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Multi-Regge theory 

9.1 Introduction 

So far we have limited our attention to four-particle scattering ampli­
tudes (i.e. to processes of the form 1 + 2-+ 3 + 4). These have the 
advantage of being kinematically rather similar to the potential­
scattering amplitudes, for which the basic ideas of Regge theory were 
originally developed. In particular they depend on only two inde­
pendent variables, 8 and t, and so it is a fairly straightforward matter 
to make analytic continuations in J and t. Also there is a wealth of 
two-body-final-state data with which to compare the predictions of 
the theory. 

Though the initial state of any physical scattering process will 
always in practice be a two-particle state (counting bound states such 
as deuterons as single particles), except at very low energies particle 
production is always likely to occur. And as the energy increases two­
body and quasi-two-body final states make up a diminishing fraction 
of all the events. So it is very desirable to be able to extend our under­
standing of Regge theory so as to obtain predictions for many-body 
final states. Theoretically, this is even more necessary, since models 
like fig. 3.3 for Regge poles or fig. 8.6 for Regge cuts demonstrate how 
even in 2 -+ 2 amplitudes Regge theory makes essential use of many­
body unitarity. So if we are to have any hope of making Regge theory 
self-consistent (in the bootstrap sense, for example) we must be able to 
describe such intermediate states in terms of Regge singularities. 

In principle this is a fairly simple matter since if we consider for 
example the amplitude fig. 9.1 (a) with 812, 834, 845 -+oo we may expect 
from fig. 9.1 (b) that 

(9.1.1) 

and indeed this is so. However, there are several problems to be solved 
before we can be sure that this result is right. It is necessary to under­
stand how to define scattering angles, and thence partial-wave ampli­
tudes, for many-body processes, and how to continue them analytically 
both in J and in the channel invariants. We must also be clear about 
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FIG. 9.1 (a) The amplitude for 1 + 2-+ 3 + 4 + 5. (b) A double-Regge model for 
this process. (c) 1 +2-+ 3+ (45). (d) Another double-Regge coupling. 

which variables are being kept fixed and which tend to infinity when 
we take a given Regge limit, the singularity structure of the amplitude 
in these variables, and the order in which the limits are to be taken. 
And the central vertex in fig. 9.1 (b) involves Reggeons whose spin 
and helicity depend on a so we must check on the resulting kinematical 
factors. 

In fact most of these questions cannot yet be tackled rigorously 
because to do so would require a more detailed understanding of the 
singularity structure of many-particle amplitudes than has so far been 
achieved. Hence we shall adopt a rather simple-minded approach, and 
assume that the methods which we adopted in chapters 1 and 2 can be 
extended in the most obvious way without mishap. A more thorough 
account of present theoretical knowledge can be found in Brower, 
de Tar and Weis (1974). 

In the next section we review the kinematics of many-body pro­
cesses, and we then go on to consider the different Regge asymptotic 
limits which may be taken. This is followed by a more detailed discus­
sion of the 2-+ 3 amplitude, on the basis of which we postulate some 
general rules for any multi-Regge amplitudes. It is rather remarkable 
that the dual models of chapter 7 can readily be extended to many­
body amplitudes, and as they provide a good deal of insight into the 

https://doi.org/10.1017/9781009403269.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.010


INTRODUCTION 293 

nature of multi-Regge couplings we outline the main results. The 
chapter concludes with a very short discussion of some phenomeno­
logical applications of the theory. 

9.2 Many-particle kinematics 

We consider first the process 1+2~3+4+5 shown in fig. 9.1. For 
simplicity we suppose that all the external particles are spinless. 

The square of the centre-of-mass energy is (cf. (1.7.5)) 

(9.2.1) 

Similarly, for the outgoing two-body channels we have the sub­
energies 

834 = (Pa+P4)2, 845 = (p4+Ps)2 and Bas= (Pa+Ps)2 (9.2.2) 

The 6 crossed-channel invariants, involving both incoming and out­
going particles are, 

tl = t2s = {p2-Ps)2, t24 = (p2-P 4)2, t2s = (P2- P5)2} 

t2 = t15 = (PI-P5)2, tu = (PI-P4)2, t1a = (PI-Ps)2 
(9.2.3) 

Clearly any three-particle invariant will be equal to some two-particle 
invariant (as in (9.2.1)) because of four-momentum conservation, so 
the 10 variables defined in (9.2.1), (9.2.2) and (9.2.3) include all the 
independent invariants. But evidently they cannot all be independent 
because we showed in section 1.4 than ann-line amplitude has only 
3n- 10 independent variables, so with n = 5 only 5 can be regarded 
as independent variables. In the centre-of-mass frame of particles 4 
and 5, i.e. where q4 + q5 = 0, s45 is the square of the total energy of 
these particles, i.e. 

s45 = (p4 + p 5)2 = (E4 + E5, 0)2 = (E4 + E5)2 = m~5 (9.2.4) 

and m45 is called the 'invariant mass' of the 'quasi-particle' (45). So 
if we regard the reaction of fig. 9.1 (a) as the process 1 + 2 ~ 3 + ( 45) 
shown in fig. 9.1 (c) we have, like (1.7.21), 

B12+t2a+t1a = mi+m~+m~+s45 = L'4s 

with similar relations for other pairings of particles. 
A convenient choice of independent invariants 

fig. 9.1 (b) is 

(9.2.5) 

suggested by 

(9.2.6) 

but this depends on how we choose to couple the particles together, 
and fig. 9.1 (d) for example, suggests a quite different choice. 
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In the centre-of-mass frame q 1 + q2 = 0 the energies and momenta 
of particles 1 and 2 are given by (1.7.8), (1.7.9) and (1.7.10), i.e. 

(9.2.7) 

etc. Similarly if we regard ( 45) as a single particle of mass m45 = ..j846 
as above, it is clear that in this frame 

E 3 = 2~8 (8+m~-845), q;3 = :/t(8,m~,845 ) (9.2.8) 

with similar expressions for particles 4 and 5. 
Also the scattering angle between the direction of motion of particle 

3 and that of particle 2 is given by (1.7 .17) with .J845 instead of m4> i.e. 

{) 82 +8(2t1 -E45 ) + (m~-m~) (m~-845 ) 
Z2a = cos s23 = ,U 2 2 ,.\! 2 ) (9.2.9) (8, m1, m 2) (8, m3, 846 

and the physical region for this scattering process is given by (1.7.24) 
with the obvious substitutions. 

The four-momentum conservation relation (9.2.1) 

812 = {pa + P4 + P5)2 

with (9.2.2) and (1.7.4) gives 

812 = 834 +845 +835 -m~-m~-m~ (9.2.10) 

so for a given fixed 812 only two of the three sub-energies are inde­
pendent, and the boundary of the physical region, determined by 
( 1. 7 .24) with the substitutions described above, is as shown in fig. 9.2. 
This is known as a Dalitz plot (Dalitz 1953). If there is a resonance, r, 
which decays into particles ( 4 + 5), as in fig. 9.3, we can expect that 
for a given fixed 8 12 there will be a peak in the cross-section as a function 
of 845 along the line 845 = M~. Likewise if 3 and 4 resonate there will 
be a peak at fixed 8 34, while if 3 and 5 resonate there will be a diagonal 
line across the plot at fixed 835• So a plot like fig. 9.2 is very useful for 
deciding which pairs of particles, if any, are resonating. 

