows. •

Now we consider the subgroup {1} x V+ x K of G. We shall identify this subgroup
with V = V+xR. Then V is in fact a Heisenberg group because the restriction of the
multiplication operation on G given by (4.1) to V gives us the usual multiplication
operation on a Heisenberg group. For u = (u,t) e V c G and we V+ we set
uw = pr2((«(z, w)). Then, using (4.13), we obtain

(6.9) uw = pr2(((l, u, t)(z, w)) = ulz + 7*(p(l), z(z))w = uz + w.

Thus for g = u the formula (6.8) reduces to

(6.10) (Tz(u~x)(P)(w) = J(u, (z, w)Tx<t>(uw)

for (j> e &z, z e 3> and w e V+, and Tz(u~x) is an isometry of &z into itself.

LEMMA 6.5. For fixed z € S> the function &z(w, w') is holomorphic in w, and we
have

(6.11)

(6.12) ^(uw, uw') = /(ii, (z, w))^(w, w')/(u, (z, w'))

for all w, w' e V+ and u € V.
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PROOF. Using (6.1), (6.2) and (6.5), we have

&(», w') = mz, w), (z, u/)) = e[*2((z, w), (z, u/))] .

for w,w'e V+, where

K2((Z, w), (z, u/)) = 1 l

Thus K2 is holomorphic in u>, and therefore &z(w, w') is holomorphic in w. Now
(6.11) and (6.12) follows from the corresponding relations in Proposition 6.1. •

LEMMA 6.6. Let V(w, w') is a function on V+ x V+ that is holomorphic in w
satisfying the conditions

(6.13)

(6.14) *(2u>, uw') = J(u, (z, w))V(w, w')J'(«, (z, w'))

/or a/Z w, w' € V+ ami u € V. 77ien ^ w a constant multiple of&z.

PROOF. This follows from Lemma 6.2. •

For fixed z € & the map <p H> </>(U>), ^ —> C is a continuous linear functional
on &z, and therefore there exists an element | ^ e ^ such that

(6.15)

for all <j> 6 &z.

LEMMA 6.7. Given z e f , there is a nonzero constant C such that

£^(u/) = CRziw, w')

for all w, w' e V+.

PROOF. For z € & and w, w' e V+ we have

which implies that
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Let ii = (M, t) € V C G and <j> e &z, so that we have

(^(K-'WXUO = , / («, (z, u;))-V(«^)-
Then we see that

= ^(«,(z ,

Thus we have

= f
Jv+

Jv+

-1 I ^wJv+

= J{u, (z,
= S(u, (z, itfM-'ITcfiio^Cfi, (z, ^ -

for v € V+. Hence, replacing v with u/, we see that

(u, (Z, W')).

Now the lemma follows by applying Lemma 6.6 to the function (w, w') i->
D

Given an element v of the Heisenberg group V = V x K, by (6.10) we obtain the
isometry Tz(v) of &z into itself given by

(6.16) (r(v)4>)(w) = J{v~\ (z, K;))

for all we V+. We now consider an operator on &z associated to a function on V.
Let .i?( V) be the space of C-valued continuous functions on V with compact support.
For F 6 i f (V), we denote by TZ(F) the operator on ^ defined by

for all 0 e ^ z .

LEMMA 6.8. For F e Jif( V) and <f> e &zwe have

(Tz(F)<f>Kw) = /" kz(w,
Jv+

where kz(w, w') = C j v F(u)/{u, (z, w'))-^z(w, uw') dufor all w, w' 6 V+.
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PROOF. Using (6.15) and Lemma 6.7, we have

(Tz(F)<j>)(w) = I £z(w,w')(Tz(F)4>)(w')£z(w',w'yldzw'
Jv+

for F e S£( V), w e V+ and some constant C. On the other hand, for u e V we have

(Tz(u)<p)(w) = C ^(w, U ) ( 7 Z ( M ) 0 ) ( V ) ^ , (U, V)~X dzv
Jv+

f
= C I fi^iw, v)^{u , (z, v)) (j>{u v)^(v, v) dzv

f / — 1 , - 1 / / - / - 1 /
= C I ^z(xv, uw ) ^ { u , u(z, io )) (j>(w )^z{uw , uw ) dzw .

Jv+

Thus, using the relations

uw', uw'yx = J{ii, (z, u/)r%(">', uw'Yx J{u, (z, w')y\

J(u~\ u(z, w'))J{u, (z, w')) = J{u-X~u, (z, w')) = 1,

we obtain

(Tz(u)cl>)(w) = [ £z(w, uw')J{u, (z, W)rlRz(w', w'rx<t>{w')dzw'.
Jv+

Hence we see that

(r(F)<P)(w) = J (J F{u)J{u,{z,w'))-xRz(w, uw')dii)

and therefore the lemma follows. •

THEOREM 6.9. Let z be an element of the Hermitian symmetric domain Qi and let
V C G be the Heisenberg group associated to the real vector space V described above.
Then the map v h-> Tz(v) given by (6.16) is an irreducible unitary representation of
V on the space &z.

