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A PARAMETRIC GAUSS-GREEN THEOREM 
IN SEVERAL VARIABLES 

BY 

M. ORTEL AND W. SCHNEIDER 

ABSTRACT. We present a short, computational proof of the parametric 
Gauss-Green theorem for a broad class of closed chains. The proof in­
volves only measure theory and the basic theory of differential forms: in 
particular, no constructions from topology are used. For completeness, the 
standard properties of winding numbers are also established by methods 
from analysis. 

1. Introduction. The terms appearing in Theorem 1 and the rest of this introduction 
are defined in section 2. 

THEOREM 1. Suppose N G {2,3, • • •} , . / G {1,2, •• •#},£! is an open subset of 
R^, / : Q. —> R is Lipschitzian, and (7, T) is a Lipschitzian N — 1 chain in Q which 
is both closed and homologous to zero modulo £1. Then 

[ f • (DX)j = ( - î y - 1 [ md(l1z)-Djf(z)dLN(z). 
J(1,T) JO. 

In this paper we give a short, computational proof of Theorem 1, which turns on 
an interchange in order of integration. Other proofs are considerably longer and make 
heavy use of constructions from combinatorial topology. 

The homology version of the Cauchy Integral Theorem is an immediate corollary 
of Theorem 1 in the case N — 2; in this case our proof can be considerably simplified 
by use of the operator 3, as in ([OS 1]). 

The primary achievement of modern research on integral theorems is the Gauss-
Green theorem of H. Fédérer ([FED 1], p. 478), which is in non-parametric form: that 
is, the theorem does not involve winding numbers and, for an admissible set A c R N , 
equates integrals over A and Bndry A with respect to LN md?{N~l. Fédérer's theorem 
is the optimal statement of that form with regard to the scope of admissible sets, and 
it easily implies Theorem 1 in many cases: for instance, the case that Q. = RN and 
(7, T) properly parametrizes a finite family of closed surfaces. Of course, Fédérer's 
theorem is also useful in many situations beyond the scope of Theorem 1. 

Important research, specifically on the parametric Gauss-Green theorem, is due 
to J. H. Michael ([M 2]), who studies the question of the joint regularity of chains 
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and integrands required for the fundamental equation. His theorem is stronger than 
Theorem 1 when (7, T) is equivalent to a chain whose parametric domain is a compact 
submanifold of R^. 

2. Preliminary material. 

2.1. We shall follow the terminology and notation of [FED 1] for measure theory, 
Grassmann algebra, and differential forms. 

Throughout, N denotes a fixed element of {2, 3,4 • • •}, LN denotes Lebesgue N 
dimensional measure on RN, y{N~x denotes Hausdorff N — 1 dimensional measure on 

RN SN-\ = {x e R^v : 1̂1 = i} , and aN-X = 9fN-\SN~x). The terms Lipschitzian 
map, Lipschitz constant (Lip(f)), and function of class k have standard meanings, and 
we denote the support of a continuous function/ as sptf([FED 1], pages 63, 64, 220, 
106). 

If (V, | • |) is normed vector space, and 0 ^ x G V, we define sign x = x\x\~x and 
sign 0 = 0. The Euclidean norm on RN and the induced norms on A^R^ and A*RN 

are denoted | • |. If L is a linear transformation on V we may write (JC,L) in place of 
L(x), and we regard (3 G A^R^ as both an alternating multilinear function on ^-tuples 
of vectors and as a linear function on A^RN without change of notation. 

The terms differential form, closed form, exact form, and the notations f#(3 (the 
pull-back of a form f3 by a differentiable map / ) , and d(3 (the exterior derivative of 
(3) are explained in section 4.1.6 of [FED 1]. Every closed form on RN is also exact 
onRN ([FED 1], 4.1.10). 