But our main interest lies in examining Regge exchanges like 
fig. 9.1 (b), and for this purpose we need to be able to define angular 
momenta for the various t channels. Thus one of the crossed processes 
to fig. 9.1 is fig. 9.4(a), i.e. 

2+3-+(15)+4 (9.2.11) 

where we treat 15 as a quasi-particle of mass (p1 - p 6)2 = t2• The 
centre-of-mass energies and momenta can all be obtained from 
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FIG. 9.2 Dalitz plot of the variation of s34, s45 and s35 for a given s12 constrained 
by (9.2.10). The boundary of the physical region determined by (1.7.24) with 
the obvious substitutions is shown. The dotted lines mark positions where 
resonance peaks may occur. 

FIG. 9.3 The amplitude for 1 + 2-+ 3 + r, r-+ 4 + 5. 

(a) 
(b) 

FIG. 9.4 (a) The crossed-channel process 2+3 -+(15) +4. 
(b) The crossed-channel process (23) + 4-+ I+ 5. 

(1.7.15) with the obvious substitutions, where now t-+t23 = t1 , and 
the centre-of-mass scattering angle of particle 4 with respect to the 
direction of3 is given by (1.7.19), viz. 

(} _ _ _ t~+t1(2s34 -E15)+(m~-m~)(t2 -m~) 
cos 34 = Zta4 = Z1 - 1 1 2 2 1 1 2 

tt~(tv m2, m3} tt~(t1 , t2 , m 4 ) 

where (9.2.12) 

This is the scattering angle in the centre-of-mass system of 2 + 3, i.e 
q 2 + q3 = 0. But the process (9.2.11) differs from a 2-+2 spinless-
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particle scattering process not only because of the variation of the 
'mass' of the (15) system, but also because the (15) quasi-particle 
carries angular momentum. It will subsequently 'decay' into the 
particles I and 5 with an angular distribution which depends on the 
helicity of (Io) in the 2-3 centre-of-mass system (like (4.2.13)). 

Then for the process (9.2.13) 

(fig. 9.4(b)) we proceed to the I-o centre-of-mass frame, in which the 
scattering angle of 5 relative to the direction of 4 is 

() _ _ _ t~+t2(2s45 -L'23)+(t1 -m~)(mi-m~) 
cos 45 = Zt45 = Zz- ll(t t m2) ll(t m2 m2) 

ll 2• 1> 4 ll 2• 1• 5 
(9.2.14) 

The azimuthal angle ro12 between the plane containing particles 4 
and 5 and that containing 3 and 4 (see fig. 9.5) is called the Toller angle 
(or helicity angle) (Toller 1968). This angle may be evaluated with 
some effort (see Chan, Kajantie and Ranft 1967) as follows. 

Since cu12 is the angle about the direction of particle 4 it will be 
unaltered if we make a Lorentz boost to the rest frame of particle 4. 
This makes the kinematics much easier to cope with. In this rest frame 
the Toller angle is defined by 

COSIDn = (lq2x qs)l.l(qlx q51) (9.2.15) 
q2x qs ql x q5 

i.e. the angle between the plane containing particles 2 and 3 and that 
containing 1 and 5. Since, from (1.7.2) and (1.7.4), 

qi. q1 = EiE;-Pi·Pi• q~ = -m~+E~, i,j = 1, ... , 5 (9.2.16) 

in the rest frame of 4, where q4 = 0, E4 = m4, 

(9.2.17) 

: ~ 3,5} 
~ = 1,2 

(9.2.19) 

so 

Now 
lq2x qal = lq2llqslsin023 

= lqzllqal(1- cos2 02a)t =[q~qi-(qz.qa)2]l 
(9.2.20) 
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Fm. 9.5 Angles in the I-5 centre-of-mass system. q4 is along the z axis, 
q 3 is in the x-z plane, and w12 is the angle between the plane containing q 3 and 
q4 and that containing q 4 and q 6, i.e. between q6 and the x-z plane. 

and Lagrange's identity gives 

( q2 X qa) · ( ql x qs) = ( q2 · ql) ( qa · qs)- ( q2 · qs)( qa· ql) (9.2.21) 

and all these scalar products can be evaluated using (9.2.16). Thus 

1 
q2· qa = E2Ea-P2·Pa = 2- (t24 -m~-m~) 

m4 
1 2 2 t2a- m~ - m~ 

x 2m
4 

(sa4- m3 - m4 ) - 2 (9.2.22) 

(9.2.23) 

(9.2.24) 

(9.2.25) 

(9.2.26) 

so that 

and hence 

Similarly I q4 x q5l--+ 2
845 .J- t15 (9.2.28) 
m4 

and with more effort we find 

( q2 X qa) · ( ql x qs)--+ 8
1 2 {s12W2a + t15- m~)2 - 4t2atl5] 
m4 

+ s34 s45(t23 + t15 - mn} (9.2.29} 
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so that from (9.2.15) with t1 = t 23, t 2 = t 15, 

in the limit 812, 834, 845 ~ tv t 2, mi, ... , m~. At fixed t 1, t 2 it is often more 
convenient to use the variable 1J12 defined by 

(9.2.31) 

rather than w12• 

The set of variables (9.2.32) 

provide an alternative to (9.2.6), and one which is more useful for 
Reggeization. 

To extend this approach to the six-particle amplitude, fig. 9.6 (a), 
we simply note that it becomes similar to the five-particle ampli­
tude, fig. 9.1 if we regard (16) as a particle, and replace 8 12 by 
8 345 = (p3 + p 4 + p 5)2, but in addition to the scattering angles z 1 and z 2 

and the Toller variable 1}12 = 8 345/834 845 we also have z 3, the centre-of­
mass scattering angle for (234) + 5-+ I+ 6, and the Toller angle ro23, 

the angle between the plane containing particles 5 and 6 and that 
containing 4 and 5 in the I-6 rest frame. Or instead we can use 
1}23 = 8456/845 8 56. The sets of variables 

tv t2, t3, 834• 845• 856• 8345• 8456• or t1, t2, t3, Zv Z2, z3, 1/12• 1/23 

(9.2.33) 

give the required 8 independent variables for a 6-line amplitude. Of 
course these sets are convenient only if we choose to couple the 
particles as in fig. 9.6(a), rather than, say, fig. 9.6(b) for which a 
different set of angular variables is appropriate (see below). 

As the number of external lines increases so does the number of 
different ways of coupling together the particles. But for any given 
configuration a complete set of variables is provided by the momen­
tum transfers, ti, the cosines of the scattering angles, zi, and the 
Toller variables, 1Jii• associated with each adjacent pair oft's (ti and t1 
say). And for given fixed values of the t's these angle variables can all 
be expressed in terms of the 8's. 
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Fm. 9.6 (a) Multi-Regge amplitude for 1 + 2-+ 3 + 4 + 5 + 6. 
(b) Another multi-Regge coupling. 

9.3 Multi-Regge scattering amplitudes 

The Froissart-Gribov partial-wave projection (2.5.3), in terms of 
which Regge poles were defined in 2 ~ 2 scattering, involves integra­
tion over the s-discontinuity of the scattering amplitude (2.7.2). The 
pole appears in the power behaviour of this discontinuity. So when 
generalizing to a multi-Regge limit of a many-particle scattering 
process we shall have to concern ourselves with simultaneous dis­
continuities in several variables. 