PROOF. By Proposition 6.4, for v = (v, t), v' = (i/ , t') 6 V, we have

T(v) o Tz(v) = Tz(vv)

for all z € D. Furthermore, using Lemma 6.3, we see that \\Tz(v)<f>\\z = \\cp\\z for
all z € @, v 6 V and <j> e &z. Therefore the map v K> TZ(V) determines a unitary
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representation of V on the space &z. It remains to show that Tz is irreducible. Using
Lemma 6.8, we see that the image of &z under Tz is dense in the ring of Hilbert-
Schmidt operators on the space S£2{ V+) of square-integrable functions on V+ with
respect to the measure

, w)~l det(Im x(z))~xdw

for w e V+. This implies that the centralizer in Aut (J£?/( V+)) of the image group of
V under Tz is the set C,x of complex numbers of modulus 1. Indeed, each element
A, of the centralizer commutes with every Tz(u) for u € V, and therefore with every
Tz (0) for <j> e &z. By continuity A. commutes with every element of the Hilbert
space of Hilbert-Schmidt operators on _5f,2( V+). Let ^\,f2 e -Sf2( V+), and let S be
the Hilbert-Schmidt operator with kernel k(w, w') — ^rx{w)^r2{w'). Then we have
aXxfr = XSi//" for all \[r e L2(V+), which implies (ijf, ilf2)X\l/\ = (A.i/f, Vr2)^I- Since
ty, V̂ i. V̂2 are arbitrary, it follows that A. is a scalar; therefore the unitarity of A. shows
the claim that A. e Cx. Now let &\ be a V invariant subspace of &z under Tz. Since
Tz is unitary, there is an invariant subspace &2 such that &z = &\ © ^ . If A is
the scalr multiplication by A., € C,x on &\ and k2 6 C,x on > ẑ

2 with kx / r2. then A
belongs to the centralizer of the image group of V under Tz. Hence we have &2 = 0,
and therefor Tz is irreducible. •

REMARK 6.10. If the Hermitian symmetric domain is the Siegel upper half space
Jfn and if p and r are identity maps, the representation Tz given in Theorem 6.9
reduces to the usual Fock representation of the Heisenberg group V described in [21].

7. Theta functions

Let (p, r) is the equivariant pair consisting of the homomorphism p : G —>
Sp( V, ft) and the holomophic map x : & —> Jf?n used for the construction of Kuga
fiber varieties in Section 2. In this section we consider generalized theta functions
on the Hermitian symmetric domain Qi which should reduce to usual theta functions
on the Siegel upper half space J ^ when p and r are identity maps. We obtain a
transformation formula for such a theta function, and show that certain types of such
theta functions genenate some eigenspaces associated to the Fock representations
described in Section 6.

We shall use the same notations as in the previous sections. Thus V is a real vector
space of dimension In whose complexification is of the form Vc= V+ + V_, and the
underlying real vector space of each of V+ and V_ is isomorphic to the real vector
space V. Then there are n-dimensional subspaces Vj and V2 of V and an element

https://doi.org/10.1017/S1446788700003256 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003256


228 Min Ho Lee [28]

a € Sp( V, /3)c such that V = V, 0 V2, a( V,) = V+ and o( V2) = V_. Let Lo be a
lattice in V with L = a(L0) c Vc such that

(7.1) /3(L,L)CZ, L = L n V+ + LPI V_.

We set L+ = L D V+, L_ = L n V_ and Vo = a( V) c Vc- Thus each element m e Vo

can be written in the formm = m+ + m_ € VQ with m+ = Vod V+ and m_ = V0D V_.

DEFINITION 7.1. The theta function associated to m 6 Vo and the equivariant pair
(p, r) is the function 0m : @ x V+ -*• C given by

(7.2) 0m(z,u;) =
1-eL.

forall(z, w) e& x V+.

EXAMPLE 7.2. Let 5 be an r x r real symmetric positive definite matrix, and let
r : Jf?k —*• Jfyr be the Eichler embedding (see for example [6, Section II.4]) given by
T ( Z ) = 5 ® Z for all Z € Jifi, where Jf?k is regarded as the set of k x k complex
symmetric matrices with positive definite imaginary part. Let p : Sp(k, R) ->
Sp(/:r, K) be the homomorphism given by

A B\ ( E®A 5®B
D)'

where E is the r x r identity matrix. Then (p, r) is an equivariant pair, and therefore
(7.2) determines the associated theta function onJf?kx Ckr.