The standard basis vectors and coordinate functions on RN are denoted e\, ei,- • • en 
and Xi, X2,-—XM, and we denote the basic N — 1 forms on R^ as follows: 

(DX)n =DXXA-- -ADXn A • • • ADXN 

for n = 1,2, • • • N, wherein the sign " denotes omission. The linear map * : AjR^ —•> 
A/v-iR^ is defined in section 1.7.8 of [FED 1], If v G R^ then *v is a simple 
N — I vector associated with the subspace of R^ orthogonal to v: also, v A *v = 
\v\2e\ A • • • A eis/t and | * v| = |v|. 

2.2. When Q C R \ T is a closed and bounded subset of R""1, 7 : R""1 -+ RN 

is Lipschitzian, and 7[r] C £1, we say (7, T) is a Lipschitzian N — 1 chain in £1. If 
(7, T) is a Lipschitzian TV — 1 chain in R^, then 1[T] is a compact subset of R^ and 
LN(1[T]) = 0. 

2.3. We cite two results from [FEDI]: Suppose F : Rp —• RQ is Lipschitzian and 
j G {1, • • • # } . Then DF(x) exists and \DjF(x)\ ^ L/p(F) for i / almost all * G R^ 
(p. 216). Also, DjF is i ^ measurable on Rp (p. 73, (6)). 

2.4. If (7, T) is a Lipschitzian N — 1 chain in R^, and (3 is an N — 1 form of class 
0 defined in a neighborhood of 7[^], we denote 
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[ f3 = [{Dm) A . • •AD,_17(/),«7W))^AMW : 
J(n,T) JT 

summability follows since, by 2.3, the expressions 

d„(7, t) = (Di7(0 A • • • A Av-i7(0, (DX)A(7(0)> 

are all X ^ - 1 measurable and essentially bounded. 
If (7, T) is a Lipschitzian N — 1 chain in Qi, /3 is an N — 1 form on Q,2 of class 

0, and/ : Çl\ —+ÇI2 is of class 00, we have 

/ P = [ fP-
2.5. If (77T) is a Lipschitzian N — 1 chain in Q and J(lT)df3 = 0 whenever /3 is 

an Af — 2 form of class 00 in a neighborhood of 7[T], we say (7, T) is a closed N — 1 
c/zam m £2. By using regularizations of characteristic functions, we see that (7, T) is a 
closed N — 1 chain in £1 if and only if f r ) a = 0 whenever a is a closed N — 1 form 
of class 00 in R^. If (7, T) is a closed N — 1 chain in Q, and/ : Q —> RN is of class 
00, then ( / o 7, T) is a closed N — 1 chain, as follows from the pull-back formula in 
2.4 

2.6. For each z G R^ and each w G RN — {z} define 

.2(w) = aNl, Y^i-lf-'—^—iDXy.iw) 

(where (DX\ is defined in 2.1). Then, if (7,T) is a Lipschitzian N — 1 chain in 
RN, we define 

ind(7, z) = / uz if z G Rv - 1[T] 
hi?) 

and ind(7, z) = 0 if z G 7[T], and we call ind(7, z) the winding number 0/(7, T) with 
respect to z. 

Clearly, ind(7, •) is a continuous function in R^ — 7|T]. Nevertheless, ind(7, •) may 
be unbounded. 

2.7. If (7,T) is a closed N - 1 chain in £2 and ind(7,T) = 0 for all z G R ^ - Q , 
we say (7, T) is homologous to zero modulo Q.. 

3. Lemmas. 

LEMMA 3.1. Suppose h is function of class 00 on RN, spt / is compact, and t G KN. 
Then 

r N 

/ y^Dkh(t — u)uk\u\ NdLN(u) = aN-\h(f). 
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PROOF. Define g(u) = h(t - u) for all u £ RN. Then 

= / g(0)dtfN-l(s) 

JSN~l J(0,oo) k=l 

= - [ I yjDkg(rs)r-N+'skd!HN-\s)rN-'dLx{r) 
J{0,oo)JsN-1

 k=l 

r N 

= ~ / T\Dkg{u)uk\u\-NdLN(u) 

r N 

= / *yDkh(t-u)uk\u\-NdLN(u) 
JR k=\ 

LEMMA 3.2. Suppose f is a function of class oo on RN, spt / is compact, j G 
{1,2, • • • N}, and (7, T) is a closed N — 1 chain in RN. Then 

= /" ( -D^-^yv- l /W^DXWw). 