It is obviously essential that these discontinuities should be inde­
pendent in the asymptotic limit. For normal threshold discontinuities 
it is easy to decide when they are independent. In an n~m scattering 
amplitude, fig. 9.7, we can distinguish between overlapping channels 
such as x andy, for which the invariants 

Bx = sl, ... ,i = (Pl +P2+ ··· +pi)2 

and 

have the particles i and i- 1 in common, and non-overlapping channels 
like sx and sz which have no particles in common and are therefore 
independent. The normal-threshold discontinuity of a given channel 
is a singularity just in that channel's invariant (e.g. the 12 threshold 
branch point is at s12 = {p1 +p2)2 = (m1 +m2) 2) and so normal­
threshold discontinuities in non-overlapping channels are independent 
of each other. But more complicated Landau curves do not have this 
independence. For example the box diagram, fig. 1.10(b), gives the 
s-t curve (1.12.10) for the position of the double discontinuity. It is 
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FIG. 9.7 An n-+m amplitude. The invariants'"=: (p1 +p2 + ... +p;) 2 

overlaps By=: (p;-1 +p;+ ... +pi) 2 but not s. =:(pi+ ... +Pn) 2• 

generally assumed that the normal-threshold discontinuities are suffi­
cient to give the Regge asymptotic behaviour, in which case only 
non-overlapping channels have simultaneous Regge discontinuities. 
This is trivial in 2--+2 scattering since we obviously do not have 
simultaneous Regge behaviour in the overlapping s = (p1 + p 2)2 and 
t = (p1 - p 3 ) 2 channels, but it has not been established for certain in 
more complex amplitudes. It is, however, true in all the simple models 
such as ladder diagrams or dual models and we adopt it here (see 
Brower et al. 1974). 

There are generally several different asymptotic limits which can 
be taken for a given amplitude and for a given configuration of the 
particles, depending on which variables are taken to infinity, and 
which are held fixed. Thus in the five-particle amplitude, fig. 9.1, 
we have the following possibilities. 

(a) The single-Regge limit. In this case z1 --+00 but t1 and the other 
angles and invariants in (9.2.32) are held fixed. This means s34 --+ oo 
from (9.2.12), and hence s12 --+00 from (9.2.10) but s45 , t1 andt2 are fixed. 
Also to keep w12 fixed in (9.2.30) (or 'f/12 in (9.2.31)) we must keep 
the ratio s12/s34 fixed as both --+00. 

This corresponds to the single-Regge graph fig. 9.1 (c). There are 
obviously three possible single-Regge limits of the amplitude depend­
ing on whether we take s34, s45 or s35 --+ oo. 

(b) The double-Regge limit. Here z1, z2 --+oo, the other angle and the 
invariants in (9.2.32) being fixed. This means s12, s34 and s45 --+oo, tv t2 

fixed, and with the ratio s12/s34 s45 fixed to keep w12 and 'f/12 fixed. 
This corresponds to the double-Regge graph fig. 9.1 (b), but other 

double-Regge limits like fig. 9.1 (d) can be obtained by permuting the 
final-state particles. 

(c) The helicity limit. This has w12 (and 'f/12)--+ oo, with zv z2, t1 and t2 

all fixed, so s12 --+oo with s34, s45 , tv t2 fixed. Since this involves 
cos w12 --+oo it is clearly not a physical limit. 

Obviously (a) is just the same as the single-Regge limit in 2--+ 2 
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scattering except that one of the final-state 'particles' is actually 
a two-particle state with fixed invariant mass. It is thus similar to 
resonance production in quasi-two-body processes and requires little 
further discussion. But (b) and (c) are quite new, and depend in an 
essential way on there being three particles available in the final state. 
They will be considered below. 

This discussion can readily be generalized to any multi-particle 
final state. In the single-Regge limit those invariants which overlap 
the given Reggeon line (e.g. 812 and 834 in fig. 9.1 (c)) all tend to infinity, 
with fixed ratios, and all the other independent invariants (tv t2, 845 ) 

are held fixed. In the multi-Regge limit those invariants which overlap 
any Reggeon line (e.g. 812,834,845 in fig. 9.1 (b)) tend to infinity, and the 
others are held fixed. The ratios of those invariants which overlap 
a given Reggeon are held fixed, while those invariants which overlap 
several Reggeons (for example 812 overlaps a 1 and a 2 in fig. 9.1 (b)) 
tend to infinity like the products of the invariants of the individual 
lines (for example 812 ,...., 834845). In the helicity limit only those in­
variants which overlap two Reggeons tend to infinity, with a fixed 
ratio so that the Toller angle between those two Reggeons tends to 
infinity. 

We shall now examine in more detail the Reggeization of the 2-+ 3 
amplitude, fig. 9.1. Since we are interested in using the results in the 
8-channel physical region, some authors have preferred to use the 
0(2, 1) group-theory method (whose application in 2-+2 scattering 
was mentioned in section 6.6); see Bali, Chew and Pignotti (1967), 
Toller (1969), Jones, Low and Young (1971). However we shall use the 
Sommerfeld-Watson transform of the t-channel partial-wave series, 
and assume that this can be continued in the t's without difficulty. 

In the single-Regge limit (a) we are concerned with the t-channel 
process 2 + 3-+ (l5) + 4 where (l5) is a quasi-particle (see fig. 9.4 (a)). 
So following section 4.6 we begin with the t-channel partial-wave 
series (4.5.10) 

A(tvz1; ro12; t2,z2) = ~ ~ (2J1 + 1)AJ1(t1 ; t2,z2)#x(z1)eiAwu} 
J 1 =0 A= -J1 

00 

2: 2: (2J1 + 1)AJ1 (t1;t2,z2)#x(z1)eiA"'u 
A=-oo J,;;.l,\l 

(9.3.1) 

where J1 is the angular momentum of 3 with respect to 2, and in 
addition to summing over all partial waves we have also summed 
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over all the possible helicities A for the quasi-particle (15). By angular­
momentum conservation IAI cannot be greater than~· (Remember 
that for simplicity we are assuming that all the particles 1, ... , 5 are 
spinless.) The second expression in (9.3.1) seems more appropriate 
for continuing in J1 (though in fact it may be better to continue in A 
first: see Goddard and White (1971), White (1971, 1973b)). The factor 
eiA"'u appears because (see (4.4.7) and (4.2.14)) w12 gives the azimuthal 
angle in the 'decay' (I5)""*I +5, and by definition A is measured in 
the direction of motion of (l5). 