EXAMPLE 7.3. Let Jt?k be the product of k copies of the Poincare upper half plane
Jf . We define the holomorphic map T0 : Jfh —*• Jffjc and the homomorphism
Po : Sp(l, R)* -»• Sp()t, R) as follows. Let g = (gu ... , gk) be an element of
Sp(l, R)* with g, = (* %) e Sp(l, R) for 1 < i < *, and letz = (zi, . . . , z*) 6 3fPk.
Then we set

TO(Z) = Z\

where z* = diag (zi , . . . , z*) is the it x k diagonal matrix and a* = diag {a\,... , ak),
etc. Let S bean element of Sp()t, R)*, and set

r(z) = Sro(z), p(g) = S p o ^ S " 1

forz e Jf*andg e Sp(jt, R)*. Then(p, T) is an equivariant pair, and (7.2) determines
the associated theta function on Jf?k. Such a function can be shown to be a Hilbert
modular form under certain conditions if the results in [9] is used.
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LEMMA 7.4. Let r = r+ + r_ be an element of L with r+ e L+ and r_ e L_. Then
we have

0m(z, u> + r+ + T(z)r_) = e [-/8(r_, r(z)r_)/2 - 0(r_, w + m+)]9m+r(z, w)

for all (z, w) e f x V+.

PROOF. Given (z, w) € ^ x V+, we have

/3(L + m_, u> + r+ + r(z)r_ + w+)

= j8(/_ + m_ + r_, T(z)(L + m_ + r_))/2

- ^(r_, r(z)(L + m_))/2 - ^(r_, r(z)r_)/2 - 0(L + m_, r(z)r_)/2

+ /3(/_ + m_ + r_, 10 + r+ + m+) + 0(L + m_, r(z)r_)

- P(r_,w + r++m+).

Since the matrix representation of r(z) : Vc -*• Vc is of the form (" j ) relative to the
decomposition Vc — V+ © V_, we have r(z)"1 = — 'r(z) = — t(z); hence we obtain

fi(L + m_, r(z)r_) = ^(r(z)-'(/_ + w_), r_) = -0(T(Z)(L + m_), r_).

Thus we see that

(Z_ + m_, u; + r+r(z)r_ + w+)

/3(L + m_ + r_, u» + r+ + m+)

- 0(r_, r(z)r_)/2 - /8(r_, u> + r+ + m+),

and therefore the lemma follows. •

Given an element I = 1++ L e L with l+ e L+ and /_ € L_, we set

(7.3) fmil) = e [£(/+, U / 2 + ^(L, m+) + fi(m-> l+)±

Then ^rm is a quasi-character of L in the sense that the map

is a character of L. We also set lz = 1+ — r(z)/_ e V+ for z € ^ as in Section 2.

THEOREM 7.5. Let J : G x Q! -> C fee r/ie automorphy factor given by (4.17).
77ie« r/ie theta function 6m satisfies the relation

(7.4) 0m(z, w + /z) = fm{l)/{{l, 1,0), (z,

/or a// (z, to) e 0 = 0 x V+andl € L C Vo.
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PROOF. Applying Lemma 7.4 for (z, w) e Q> x V+ and r = /+ — /_ with r+ = /+ e
L+ and r_ = —/_ 6 L_, we have

0m(z, w + lz) = e [-£(/_, r(z)/_)/2 + 0(Z_, w + m+)]0m+r(z, w).

However, for m + r = (m+ + /+) + (m_ — /_), we have

m+r(z, w) = J2 e[P(k. + m_ - /_, T(Z)(*_ + m_ - L))/2

+ m_ - L, w + m+ + /+)]

_, w + m+ + l+

+m_, x{z)(k_

_ +m_,w

where we used the condition fl(L, L) C Z. Thus we obtain

9m(z, w + lz)=e [-0(l_, r(z)/_)/2 + 0(L, w + m+) + P(m_, l+)]0m(z, w).

Since P = 0 on V+ x V+ and VC x V_, we have

1, Z, 0), (z, u;)) = e [p(l, lz)/2 + 0(1, w)] = e [fi(L, lz)/2 + 0{L, w)]

= e [£(/-, /+)/2 - /8(/_, T ( Z ) L ) / 2 + ^(/

Hence we see that

l, 1,0), (z, u;)) = e [ - ^ ( L , r(z)/_)/2 + p(L, w)

and therefore the proof of the theorem is complete. •

REMARK 7.6. If we set u = (1,1,0) e G and z = (z, io) e ^ , then (7.4) can be
written in the form

where ^ : (F x L x {0}) x (Q) x V̂ .) -> C is the automorphy factor given by

^ ( ( y . '• °). (z.«")) = *(DS((Y> l< 0), (z,

for all y e T, / e L and (z, u>) e ^ x V+.
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Given an element z 6 Q> and a quasi-character ^ of L, we denote by V^ the
complex vector space consisting of all functions / : V+ ->• C satisfying the relation
Tz((l, 1,0))/ = f(l)~xf for all Z € L.

