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Abstract

We give estimates for exponential sums of the shape 2exp(2vr/ir(X|,... ,xn)/q), where F is a
polynomial with integer coefficients and each component of ( x , , . . . ,xn) in the sum runs through a
complete set of residues modulo q.

1980 Mathematics subject classification (Amer. Math. Soc): 10 G 10.

1. Introduction

For each positive integer q and for each non-linear polynomial F G Z[X] in n
variables \ — (Xx,...,Xn) over the ring of integers Z of degree m + 1, we define
the multiple exponential sum

SF(q) = S(F; q) = 2 eq(F(x)),
xmod q

where the summation condition "xmod q" means that each component of
x = (*,,...,*„) G Z" runs through a complete set of residues modulo q and
e (?) = exp(2irit/q) for any t G Z. The importance of such exponential sums in
analytic number theory is well-known (see, for example, Davenport [1] or Igusa
[3]). In 1974, Deligne [2, Theorem 8.4] deduced from his work on the Weil
Conjectures that if p is a prime, then

(2) \SF(p)\<m"pnnn/2
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whenever the homogeneous part of F (viewed modulo/?) of maximal degree is
non-singular modulo/;. For n — 1, Smith [8] has proved that if the discriminant
D(F') of the derivative F' of F does not vanish, then

(3) \SF{q)\<q^{D{F'),q)dm{q)

holds for all q > 1, where dm(q) denotes the number of representations of q as a
product of m positive integers and (a, b) denotes the greatest common divisor of
the integers a and b. In this paper, we will use Deligne's estimate to develop an
analogue of (3) for multiple exponential sums. More precisely, we will prove that
if F is a polynomial in Z[X] such that the associated projective variety defined by
the gradient vF of F is non-singular and of dimension 0 over C, say, then there
exists a certain positive integer D(vF), the discriminant of VF, such that

holds for all q > I, provided that Deligne's estimate (2) holds for all primes/*. The
proof of this result is based upon the ideas developed in [8] for n = 1.

2. Preliminaries

As is customary in studying exponential sums, it will be useful to select a
special set of representatives in Z" for the residue classes modulo q. The most
convenient way in which to make this selection is to introduce w-dimensional
boxes defined by

Bn(q) - {x e Z":0 <;<:,<: 4 for all = 1 , . . . ,«} .

The basic property of these boxes is described by the following decomposition
theorem. For each pair of positive integers M and N,

(4) Bn(MN) = MBn{N) © Bn(M),

the scalar multiplication and addition in (4) being inherited from the Z-module
structure of Z". In other words, (4) asserts that for each x G Bn(MN), there exist
unique n-tuples u G Bn(N) and v E Bn{M) such that x = Mu + v.

If q is a positive integer, there exist unique positive integers k and r such that
q = k2r, where r is square free and k is positive. For each polynomial F in Z[X]
and x, y in Z", Taylor's theorem implies that

(5) F(\ + ky) = F(x) + kvF(x) • y mod k2,

where x • y denotes the ordinary dot product of x and y. Consequently, if the
congruences V^(x) = Omod k hold, F(x + ky) = F(x)mod k2 from which it
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follows that the exponential sum

(6) Sf(«;")= 2 eq{F(x + ky)-F(x))
y mod r

is well-defined modulo r. We now have

THEOREM 1. Let q be a positive integer and F be a polynomial in Z[X]. Then

SF(i) = kn 2 eQ(F{x))SF(q;x),
x£Bn(k)

VF(x)sOmod k

where k and r are the positive integers uniquely determined by q = k2r with r square
free.

PROOF. If we take M = kr and N ~ k in (4), then (5) implies that

eq(F(y)),

from which the theorem follows by a second application of (4) with M = k and
N = r.

By a trivial modification of the proof of Theorem 1 in [8], it follows that
SF(q) = S(F; q) is multiplicative in q. More precisely, we have

THEOREM 2. Let qi and q2 be relatively prime positive integers, and choose
integers m, and m2 satisfying m,g, + m2q2 — \. If F is a polynomial in Z[X], then
S(F; qxq2) = S(m2F; q^Sim.F; q2).