We then replace the sum in (9.3.1) by the Sommerfeld-Watson 
integral (4.6.1) in the complex.!,_ plane, and draw back the integration 
contour to expose the leading Regge pole a 1(t1) whose contribution 
can be written 

co 
AR(t1, z1 ; ro12 ; t2, z2) = F(- a 1(t1)) y1(t1 ) (z1)"1<t1> :I; eiA"'uy.\(t1 ; t2, z2) 

.\=-co 
(9.3.2) 

where we have factorized the residue into a part y1(t1) for the 2-3 
vertex, and y.\(t1 ; t2, z2) for the (Io)-4 vertex, and have included the 
nonsense factor F( -a). If we define 

co 
fl(tl, ro12; t2, z2) = ~ ei.\wuy.\(tl; t2, z2) 

.\=-co 

the Fourier transform of I'.\• and take the asymptotic form 

(z1)"1 ""' (834)"1, 

we can rewrite this more conveniently as 

(9.3.3) 

A R(812, 834, s45, t1, t2) = F(- a 1(t1)) y1(t1) fl(t1, ro12; t2, z2) (834)"1 
(9.3.4) 

just like the 2""*2 case (6.8.1). 
For the double-Regge limit we start from a double partial-wave 

decomposition in z1 and z2 (Ter-Martirosyan 1965, Kibble 1963), i.e. 
co 

A(tv z1; w12; t2, z2) = ~ ~ (2J1 + 1) (2J2 + 1) 
J,J,=O .\ 

X AJ1J 1.\(t1, t2) #i(z1) df~(z2) &.\wn (9.3.5) 

where IAI ~ J1,J2• Then if we make the Sommerfeld-Watson trans­
form in both J's and expose the leading Reggeon in each channel, we 
get in the double-Regge asymptotic limit 

A R(812, 834, 845, t1, t2) = F(- a 1 (t1)) y1(t1) (834)"1<t1l 

X fl(t1, 1j12, t2) F(- a2(t2)) y2(t2) (845)"a<ta (9.3.6) 

https://doi.org/10.1017/9781009403269.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.010


MULTI-REGGE SCATTERING AMPLITUDES 303 

where fl(t1, 1}12, t2) is the coupling at the central vertex (~X1 ~X2 4) and 
depends on the Toller angle as well as the t's. 

Apart, perhaps, from the inclusion of the 't/u dependence these 
results are just what one would naively expect from drawing diagrams 
like fig. 9.1 (b). However, we have certainly not done full justice to the 
problem because we have not bothered much about the discontinuities 
in the different invariants, and in particular we have completely 
ignored the fact that Reggeons have signature and hence have dis­
continuities for both positive and negative 8, which give the amplitude 
its phase. We must now remedy this. 

The assumption that there are no simultaneous Regge discontinui­
ties in overlapping-channel invariants means that for example the 
discontinuity in 8 34 must not itself have a discontinuity in 845, though 
it may have one in 812. So we expect that the 834 discontinuity may 
involve terms like 

(- 834)'"c'"s (- 812)'"• ~(1}12) + (- 834)'"c'"s (812)'"• V~(1J12) (9.3. 7) 

where the V's are real functions of the 1J'S (for negative t1, t2). Both 
terms "' 18341'"1 18451'"• since 812 "'834845 in the double-Regge limit, but 
the first term is cut for positive 812 as well as 834, while the second is not. 
We also want the Reggeons to have a definite signature, so that for 
example the Reggeon ~X1 gives a discontinuity for positive 834 and an 
equal one for negative 834 (up to a ± sign depending on its signature .9;_) 
and so we have equal amplitudes under the interchange 2 ~ 3. There 
are thus four different terms, from fig. 9.8, and combining them, in 
the physical region where all the Regge functions are real, gives 
(Drummond, Landshoff and Zakrzewski 1969 b) 

AR(812, 834, 845• t1, t2) = F( -~X1(t1)) Y1(t1) (834)'"l<tl) F( -~Xa(t2)) 

X Y2(t2) (845)'"a<ta> rg1g21 ('t/12)'"1(tl) Ji(tv t2, 't/12) + g2g12(1Ju)'"a<ta> ~(t1, t2, 1J12)] 

where gi = e-1"'"' + .9:;, gii = e-1"<'"•-'") + .9:; .9j 
This may be re-expressed more conveniently as 

A R(8u, 834• 845• tl, t2) = Y1(tl) R1(t1, 834) 

x GMt1, t2, 't/u) R2(t2, 845) Y2(t2) 

where Ri(ti, 8) = gi(ti) F( -~Xi(ti)) 8'"i<t•> 

and a:,(ti, ti, 't/ij) = gi1gji('t/ij)'"•<t•> 

X Ji(ti, ti, 't/ij) + gjtgij('t/ii)'"j(tj)~(ti, t,, 't/ij) 

(9.3.8) 
(9.3.9) 

(9.3.10) 

(9.3.11) 

(9.3.12) 
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2 3 

4 + + 

1 5 

FIG. 9.8 The four different terms in the double·Regge amplitude stemming 
from the signature properties of the Reggeons. The x implies that the Reggeon 
is twisted (8-+ -8) like the twisted ladders of fig. 8.11. 

We can regard (9.3.11) as the Reggeon propagator, and all the phase 
complexity has been put into Gt2 , the coupling of particle 4 to the two 
Reggeons. 

For more complicated amplitudes with extended chains ofReggeons 
like fig. 9.6(a) we simply increase the number of propagators and G's 
in the obvious manner. However, with six lines a new type of con­
figuration with atriple-Reggeon coupling, fig. 9.6(b) becomes possible. 
In this case we can write (Landshoff and Zakrzewski 1969) 

AR = y(t1) R1(t1, 8346) y(t2) R2(t2, 8456)y(t3) 

x Ra(ta, 8234) Gua(tl, t2, ta, 1Ju• 1/23• 1Js1) (9.3.13) 

where again all the phase problems are contained in G123. A careful 
analysis (de Tar and Weis 1971) finds 

G12a(tl, t:~, ta, 1Ju, 1/:~s• 1Js1) = g31 ga12V12 + g11 g12s Y:~s + ga1S231 V 31 

+s116216ale-i11(«l+«s+"al(1 +.9'; ei11«l+~ei11"•+~ei11«a)V123 

where v,;i = (1/ki)<Zi (1/jk)«{~i } 

v,;ik = ( 1/ij )i<«&+«j-«.tl( 1/jk)i<«j+«.t-<Zi>(1Jki)l<«.t+«i-<Zj)~ik (9.3.14) 

Siik = e-br(«&-<Z;-«.tl + ~ 9j ~ 

and the V's are real functions. Any multi-Regge diagram can be 
expressed in terms of 'Yi• Ri, Gii and Giik as functions of the appropriate 
invariants (Weis 1973, 1974). 
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The other limit to be discussed is the helicity limit (c) (see Brower 
et al. 1973b). Starting from the double partial-wave series (9.3.5) 

co co co 

A(t1,z1;w12;t2,z2)= 2; 2; 2; (2J1+1)(2J2+1) 
i\=- co J,=li\1 J,=li\1 

X AJ1J2i\(tv t2) d{1(z1 ) d{&(z2) eii\wu (9.3.15) 

we express all three summations as contour integrals like (4.6.1) 

A(tv zl; IDt2; t2, z2) 

= (- .!.)3Jdi\JdJ, IdJ. (2Jl + 1) (2J2+ 1)AJ1Joi\(tVt2) 
2i 1 2sin (7Ti\)sin (7T(J1-i\))sin(7T(J2-i\)) 

xd{H-z1)df6(-z2)eii\wla (9.3.16) 

which gives, from the Regge poles in J1 and J2, taking the asymptotic 
form ofthe dcxi( -zi) (even though we shall not in fact be making the 
zi large), 

AR(tvzl; w12; t2,z2) =-:if di\( -834)cxl(tll( -845)cxa<t.> 

eii\wl2 
x -. -i\ F(i\- a 1)F(i\- a 2) (Ji\ (t1, t2) y1(t1) y2(t2) (9.3.17) 

Slll7T 

where (Ji\ is the central coupling. Then using the fact that 

coswl2 = t(e1Wu+e-iwu) "''YJt2 
we can rewrite this as 

A R(tv zl; w12; t2, z2) 

= 2~i I di\(- 8a4)cx1(- 845)cx• (- 'f}12)i\ F(i\- a1)F(i\- a 2) F(- i\) 

X (Ji\(tl, t2) Yt{tl) Y2(t2) 

= 2~i I di\(- 8a4)cxci\ (- 845)cx,-i\ (- 812)i\ F(i\- al) F(i\- a2) 

X F( -i\)(Ji\(tl,t2)Yl(tl)Y2(t2) (9.3.18) 

(see White (1972a), Brower et al. (1974) for details). Then for 812 --+oo, 
834> 845, tv t2 fixed we find, on opening the i\ contour, that the leading 
asymptotic behaviour stems from the' helicity poles' of the F-functions 
at i\ = ai, and gives terms 

A R "' ( 812)cx1 and "' ( 812)cxz 

So in this helicity limit the Regge behaviour arises from the nonsense 
F-factors which relate the coupling of each Reggeon to the helicity 
of the other Reggeon. 
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We shall find that this limit is useful in the next chapter, but for 
multi-Regge analysis it is of course the various multi-Regge limits 
which concern us. 