(Dxyk(w) 

PROOF. For each w E R ^ and each k G {1,2, • • • # } , define 

wv _ 
Pk(w) = / D;f(z) -, TT7 dLN(z); then consider the N — 1 forms 

/V 

0 = Y,(-l)k-lPk-(DX)t-
k=\ 

Each p^ is of class oo since it is the convolution of a locally integrable function and 
a compactly supported function of class oo. By direct computation, we get (for all 
w G R") 

d\(w) - df3(w) aN-\Djf(w) -^D^pkiw) 
k=\ 

pk(w) = / Djf(w — u)uk\u\~NdLN(M), and 
JRN 

DkPk(w)= [ Dkjf(w-u)uk\u\-NdLN(u). 
JRN 

DX{(w)A--ADXN(w), 
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Application of 3.1 to Djf shows that the bracketed expression directly above is zero, 
and we conclude d(X — (3)(w) — 0 for all w G RN. Thus A — ̂  is an exact N — 1 form 
on RN, and J(/y T) X — (5 = 0 since (7, T) is a closed N — I chain. This completes the 
proof. • 

LEMMA 3.3. Iff is a function of class oo on RN, sptf is compact, (7, T) is a closed 
N - 1 chain in RN, and j G {1,2, • • -N}, then 

(1) I \Djf(z)\ |ind(7, z)\dLN(z) < oo. 
JRN 

(2) / f.(DXy = (-\y-1 [ md(l,z).Djf(z)dLN(z). 
J{1,T) JRN 

PROOF. Recalling the notation ^4(7, •) from 2.4, set 

F(v)S¥z).B-rg^4ai) 

for (z,0 G R ^ x R"- ' where the sum is defined. Since LN x / ^ ' ^ [ R ^ - ' l x 
R"- ' ) = 0, the functions 

are LN x iLN_1 measurable: hence F is £,N x I ^ - 1 measurable. Moreover, if £ is a 
bounded open subset of RN, Fubini's theorem and well known estimates give (since 
T is also bounded) 

LrlW^F^ X£ iZ't)ÛJrLm)-A^dL (0<°°-
Since spt / is compact and each function d*(7, •) is uniformly bounded, we conclude 
SRNXT \F(z,t)\dLN x LN~l(z,t) < oo, which allows us to evaluate integrals of F by 
use of Fubini's Theorem. 

Our first observation is 

[ |Dy/(z)| |aN_! ind(7, z)\dLN(z) 
JRN 

^ / \F(z,t)\dLN x LN-\z,t)< oo, 
JRNXT 

which completes the proof of (1). 

dLN(z) 
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Also, by Fubini, and 3.2 applied at the last step, we conclude 

/ Djf(z)aN^ ind (7, z)dLN(z) 
JRN 

-Lwlh-it-'ffîEiFéa.vL'-'w'w 

= [ (-\y-laN_lf(w)-(DX)](w\ 
J<rt,T) 

which completes the proof of (2). D 

LEMMA 3.4. Suppose that (7, T) is a closed N — 1 chain in RN. Then: 
(1) ind(7, •) is constant in each component ofRN — 7|T], and ind(7, z) = 0 for all z 
in the unbounded component ofRN — 1[T]. 
(2) JR/V | ind(7,7)1^(7) <oo . 