Consequently, it suffices to examine the exponential sum SF(q) with q a prime
power p". If a is even, SF(q\ x) = 1 so that by Theorem 1, | SF(q) \ is bounded
above by qn/1 times the number of solutions of the system of congruences
F(X) = Omod ql/2, the latter being essentially bounded as q -> oo if the discrimi-
nant of VF is non-zero. If a > 1 is odd, the exponential sum SF(q;\) is a
Gaussian sum associated with the quadratic form defined by the Jacobian matrix
of F at x. In view of these remarks, the next two sections will be devoted to (i)
counting the number of solutions of certain systems of polynomial congruences
modulo q, and (ii) an examination of Gaussian sums associated with quadratic
forms modulo p.
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3. A generalization of a theorem of Nagell and Ore

Let f — (f\,-•-,/„) be an n-tuple of polynomials in Z[X], where X =
(Xt,...,Xn). For any positive integer q, let Vf(q) denote the zero set of f modulo
q, that is, Vf{q) = {xmod^:f(x) =0mod^f} . In this section, we shall examine
upper bounds for the cardinality of Vf (q), which we denote by Nf(q). Since Nf(q)
is multiplicative in q, it suffices to assume that q is a prime power p". Since
Vf (pa) C V, (p) © pBn( pa ~'), it follows that

(7) Nf(p")<p

for all a > 1. For n = 1, (7) implies that

(8) Nt(P
a)^

In 1921, Nagell and Ore proved independently [5, page 90] that if the discrimi-
nant D(f) of/does not vanish identically, then (8) can be sharpened to

(9) Nf(p")<(degf)p2°«i>'X»

for all a s* 1, where ord^ denotes the /»-adic order valuation. In particular, (9)
implies that Nf(p

a) is bounded as a -» oo for fixed p.
In order to obtain an ^-dimensional analogue of (9), we first need a suitable

analogue of the discriminant of f. If ff denotes the n X n Jacobian matrix of f, let
Jf = det j - , G Z[X] denote the Jacobian of f. By van der Waerden [9, Section 82],
there exists a non-negative integer R, called the resultant of f and Jf, which
belongs to the ideal of Z[X] generated by Jf and the components of f. Further-
more, if R ¥= 0 then the associated projective variety defined by f is non-singular
and of dimension 0 over some algebraically closed field K containing Q. We
therefore define the discriminant D{i) of f as follows. If R = 0, set £>(f) = 0;
otherwise, let D(i) denote the smallest positive integer in this ideal.

For any prime p, let Q^ denote the /7-adic completion of Q. The /?-adic order
valuation ord^, on Q extends uniquely to Q ,̂; we denote the extension by ord^.
For any z = (z , , . . . , z n ) G Q£, we write ord^z = m i n ^ ^ o r d ^ z , . The estimate
for Nf(p

a) follows from the following version of Hensel's lemma.

LEMMA. Let p be a prime and let f be an n-tuple of polynomials in Z[X]. Suppose
x0 G Z" satisfies

OTdpl(x0)>2oTdpJt(x0).

Then there exists a unique x in Qn
p such that f(\) — 0 and

OTdp(x - x 0 ) s* ordpf(x0) - OTdpJ,(\0).
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PROOF. By Taylor's theorem, we can write

f(x + y) = f(x) + y£f(x) + g(x,y),

where g(X, Y) is an n-tuple of polynomials in Y with coefficients in Z[X], all of
whose terms have degree at least 2 in Y. Similarly,

£f(x + y) = £f(x) + 3C(x,y),

where all the terms of 0C(X,Y), as polynomials in Y, have degree at least 1.
Starting with x0, we define sequences {xn} and {yn} in Qp by the equations

yJf(xn- , ) = -f(xn_,).

It now follows by an induction argument, based upon the above Taylor expan-
sions of f and ff, that

ord^y, s* ord^/tx,,.,) - ordpy,(xn_,),

/ ^ x ^ , ) , and

Hence,

ordpJf(\n) = OTdpJt(x0),

OTdpyn s* ordpJt(x0) + 2 " - ' , and

ord , f (xJ>2ord , . / f (x 0 ) + 2"

for each n, and so x = limn_ooxn has the properties required in the lemma.
Finally, if x and x + y are both zeros of f in Qp, the Taylor expansion of f(x + y)
yields y$-,(x) = -g(x,y), whence ordpy > 2ordpy — ordpJf(\), that is, ord^y <
oxdpjf{\). So, there is at most one zero of f satisfying ordp(x — x0) > ord^y^Xg).

THEORLM 3. Let p be a prime and let f be an n-tuple of polynomials in Z[X] with
D{i) ¥= 0. IfS = ord, Z)(f), then

. . { p"a for a < 28,
Nipa)^ fora>28,

where Degf denotes the product of the degrees of all the components off.