9.4 Multi-particle dual models* 
In chapter 7 we introduced the idea of duality: that the Regge poles 
in the t channel already include the resonance poles in the 8 channel, 
at least in some average sense, and so it is a mistake to try to add these 
two types of contributions. The Veneziano model like (7.4.4), which 
we shall here take to be 

V(8 t) = F(-a(8))F(-a(t)) 
' g F(-a(8)-a(t)) 

(9.4.1) 

gives a specific, though not unique, realization of this property, with 
Regge behaviour both in 8 at fixed t, and in tat fixed 8. We now want 
to discuss the generalization of this result for many-particle amplitudes 
(see Veneziano 1974a, Schwarz 1973, Mandelstam 1974). It seems 
clear that this must be possible because for example in fig. 9.4(a) we 
treated (l5) like a single particle, and if we choose a positive value oft2 

such that a 2(t2) = n, a right-signature integer, we have a physical, 
and presumably dual, 2-7 2 process. 

First it should be noted that in 2-7 2 scattering there is a different 
dual amplitude for each planar ordering of the particles (see fig. 7.7) 
so that the V(8,t) term is represented by fig. 9.9(a) for which 8~t 
involves just a cyclic permutation of 1, 2, 3, 4. But since 8 ~ u requires 
a non-cyclic permutation there is also a V(8, u) term, fig. 9.9(b), which 
must be added separately, as must V(t, u). So generalizing this idea of 
planar duality we can expect that the set of diagrams, fig. 9.10, which 
all have the same cyclic ordering of particles 1, ... , 5 will be dual to 
each other, but thatfor example the diagrams of fig. 9. 11 will comprise 
a separate dual term. In all there are 12 inequivalent orderings of the 
particles and hence 12 dual terms. Secondly the two Reggeons a 1(t1) 

and a 2(t2) in fig. 9.10(a) depend on completely unrelated variables 
t23 and t15, so it is rather obvious that they cannot be dual to each 
other. It is Reggeons in overlapping channels, like t23 and 8 34 which 
have particle 3 in common (see fig. 9.10(a), (b)), which will be dual to 
each other. 

* This section may be omitted at first reading. 
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(a) (b) (c) 

FIG. 9.9 The three inequivalent planar orderings of the particles which 
give the three terms in a 2 ~ 2 Veneziano amplitude like (7 .4.17). 

2 3 

4 

3 4 

2~5 
1 

(a) 
5 

(c) 

FIG. 9.10 Three different Reggeon amplitudes which involve the same planar 
cyclic ordering of particles 1, ... , 5 and so should be represented by a single 
dual amplitude. 

2 3 2 3 

~(b) 

1~4 5 5 

2 "'- /_3...._/ 5 

1~--~4 
(a) 

4 

(c) 

FIG. 9.11 Some Reggeon amplitudes which are dual to each other, but 
not to those in fig. 9.10. 

To extend (9.4.1) we begin by rewriting it as 

V(s,t) = gB4( -a(s), -a(t)) = g J: dxx-a(sl-1(1-x)-a(t)-1 

(9.4.2) 

where B4 is known as the Euler jJ-function (see Veneziano (1968), 
Magnus and Oberhettinger (1949) p. 4). This integral is only defined 

II CIT 
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for a(s), a(t) < 0. As say a(s)-+0 we have 

B 4 ( -a(s), -a(t))-+ J: dxx-a<s>-1 + (terms finite at a(s) = 0) 

1 fin' ( ) = - a(s) + 1te terms 9.4.3 

so the pole at a(s) = 0 arises from the divergence of the integrand at 
x = 0. We can continue past this singularity by integrating by parts, 
giving 

a(t)+ 151 B ( -a(s) -a(t)) = dxx-"'<8>(1-x)-a(t)-2 
4 ' a(s) o 

(9.4.4) 

which exhibits the pole at a(s) = 0 and is defined for a(s) < 1 where 
of course there is another pole of B4• By repeating this process we find 
a sequence of poles at a(s) = 0, 1, 2, .... They can be obtained directly 
by expanding the integrand in the form 

where 

co 
(1-x)-a<t>-1 = !; Pn(-a(t))xn 

n=O 

{ -1)n 
Pn( -a)= - 1- ( -a-1) ( -a-2) ... (-a-n) 

n. 

and integrating each term to give 

B4( -a(s), -a(t)) = ~ Pn( -a(t)) 
n=O a(s) -n 

{9.4.5) 

(9.4.6) 

So with a linear trajectory a(t) the residue of the pole at a(s) = n is 
a polynomial in t (and hence z8 ) of degree n (cf. (7.4.13)). 

The symmetry of (9.4.2) in a(s) and a(t) ensures that the channels 8 

and t, which are related by a cyclic reordering of the particles 1, ... , 4, 
have identical poles; but the poles in t arise from the other end of the 
range of integration at X-+ 1, so that simultaneous poles in 8 and tare 
avoided. It is thus helpful to rewrite (9.4.2) as 

V(8u, t2s) = g J: dx12 dxzs(X1z)-"'<su)-1 (Xzs)-a<taa>-18(x12 + x23 -1) 

(9.4.7) 

where we have associated an x variable with each channel which 
contains a pole (which arises for x-+ 0), but by including the 8 function 
have ensured that the overlapping 812 and t23 channels do not have 
simultaneous poles. It is also possible to insert an arbitrary function 
f(x12, x23) into the integrand of (9.4. 7), analytic in 0 :::;; x ~ 1, in which 
case expanding fin a power series in the x's would give a sequence of 
Veneziano satellite terms like (7.4.15). 
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Forthefive-particleamplitude, fig. 9.10, we write similarly (Bardakci 
and Ruegg 1968, Virasoro 1969) 

V(8I2, 834> 84s, t23, tis) = gB5( -a(812), -a(834), -a(84s), -a(t23), -a(ti5)) 

= g s: dxi2 dxa4 dx4s dx2a dxis(xi2)-"'<sul-I ... (xis)-"'<t15l-I f(xi2• ... 'Xu;) 

(9.4.8) 

which has poles for each of the possible pairings of external particles 
(in this planar configuration). The function f must be chosen so as to 
prevent simultaneous poles in overlapping channels like, for example, 
834, t23 and 84s, so it must not be possible for x34 and x23 or x4s to vanish 
simultaneously. So we require f to vanish unless 

