ON THE RING OF QUOTIENTS
OF A BOOLEAN RING
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Two important mathematical constructions are: the con-
struction of the rationals from the integers and the construction
of the reals from the rationals. The first process can be carried
‘out for any ring, producing its maximal ring of quotients [4, 5].
The second process can be carried out for any partially ordered
set producing its Dedekind-MacNeille completion [2, p. 58]. We
will show that for Boolean rings, which are both rings and partial-
ly ordered sets, the two constructions coincide.

In what follows, R denotes a Boolean ring, that is, a ring
in which every element is an idempotent. (Such a ring is neces-
sarily commutative.) Furthermore M_ denotes an R-module,
and Ry, denotes the ring R regarded as an R-module. By apartial
endomorphism of MR we mean a homomorphism ¢ of a submodule

DR = domg of MR into MR’ that is, a mapping satisfying the con-
ditions:

¢(d +d') =¢d + ¢d', P(dr) = (pd)r

for d, d' € dom@pand r € R. We call ¢ irreducible if it cannot be
extended to a larger domain.

PROPOSITION 1. If ¢ is a partial endornbrphism of Ry,
then the image img of ¢ is contained in domg and (PZ =p.

Proof. Letd e domg. Then¢d = (p(dz) = (pd) d € d R; hence
im¢ ¢ domp. Moreover ¢°d = p(pd) = ¢(@(d?)) = ¢((ed)d) =

P(d(pd)) = (pd) (pd) = @d.

An ideal D of R is called dense (2; p. 160]) if for all r € R,
rD = 0 implies r = 0. By (43 6.4), the fractional endomorphisms

1) This paper was written while both authors were Fellows of
the Summer Research Institute of the Canadian Mathematical
Congress.
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[4;3]) are precisely the partial endomorphisms of R p with dense
domains.

COROLLARY 2. The maximal ring of quotients of a Boolean
ring is also a Boolean ring.

Proof. We first observe that for any r € R, rR = 0 implies
r = 0. This follows because r = r2, Now by (4; 6.1) the maxi-
mal ring Q of quotients of R may be constructed as the ring of
all irreducible fractional endomorphisms of R. Hence by Propo-
sition 1, all elements of Q are idempotents and so Q is also a
Boolean ring.

A Boolean ring R is partially ordered by the relation r < r'
if and only if rr! = r (r,r' € R).

If Sis a Boolean ring which contains R as a subring, S may
be called a completion of R provided

(1) S is complete, that is, every subset of S has a supremum
relative to " € ';
(2) for everys€ S, s=sup {reR|r <s}.

For example, the Dedekind-MacNeille completion [2; p. 58] is
such a completion.

PROPOSITION 3. If ¢ is a partial endomorphism of RR,
then any completion S of R contains an element s such that ¢d = sd
for all d € domg.

Proof. Let s = sup {d'e dom¢|¢d' = d'} , and take any
d € dom¢g. We have ¢(pd) = <p2d = ¢d by Proposition 1, hence
¢d ¢ s, and therefore ¢d = (p(dz) = (pd)d < sd.

On the other hand, take any d' € dome such that ¢d' = d!'.
Then d'd = (pd')d = @(d'd) = (pd)d'< ¢d. Thus d'd € ¢d for every
d' such that ¢d' = d', and so sd € ¢d. The result now follows.

COROLLARY 4. If Ris a complete Boolean ring, then Ry
is injective.

Proof. In view of (3; p. 8, 3.2], Ry is injective if and only
if for each partial endomorphism ¢ of Ry there exists an element

r of R such that ¢d = rd for all d € dom¢. The result follows from
Proposition 3.
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Actually, the theorem quoted in the proof just given presumes
that R contains a unity element. This condition is satisfied here,
since we can show that the supremum of all elements of R is a

" unity element of R.

THEOREM 5. The Boolean ring S is a completion of the
Boolean ring R if and only if it is a maximal ring of quotients of R.

Proof. Let S be a completion of R. We may construct a
quotient ring Q of R from the irreducible fractional endomorphisms
@ of Rp. By Proposition 3, each such ¢ can be realized by multi-
plication with an element s of S, hence we have a homorphism
¢ - s of Qinto S. This mapping is a faithful embedding; for its
kernel consists of all ¢ with image 0, and being irreducible any
such ¢ must be the zero mapping of R.

Without loss in generality, we may therefore regard Q as a
subring of S containing R. An element s € Q induces an irreduc-
ible fractional endomorphism of Rp. Conversely, suppose s &€ S
induces a fractional endomorphism ¢ of Rg. This has an irreduc-
ible extension ¢' which is still fractional, hence there is an s'e Q
such that ¢'d = s'd for all d € dom ¢' . Therefore (s + s')d =
sd+ s'd = 0 for alld € dom¢. Now s+ s' = sup{reR|r <s+ s'},
and so r dom¢= 0 for all r ¢ s + s'. Since domg is dense in
R, r=0forall r ¢ s+ s', and therefore s + s!' = 0, that is
s=s'e Q.

We have thus shown that s € Q if and only if s induces a
fractional endomorphism ¢, in Ry, that is, if and only if dom =

{re Rlsre R}is dense in R. Itis easily seen that this last
condition can be written as followsZ

@ . .. V, g t#0= BdER rd # 0 and sdeR.

Given any r € R, we distinguish two cases.

Case l. r ¢ s. Choosed =r, then rd = ré=r # 0 and
sd = sr = reR.

2) This condition is the same as that used by Utumi [5; 1. 1Jto
define the ring of quotients.
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Case 2. rs ¥# 0.3) Now s = sup { r'eR| r'¢ s} , hence
0# rs=sup {rr'| r'eRand r'< 5} , therefore there exists
d = r'¢eR such that d €« 5 and rd # 0. Since d € § is equivalent to
ds = 0€R, the condition (%) is satisfied.

Condition (#) shows that dom ¢4 is dense for any s € S, hence

S = Q, and so any completion is also a maximal ring of quotients
of R. Now, the maximal ring of quotients of R is known to be
unique up to isomorphism over R £4: 5.3], hence any maximal
ring of quotients of R is isomorphic over R to a given completion
of R, say the Dedekind-MacNeille completion.

This last remark also shows the validity of the following,
which is probably well known [eg. 1; p. 123].

COROLLARY 6. The completion of a Boolean ring R is
unique up to an isomorphism over R.

In view of Theorem 5, the construction of the ring of quo-
tients given in [4] can be used in place of the Dedekind-MacNeille
cut construction. In particular, the following may be of interest.

 PROPOSITION 7. If a Boolean ring R contains a smallest
dense ideal F', then its completion is the ring of endomorphisms
of FR-

Proqf. This followe from Theorem 5 and [4; 8.3].

EXAMPLE. Let R be an atomic Boolean ring, F the ideal
consisting of all finite sums of atoms. This is easily shown to
be the smallest dense ideal in R. In this case the completion is
clearly isomorphic to the Boolean ring of all subsets of the set of
atoms of R. This could also have been deduced from Proposition
7!
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