PROOF. The assertion is trivial for a =£ 25. So, we may assume that a > 28 and
let x0 be a point in Vf(p

a). Since D(t) is in the ideal of Z[X] generated by the
components of f and / , , then dpJf(\0) ^ 8. By the lemma, there is a unique x
in Q£ such that f(x) = 0 and ord^x - x0) > a - 8. Thus, each x0 in Vt(p) is
associated with a />-adic solution of the equations f(X) = 0 and each p-adic
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solution corresponds in this way to at most/?"5 points in Vf(p
a). Our estimate for

Nf(pa) therefore follows from Bezout's theorem which implies that the number of
/7-adic solutions of the equation /(X) = 0 is at most Deg f under our assumption
that D(l) T^ 0. To see this, let K denote an algebraic closure of Qp and let V be an
irreducible component of the affine variety V{i) in K" defined by f. The
assumption D(i) ¥= 0 implies that each point x of the variety V is a simple point,
and furthermore, the rank of $-f(x) is maximal. Consequently, the dimension of
the tangent space of V at x must be zero and so the dimension of the variety V
must also be zero, and V is therefore finite [7, page 78]. Since V(t) is the finite
union of irreducible varieties, then V(f) is finite, whence by Bezout's theorem [7,
page 198], card V(i) =s Degf.

The following less precise form of our estimate for Nf(p
a) is more manageable

for applications to exponential sums.

COROLLARY. Let p be a prime and let t be an n-tuple of polynomials in Z[X] with
D(i) ^ 0. Then

4. Gaussian sums of a quadratic form

If Q(X) is an integral quadratic form in n variables X = (X^,...,Xn), there
exists a unique symmetric matrix A G MnXn(Z) such that

where X' denotes the transpose of X; in case Q is defined by A as in (10), it will
be convenient to write QA instead of Q. For each positive integer q and a G Z",
we define the Gaussian sum associated with the quadratic form Q by

G Q { q \ * ) = 2 e ? ( G ( x ) + a - x ) .
x mod q

Although for the purposes of this paper, it would suffice to obtain an upper
bound for GQ( q\ a) for q a prime, we will obtain a more general result.

For any subset S of Z", we say that x G Z" is q-orthogonal to S if

f 0 mod q for all y £ S if q is odd,
x • y ~- "I

[ 0 or {q mod q for all y G 5 if q is even.

For any matrix A G MnXn(Z), let K e r ^ be the Z/^Z-module defined by
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THEOREM 4. Let q be a positive integer and a G Z". Then a necessary and
sufficient condition for the Gaussian sum GQ(q; a) to be non-zero is that a be
q-orthogonal to K e r ^ , in which case \ GQ(q; a) |2 = q" | KeTqA | , where A is the
matrix of Q.

PROOF. From the definition of the Gaussian sum, we have

(11) \GQ(q;*)\2 = 2 1 eq(Q(x)-Q(y) + *-(x-y)).
y mod q x mod q

Since Q(x + y) = Q{\) + xAy' + Q(y), the automorphism x i-> x + y of the res-
idue classes modulo q in Z" transforms (11) into

(12) \GQ{q;*)\1 = q" 2 eq(Q(x) + a • x).

Therefore, if the congruence

(13) Q(y) + a- Y =

holds for all y e KerqA, (12) then implies that

on the other hand, if there eixsts a y G Ker^/4 such that the congruence (13) does
not hold, then the automorphism xi->x + y of KerqA transforms (12) into
| GQ(q; a) |2 = eq(Q(y) + a • y) | G?(q; a) |2, whence GQ(q; a) = 0. Consequently,
we have proved that GQ{q; a) ¥= 0 if and only if the congruence (13) holds for all

To complete the proof, it remains to linearize the congruence condition in (13).
First, we assume that q is odd. Then for any y E K e r ^ , the congruence
yA = Omod q clearly implies that Q(y) = Omod q so that the congruence (13) is
then clearly equivalent to a • y = 0 mod q. On the other hand, if q is even, then
for any y G Ker^ A, the congruence yA = Omod q implies that Q(y) = 0 mod {q,
in which case (13) implies that a • y = 0 or ^ m o d q. Hence, the congruence (13)
is equivalent to the linear congruence a • y = 0 or {q mod q, as required.