Xa4 = 1-x23X4s a 

X4s = 1-xa4XIs b 

XIs= 1-x4sxl2 c (9.4.9) 

xi2 = 1- XI5X2a d 

X2a = 1- XI2Xa4 e 

This gives five equations for five unknowns but they are not all 
independent equations, and in fact two of the variables remain free. 
These can conveniently be taken to be x23 and XIs· Then d gives x12 in 
terms of these, and e and a give 

respectively; equations band care consistent with these results. So we 
can write from a, b and e 

j(XI2> ... , XIs) = o(1-Xa4- X23X45) o(1- X45- Xa4Xl5) o(1- X23 -XI2X34) 
(9.4.10) 

We could also multiply by any analytic function of the x's to give 
satellite terms. These a-functions can be used to perform the integra­
tions over x34, x45 and x23 giving 

B 5( -a(8I2), -a(834), -a(845), -a(t23), -a(ti5)) 

II ( 1-x )-et(ss4l-I 
= dx23 dxl5 ( 1 - xi5x2a) -et(sul-I 1 23 

o -x15X23 

( 
1-X )-et(s45)-I 

X I5 (X )-et(t2,)-I (x )-et(t15)-I (1- X X )-I 1 _ X X 23 I5 I5 23 I5 23 
(9.4.11) 
I0·2 
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or 

B5( -a(s12) -a(s34), -a(s45), -a(t23), -a(t15)) = J: dx23 dx15 

x (x23)-a(t2a)-1 (x15)-a(t16l-1 ( 1-x23)-a(s34)-1( 1 _ x15)-a(s46)-1 

(9.4.12) 

The complete five-particle dual amplitude is the sum of 12 terms like 
(9.4.12) involving different planar orderings of the five external 
particles. These are necessary to give the Reggeons signature since, 
for example, the signature properties of a(t23) and a{t15) require the 
four diagrams of fig. 9.8. 

To examine the poles of this amplitude we put 

(9.4.13) 

ct:) 

and expand ( 1-X1sX23)-P = ~ (x15X23)n Pn(- fl) (9.4.14) 
n=O 

and integrate term-by-term to obtain (Hopkinson and Plahte 1968) 

ct:) 

= ~ Pn(- fl) B4(- a(t23) + n, - a(s34)) 
n=O 

x B4(- a(t15) + n, - a(s45)) (9.4.15) 

Then if we expand the first B4 as in (9.4.6) 

oo 1 m 

Bs = ~ -a(t )+m ~ Pn(-jl)Pm-n(-a(34)) 
m=O 23 n=O 

x B4(- a{t15) + n, - a(s45)) 

giving a residue of the pole at a(t23) = m of degree min s34, the angular 
variable for the t23 channel, so we have a daughter sequence of spins 
k = 0, ... , m. The residue contains the four-point Veneziano formula 
for (23) + 4-+ I+ 5 as one would expect from factorization in 
fig. 9.10 (a). However, while the highest trajectory contains just single 
resonances at a(t23) = m, all the daughter trajectories are multiply 
degenerate (Fubini and Veneziano 1969, Fubini, Gordon and 
Veneziano 1969), so simple amplitude factorization does not hold 
except on the leading trajectory. By excluding Veneziano satellites we 
have kept the daughter spectrum as simple as possible (Gross 1969), 
but none the less there are a very large number of particles. In fact 
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for a given m the number of levels is given by the number of ways of 
choosing non-negative integers ni which satisfy 

n1 + 2n2 + 3n3 + . . . = m 

For large m this increases as e<21T/v'a>m. It is of course a moot point 
whether one should take this seriously as a prediction of the model or 
whether it simply stems from the fact that we are unrealistically trying 
to represent a continuous branch cut by a sequence of poles. 

To obtain the double-Regge limit of (9.4.12) we make the replace-
ments 

so 

( ) o , , Y23 a 8 =a +a 8------)a 8, x23 = --, X = ..J!.l2_ 15-
8---HD -834 

(1-x23)-a(sa,l-1-+ (1 + Y23)-a'sa• -+e-Y•aa' 
834 

( 1 _ x15)-a(s,5)-1-+ e-Y•s a' 

-845 

( 1 - x23 x15)-a<snl+a(sa.l+a(s,,)-+ e<-v.aYrsSn/SasS•sl a' 

and hence 

B5-+ (- 834)a<t.,) (- 845)a<trsl fooo dy23 dy1s(Y23)-a<t.al-1 (Yls)-a<tu)-1 

X e-(Y2a+YIS+(y23Yl6812/sa,su)) a' ( 9 .4.16) 

This gives the double-Regge form (9.3.10) with an explicit form for 
the dependence on the Toller angle in V which can be shown to be 
(Drummond et al. 1969a) 

1 oo T( - a1 - n) F( - a 2 + a 1 - n) 
Ji(tv t2' 1]12) = F(- a1) F(- a 2) n~o n!(1J12)n 

(9.4.17) 

and similarly for Vz (where t1 = t23, t2 = t25, a1 = a(t23), a2 = a(t25 )). 
To generalize (9.4.8) to anN-particle amplitude we write for a given 

cyclic labelling of the particles (Chan 1968, Koba and Nielson 1969) 

VN = gBN = gf1 j(x) II (xmn)-amn-1dxmn (9.4.18) 
0 m,n 

and the full amplitude will be the sum of !(N -1)! terms for all the 
inequivalent non-cyclic permutations of the particles. A given 
amn = a(8mn) is specified by the channel invariant 

(9.4.19) 

as shown in fig. 9.12(b), and to prevent simultaneous poles occurring 
in overlapping channels we must insert into f(x) 

8(xmn +II xk1 - 1) (9.4.20) 
k,l 
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2 

t,,y, 8 za· 
3 

m 
t,, y, s,. 

4 

L .M 
M+1 

N-2 

n+1 tn-2 Yn-2 N-1 

(a) (b) 
N 

(c) 

FIG. 9.12 (a) 1 + 2-+ 3+ ... +N amplitude with a cyclic ordering of the 
particles. (b) The a:mn trajectory exchange. (c) Labelling for Yn = x1,.. 

where the kl are all the channels which overlap mn. To exhibit these 
we define N- 3 variables 

Yn = X1n' n = 2, 3, ... 'N- 2 (9.4.21) 

as shown in fig. 9.12 (c). Then all the other x's are related to these by 
(Chan and Tsou 1969) 

where 

am,n-1 am-1,n 
Xmn = , 2 :::;; m < n :::;; N- 1 

am,nam-1,n-1 

n 

amn = 1- II Yk' Y1 = YN-1 = 0 
k=m 

(9.4.22) 

(9.4.23) 

and it is found that the constraint (9.4.20) is incorporated by writing 

Jl N-3 

BN= dy2 ... dyN-2 II (1-YiYi+l)-1 II (xmn(Y))-"mn-1 
0 i=2 m,n 

(9.4.24) 

This agrees with the result (9.4.12) for N = 5, and the resulting 
multi-Regge behaviour corresponding to fig. 9.12(c) is 

B N-+ F(- a(t2)) (- s23)"<t,) V(t2, t3, ?J23 ) F(- a(t3)) (- s34)"<tal 

X V(t3 , t4 , 1J34) ... F(- a(tN_2)) (- sN-2, N-1 )"<tN_,) (9.4.25) 

where the V's are given by (9.4.17). This accords with (9.3.10) except 
that of course our single planar amplitude lacks the signature factors. 