PROPOSITION 7.7. Let z e Qi, and let f be an element of V£ for ,some quasi-
character \(rofL. Then Tfy 0 0 ) / is an element of V^ for all y e G.

PROOF. Let I € L, y e G and z e &>. Then we have

(1, yl, 0)(y, 0,0) = (y, 0, 0)(l, /, 0) = (y, yl,0) e G = G x V0 x R.

Hence, using Proposition 6.4, we obtain

r"((y, o, o» o r«i , z, o)) = r ((y, o, o» o r «i, /, o».

Thus for/ 6 V̂ , we have

Tyz((y, 0, 0))(r ((1, Z, 0))/) = r ((y, 0,0))(r((l, Z, 0))/)

and therefore we see that Tz((l, 1,0))/ e Vf. •

Given z 6 Q) and w 6 V̂  we define the function 0^ : V+ -+ C by

for all w e V+.

PROPOSITION7.8. Let z e &>, andsetT= {1,1,0) e G/orZ e L. Let Tz(l) be
the associated operator on &z given by (6.16), and let tym be the quasi-character
associated to m € Vo in (7.3). Then the function Qz

m is an element of V^.

PROOF. Given z € 3>,m e Vo, I = (1, Z, 0) e G and w e Vc, we have

However, we have

T-\z, w) = ( 1 , - Z , 0 ) ( z , w) = (z,w- lz);

hence we obtain (/"' (z, w))w = w — lz. Thus we see that

\ (z, w)Txxlrm{-l)f(T\ (z, u>))

)0<(u/> = i M z r 1 ^ ) .

Thus the proposition follows. •
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Let L\ be the dual lattice of L+ relative to fi, that is,

L% = [v € Vo | 0(L+, v) C Z}.

Then by (7.1), we have L_ c i ^ . Now we state the main theorem in this section
which extends a result of Satake [21, Section 3] to the case of Hermitian symmetric
domains.

THEOREM 7.9. Let £2 be the complete set of representatives L+ modulo L_. Then,
for z 6 @ and m € Vo, the set {6^+r | r e £2} forms a basis of the complex vector
space V£m.

PROOF. Since the set [6^+r \ r e £2} is obviously linearly independent over C, it
suffices to show that it spans the complex vector space V£m. Let z € S>, w e Vo and
m = m+ + m_ with m+ e V+ and m_ e V_. Then for /+ e L+ we have

I, l+, 0), (Z, u;)) = 1, tfr(/+) =e[j8(m_, /+)].

Thus, for/ € V^, the relation T(\,+ 0)f = \/rm(l+)~lf (w) reduces to

Hence the function fe(w) = f (w)e [—fi(m_, w)] satisfies the relation

[-j8(m_, /+)]e [-y3(m_, u;)]e [fi(m-, /+)] = /e(io).

Therefore we obtain a Fourier expansion of fe{ui) of the form

ft(w) =f(w)e[-0(m_, w)] = J ]

which implies that/(io) = 5Zret* a ( r ) e [ ^ ( r + m-> "Ol- )̂n the other hand, for
/_ € L_, we have

f(w- T(Z)/_) = e [-^(/_, T(Z) /_) /2 + y3(L, u;) + £(/_, m + ) ^ (u>).

By comparing the coefficients of e [^(r + m_, u;)] in the Fourier series of both sides
of the above equation, we see that

a(r)e [fi(r + m_, x(z)L)] = a(r - L)e [-0(

hence we have

a(r - /_) = a(r)e [fi(r + m_, T(Z)L) + /8(/_
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for each r e L*+. Using this relation, we obtain

refi ;_et_

- P(L, m+) + P(r + m_- L, w)].

However, we have

P(r + m_, r(z)L) + P(L, r(z)L)/2

= P(r + m_, r(z)L)/2 + P(L, r(z)(r + mJ))/2 + P(L

= P(r + m_, r(z)L)/2 + /?(/_, r(z)(r + w_ + L))/2
= /3(r + m_ + L, r(z)(r + m_ + /_))/2 - ^(r + m_, r(z)(r

-/3(L, m+) + P(r + m_, w) = p(r + m_-L,w + m+) + p{r ^

Thus we see that

/ (w) = ^ a ( r ) e [fi(r + m_ - L, r(z)(r + m_))/2 - P(r + m_, i
reft

where c(r, z) = a(r)e [)3(r + m_, r(z)(r + m_))/2 — /3(r + m_, m+)] is a constant
independent of 10; hence the theorem follows. •
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