5. The basic estimate for SF( pa)

In view of the above preparation, we can now establish an estimate for SF(pa)
for any polynomial F in Z[X] whose gradient has a non-zero discriminant,
provided of course that a > 1.
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THEOREM 5. Let p be a prime and let F be a non-linear polynomial in Z[X] of
degree m + 1 such that D{ v F ) =£ 0. Then for any a > 1,

PROOF. In view of the discussion at the end of Section 2 together with the
Corollary to Theorem 3, Theorem 5 certainly holds for a even, and so we may
assume that a = 2)8 + 1 with /} > 1. In order to determine explicitly the auxiliary
exponential sum SF(pa; x) defined by (6) with v f (x ) = Omod p&, we must first
refine the congruence in (5). Indeed, for any x , y £ Z", Taylor's theorem implies
that

F(x + p ' y ) s F(x) + />" vF(x) • y + p2"QH(x)(y) mod /><",

where QH(X) is the quadratic form associated with the Hessian matrix of F at x,
that is, H(x) = f v F (x ) e MnXn(Z). Consequently, Theorem 1 implies that

SF(P") = PnP 2 ep.(F{*))GQJp;

which by Theorem 4 implies

\sF(pa)\<pna/2 2

Let 8 = ordpD(vF). If 8 = 0, then KerpH(x) is trivial so that the estimate
follows from the Corollary to Theorem 3. On the other hand, if 8 > 0, then
| Kerp H(x) \ < p" and so we get

I SF(P") IS 5 m"/>""/2/'"/2+"minl2*'<a"l)/2)

as required.

6. The main theorem

Although Deligne has established the existence of a large class of polynomials
in n variables over Z which satisfy the inequality (2), it is nevertheless not clear at
present how large the class of polynomials satisfying (2) actually is. In order to
avoid unnecessarily restricting the polynomials considered in our main result,
Theorem 6, we define a special set of polynomials 6Dn C Z[X] as follows. For each
non-linear polynomial F in Z[X] and for each prime p , we know there exists a
unique integer tp > 0 and a unique polynomial Fp E Z[X] — pZ[X] such that
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F = p'pFp, and Fp = F for all but a finite number of p . We say that F G D̂ if and
only if for all primes/?,

|S,(/0|<(degF-l)V/2.

THEOREM 6. Let q be a positive integer and F be a polynomial in 6iin with
D(VF)¥= 0. Then

where m = deg F — \.

PROOF. This result follows directly from Theorems 2 and 5, if we observe that
for any positive integer q, qD{i) divides D(qi) for any «-tuple f of polynomials in
Z[X]. We omit the details as they are virtually identical with the proof given in [8]
for the special case n = 1.

7. General remarks

One special class of polynomials for which estimates of the quality of Theorem
6 would have significant implications for number theory would be for Fa(X) =
F(X) + a • X, where FE% is a form of degree m + 1 > 3 and a G Z" is
arbitrary (see [1] and [3].) In the particular case a = 0, we will always have
D(vF) = 0, by Euler's theorem, so that Theorem 6 is inapplicable. This raises the
question: what is the analogue of Theorem 6 in this situation? On the other hand,
if F G <%„ satisfies D(vFJ = D(VF + a) ¥= 0 for all a =£ 0 in Z", then Theorem 6
implies that

where cF(a) — D(s/F + a)5n/2. This poses a second problem of determining
explicitly the dependence of cf(a) on a.

As for possible improvements of Theorem 6, we first note that for n = 1, (3) is
stronger than Theorem 6, the reason being that in [8], a stronger form of the
theorem of Nagell and Ore is used that is due to Sandor [6]. Indeed, Sandor's
result asserts that Nf(p

a) is stationary for a > S, 8 = ord pD(f), while Nagell
and Ore assert Nj(pa) is stationary only for a > 26. This suggests a possible
improvement in Theorem 3, which in turn would produce a corresponding
improvement in Theorem 6. On the other hand, Loxton and Smith [4] have
recently shown, by different methods, that in (3), the factor (D(F'),q) can be
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replaced by (D(F'), q)l//2. Similarly, it may be possible to replace the factor
(D(vF)5, q) in Theorem 6 by (£>(vF), q). And finally, what is the analogue of
Theorem 6 when/ G tyn and D(vF) = 0? In this direction, see [4].

Note added in proof. A more precise and explicit description required here has
been given by W. Krull, 'Funktionaldeterminanten und Diskriminanten bei
Polynomen in mehrerer Unbestimmten', Monatshefte Math. u. Phys. 48 (1939),
353-368, and 50 (1942), 234-256.
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