It is also possible to include internal symmetry in these multi­
particle dual models. This is achieved by incorporating the quark (qq) 
structure of the mesons, just as we did in section 7.5 (Chan and Paton 
1969). 
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Each meson is represented by a matrix, the rows corresponding to 
the quark index, and the columns to the anti-quark index. Thus if we 
consider just the isospin symmetry the quarks are the I = ! iso­
doublets (5.2.2), and a meson will be represented by a 2 x 2 matrix: 
a Kronecker 8afJ if it is an isoscalar I= 0 (equation (5.2.7)), and the 
isospin Pauli matrices (5.2.5) (ri)afl' i = 1, 2, 3 if it is the ith com­
ponent of an isotriplet I= 1 (equation (5.2.8)). I= 0 and 1 are the 
only values which can be made from two I = i quarks so there are no 
exotic states. It is convenient tointroduce the notation (r0 )ap = 8af1 
so that the set Ti, i = 0, 1, 2, 3, includes all four possible isospin states 
which a particle may have. 

The Chan-Paton rule is that to include isospin in a BN correspond­
ing to a given cyclic ordering of the particles 1, ... , N we multiply it 
by a factor !tr(ri,,Ti2 ,Tia' ... ,Tiu) (where tr =trace). This factor has 
the same cyclic symmetry as that of B N• and gives the correct qq 
structure with no exotics in any intermediate state. This can be seen 
by writing for the L exchange particle in fig. 9.12 (c). 

3 

i tr (Ti ... Ti ) = ~ (i tr (Ti ... Ti Ti )J[i tr (Ti TiM+l ..• Ti )) 
1 N iL~O 1 M L L N 

(9.4.26) 

which obviously has the desired factorization and isospin content for 
the residue of particle L, with exchange degeneracy between I = 0 
and I= 1 particles. This can be extended from SU(2) to SU(3) simply 
by replacing the r's by the A matrices of table 5.1. But of course the 
method is only applicable in the limit of exact SU(3) degeneracy, 
which is far from the actual experimental situation. 

In the last few years this dual formalism has undergone many 
developments which we shall not attempt to cover in any detail. The 
reader desiring to follow them can consult such excellent reviews as 
those of Veneziano (1974a), Schwarz (1973), Mandelstam (1974) and 
Scherk (1975). 

We mentioned in section 3.3 that straight trajectories like those of 
the dual model are produced by a relativistic harmonic oscillator 
potential, and it has proved possible tore-express the dual model in an 
operator formalism in which particle states are created by an infinite 
set of harmonic oscillator creation operators a;, n = 0, 1, ... , oo, 
operating on the basic vacuum state (Fubini et al. 1969, Fubini and 
Veneziano 1970, 1971). This makes it much easier to discuss such 
features as the resonance spectrum, and in particular the degeneracy 

https://doi.org/10.1017/9781009403269.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.010


314 MULTI-REGGE THEORY 

of the daughters. But there is a fundamental problem that to ensure 
the Lorentz covariance of the theory the creation operators must be 
four-dimensional (p, = 0, 1, 2, 3) and the inclusion of the time dimen­
sion produces so-called 'ghost' states, with negative residues, which 
would violate causality (see section 1.4). The same problem occurs in 
quantum electrodynamics where the creation of time-like photons 
would cause difficulties were it not for the fact that the Lorentz gauge 
condition ensures that such states are eliminated (Bjorken and Drell 
1965). This is possible because the massless nature of the photon 
means that there can be no longitudinal photons either (the helicity 
A.= ± 1 only, not 0), so the longitudinal and time-like components 
can be arranged to cancel. 

It has been found that likewise in dual models, if a(O) = 1 for the 
leading trajectory, then an infinite set of gauge conditions can be 
imposed which eliminates all the ghosts. In fact this is true for up to 
26 space-time dimensions. But of course such a restriction is very 
unphysical and makes it quite impossible to regard the model as a 
prototype for real physics even in the meromorphic limit. It does mean, 
however, that the resulting dual field theory is closely related to other 
field theories with massless particles, in particular to quantum electro­
dynamics with massless photons and electrons, to the Yang-Mills 
field theory, and to quantum gravity with a massless spin = 2 gra vi ton. 
In fact these field theores can be obtained as limits of dual field theory 
when the trajectory slope a' -+0 (see Veneziano 1974). 

A further development has been to visualize this operator formalism 
as describing the motion of a quantized massless relativistic string 
(Goddard et al. 1973, Mandelstam 1973, Scherk 1975). A meson may 
be thought of as a string with free ends moving under internal tension 
counter-balanced by the centrifugal force due to its rotation (fig. 9.13). 
The maximum angular momentum for a given energy ( = mass) occurs 
when the string is rigid, as in fig. 9.13 (a), and simply rotates, while 
lower-angular-momentum states of the same energy occur if there are 
also vibrational modes (like those of a violin string) whose frequencies 
will be multiples of the fundamental rotation frequency. This pro­
duces the daughter spectrum at a given mass. Internal symmetry can 
be incorporated by imagining the string to have quarks tied to its 
ends. 

The motion of the string will in time trace out a world sheet like a 
twisted ribbon (fig. 9.13(c)) and the gauge conditions correspond to 
the requirement that only vibrations perpendicular to this world sheet 
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(a) (b) (c) S=3 
(d) 

£:Sj 
(e) 

-~~ 
(f) (g) 

FIG. 9.13 (a) A rotating string with quarks at its ends. (b) A vibrational mode 
of the string. (c) World sheet of a rotating string. (d) String-string scattering. 
(e) Re-normalization loop in string-string scattering. (f) A tube corresponding 
to the Pomeron. (g) Highest angular-momentum state for a closed string. 

occur. A consistent unitary quantum theory of such a string is possible 
only if a(O) = 1 and the dimensionality of space-time is D = 26. 

One can picture the interactions of such strings as in fig. 9.13(d), 
which looks very like the duality diagram of fig. 7.7 (a) (see Olive 
1974). To unitarize the theory one must of course be able to include 
loops like fig. 9.13 (e), but such loops give infinite contributions which 
are not susceptible to the usual renormalization techniques of standard 
field theory because of the infinite number of intermediate states 
available. However, there is also another type of loop, namely a tube 
(fig. 9.13(/)), whichistheworldsheetofaclosedstring. The maximum 
angular momentum of such a closed string, for a given energy, occurs 
when it is pulled rigid as in fig. 9.13(g), and it has twice the angular 
momentum of the corresponding open string, so a(O) = 2. In fact it 
can be shown that a' 

atube = 2+ 2t 

where a' is the slope of the open-string trajectory. Since the closed 
string has no ends it can carry no quarks, and so has vacuum quantum 
numbers, and it has therefore been identified with the Pomeron. The 
fact that the intercept is at 2 rather than 1 is another embarrassment, 
but perhaps if the intercept of the ordinary Reggeons could be 
brought down to a(O) = l then the Pomeron would come down to 1 as 
well. In the zero-slope limit the Pomeron field theory reduces to that 
of a graviton. 

This dual field theory could be the first hint of a fundamental theory 
of strong interactions in which dual Reggeons play the central role. 
However, the fact that at present the theory seems to be restricted 
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to integer trajectory intercepts, high space-time dimensionality (D 
can be reduced from 26 to 10 in some versions), and is not readily re­
normalizable, makes it necessary to reserve judgement, and we shall 
not pursue the theory further here. 

9.5 Multi-Regge phenomenology 

Because the number of independent variables increases so rapidly 
with the number of particles ( = (3N -10) for anN-particle amplitude) 
many-particle processes have been much less well explored than 
those with two particles in the final state (N = 4). Thus to examine 
thoroughly the 2-+3 amplitude we need, ideally, sufficient events to 
map the probability distribution in five different variables, or four at 
a given incident energy. Further, since the double-Regge region re­
quires 812, 8 34, 845 -+ oo with 812/834 845 fixed, to get both 8 34 and 845 

large enough we need a very large 8 12. But at such large 8 12 the given 
three-body final state will be found in only a small fraction of the 
events. For this reason it has become more usual to try and analyse 
many-body reactions 'inclusively' as we shall describe in the next 
chapter, rather than concentrating on a particular final state exclu­
sively. Nevertheless, it is important to discover what Regge theory 
has to say about individual many-body processes. 

We shall concentrate on 2-+3 scattering as in fig. 9.1. From (1.8.5) 
the double differential cross-section, integrated over t23, t15 at fixed 812, 

will be (see (1.8.17)) 

x (27T) 4 o4(P1 + P2-P3-P4- P5) 0(834- (p3 + P4)2) 

X 0(845- (P4 +P5)2) JA(1 + 2-+ 3 + 4 + 5)J 2 (9.5.1) 

which gives the distribution of events in the Dalitz plot, fig. 9.2, as 
a function of 8 34 and 845 for a given 812. (If the particles have spin a sum 
over the helicities of AH is implied as usual- see (4.2.5).) 

The single-Regge limits like fig. 9.1 (c) are characterized by a fixed 
small value of one of these invariants, say 845 , with 8 34 "' 812 -+ oo, and 
so there are three single-Regge regions as shown in fig. 9.14(a). For 
example in n+p-+n+n°p we may have n+p-+(n°n+)p, n+p-+n°(n+p) 
and n+p-+n+(n°p). Particular examples where two of the final-state 
particles are correlated as resonances, such as (n°n+) = p+ or 
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(a) 

(b) 

FIG. 9.14 (a) Dalitz plot for large s12 showing the three single-Regge regions 
(hatched) and the three double-Regge regions (cross-hatched). (b) Double­
Regge exchange diagrams for 1t+p -)-1t+1t0p. 

(7t+p) =A++, give quasi-two-body reactions of the type already dis­
cussed in chapter 6, and in fact single-Regge analysis is identical to 
that for two-body final states except for the dependence on 8 45 = m~5 , 

the invariant mass, and the ( 45) 'decay' angular distribution. 
Of greater interest are the various double-Regge limits, like 

fig. 9.1 (b) which requires 812, 834, 845 --+ oo, 'f/12 = 812/834 845 fixed. Now 
from (9.2.30) 'f/12 is related to w12, and since w12 is a physical angle it is 
restricted to cos w12 ~ - 1 which gives (after some manipulation, see 
Chan et al. (1967)) 

(9.5.2) 

Now Regge theory is applicable only when the interaction is peripheral, 
and we expect that the amplitudes will be negligible for large values 
oft. Empirically this stems partly from the exponential t dependence 
of Regge couplings and partly from Regge shrinkage, but it is also 
necessary on theoretical grounds that 8 ;p t for each Reggeon. Hence 
we must have lt23 l, lt15l small (i.e. '/> 1 GeV2), which means that 1/'f/12 

in (9.5.2) is restricted to similar small values. So the three double-

https://doi.org/10.1017/9781009403269.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403269.010


318 MULTI-REGGE THEORY 

Regge regions are near the corners of the Dalitz plot (as in fig. 9.14(a)) 
where the products 8 34845 etc. are not too big in view of the given 
fixed large 812, though both 834 and 845 must be large enough to be in 
their respective Regge regions, i.e. 834, 845 ~ 1 Ge V2 • This 'cornering' 
effect stems just from the kinematics of peripheral interactions, and 
is not a verification ofmulti-Regge theory as such. 

The six double-Regge exchange graphs for n+p-+n+n°p are shown 
in fig. 9.14 (b). 

To proceed further it is more or less essential to place some restric­
tions on the Regge parameters because fits to the data with all these 
diagrams and all the variable parameters which might reasonably be 
put into (9.3.10) would be too time-consuming. One way of doing this 
is to invoke the dual model. Of course, it is necessary to smooth out 
the poles to obtain Regge behaviour on the real axis. Also one must 
eliminate P exchange since the Pomeron does not appear in simple 
dual models. 

Examples of such analyses are those of Peterson and Tornqvist 
(1969) on K-p-+n°n+A and related processes, chosen because no P 
exchange can occur, and those of Chan et al. (1970) who examined 
K +p-+ K 0n+p, K -p-+ K 0n-p, and 77-p-+ K°K -p. The allowed planar 
diagrams are shown in fig. 9.15, and using them good agreement with 
the data was obtained. On inserting the known trajectory functions 
there remains just one free parameter, the overall normalization. 
See Berger (1971a) for a more complete survey. 

A more simple version with many of the same features is the Chan­
Loskiewicz-Allison (1968) model in which one writes, labelling the 
particles as in fig. 9.12(c) for convenience, 

where 

N-2 
AN= II (Gi8i +F;) (8i + 1)"io_l (ea8i + 1)a't; 

i=2 
(9.5.3) 

8i = 8i i+l = (pi+Pi+I)2, ti = [p~- (p2+P3+ ··· +pi)]2 (9.5.4) 

This has the property that for all8i ~ 1 it gives the multi-Regge form 

N-2 
AN"' II Gi(8i)"ioe<a+logs;)a't; 

i=2 
(9.5.5) 

like (9.3.6), but it neglects all the Toller-angle and spin effects at the 
vertices. For 8i-+ 0 the ith term-+ F; a constant, which provides a very 
crude parameterization oflow sub-energy effects (which in fact provide 
the bulk of the events) but without the resonance structure which is 
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p p p p 

(a) (b) (c) (d) 

FIG. 9.15 Different orderings for the process K +p-+ K 01t+p (all particles drawn 
ingoing) with no exotic pairings. These are all the planar diagrams allowed by 
duality, but (d) is an illegal duality diagram because the A. quark would have to 
cross from K 0 to K+. 

necessary for a really good description of the data. The full amplitude 
is a sum of terms like AN for all inequivalent permutations of the 
particles. Though not good enough for detailed quantitative work 
this parameterization provides a manageable approximation with 
many of the desired qualitative features. Plahte and Roberts (1969) 
have produced an improved version. 

The conclusions of this chapter may be summarized as follows. 
A consistent multi-Regge theory seems to be possible, though at 
present to derive it one has to make unproven if plausible assumptions 
about the singularity structure which determines the Regge asymp­
totic behaviour. A dual model with such a multi-Regge structure can 
be constructed, though the internally self-consistent factorizing ver­
sion of the model bears at most a rather limited resemblance to nature. 
However, it might eventually lead to a fundamental theory of strong 
interactions. Phenomenologically multi-Regge theory can be tested 
only on that rather small fraction of the events for a given process 
which occur in the multi-Regge region of phase space. It appears to 
be satisfactory, and, despite their obvious limitations, dual models 
have enjoyed some phenomenological success. But many-particle 
amplitudes depend on too many variables for a really detailed com­
parison of theory and experiment to be made. Hence for example it 
has so far been possible to more or less ignore the Regge-cut corrections 
to the dominant pole exchanges. 

It will be evident that a better way of analysing inelastic scattering 
processes is necessary, and this is provided by the Mueller-Regge 
approach to inclusive cross-sections, which is the subject of the next 
chapter. 
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