PROOF. If B is a connected component of RN — 7IX] and/ is a function of class 
oo on R^ with spt/ C 5 , we have (by 3.3(2)), JB ind(7, z)Djf(z)dLN(z) = 0, for 
each y = 1,2, • • • N. So, by well known arguments, there is a real number c such that 
ind(7,z) = c for LN almost all z e B. Since ind(7, •) is continuous in B, it follows 
that ind(7, z) = c for all z G B. Since liiïi|z|_KX> ind(7,z) = 0, the proof of (1) is 
complete. 

By (1), ind(7, z) = 0 for z outside a compact set E. Choose a compactly supported 
function/ of class oo such that D\f(z) = 1 at all points of E. By 3.3.(1), 

/ | ind(7 ,z) |^ / v (z)^ [ \Dxf(z)\\n(1,z)\dLN(z)< 
JRN JRN oo 

which completes the proof of (2). • 

4. Proof of Theorem 1. 
We refer now to the terms of Theorem 1. 
First, suppose Q, = RN, f is Lipschitzian on R^, spt/ is compact, and let U denote 

a bounded open set containing sptf. By basic smoothing arguments ([FED 1], p. 347) 
and 2.3, there is a sequence (fn)%L\ such that: 
(1) Each/j is of class oo on RN and sptfn C U. 
(2) fn —•/ uniformly on RN as n —> oo. 
(3) sup{|Dy/l!(z)| : z G R",./ = 1,2,- • tf,/i = 1,2,3, •} < oo. 
(4) Dfn(z) -> Df(z) for LN almost all z G RN as « - • oo. 
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(At this point difficulties arise if we attempt to admit the more general integrands of 
Michael ([M 2]), since we make essential use of the hypothesis that/ is Lipschitzian in 
(3) and (4).) By (1) through (4) above, and special reference to 3.4(2), we may apply 
the Lebesgue dominated convergence theorem: the integrals of fn and DJn converge 
to the integrals of/ and Djf. By 3.3(2), Theorem 1 is true for Q = R^ and each 
function fn. The proof of Theorem 1, for compactly supported Lipschitzian functions 
on R^, is complete. 

Now assume that £1 is an open subset of R^ and / is Lipschitzian on £1. Since 
ind(7, z) = 0 for each z £ RN — £1 (this is the first point at which this hypothesis 
appears), 3.4 implies Clos{z G R^ : ind(7,z) ^ 0} is a compact subset of £1: hence, 
there is a Lipschitzian function g, of class oo on R^, such that spt g is compact, and 
g(z) = / (z ) whenever ind(7, z) ^ 0 or z G 1[T]. As Theorem 1 is true if/ is replaced 
by g, and as both integrals in Theorem 1 are unchanged if / i s replaced by g, the proof 
of Theorem 1 is complete. 

5. Winding numbers and closed chains. 

5.1. Here we use Fédérer's area theorem to prove that winding numbers of closed 
chains are integers, and that they may be computed by examining the orientations of 
certain frames. More about winding numbers may be found in [FED 2] (p. 377). 

When (7, T) is a closed N — 1 chain in R^ and Dl(i) exists, set 

jN_a = \Dn(t)A--ADN^i(t)\ 

Or(7,0 = sign det [7(0,^i7(0, • • • Av-i7(0] : 

then define 

Cross(7,s)= ^2 O r (7 ,0 
{teT:-y(t)=s} 

at s G RN where the indicated terms exist and are summable. Also for use here, define 
Pz(x) = sign (x - z) for z eRN and all x G RN - {z} (see 2.1) 

THEOREM 2. Suppose (7,^) is a closed N — 1 chain in RN and z 0 7IX]. Then 
there is an integer c such that ind(7,z) = c = Cross(/\ 07, s) for 9{ N~x almost all 

sesN~l. 

PROOF. By computation, we see (h,DPz(x)) = 0 if h is a real multiple of x — z, 
and (h,DPz(x)) — \x — z\~[h if h • (JC — z) = 0. It follows that Pzuio = u2, and hence 
that ind(7,z) = ind(P2 07,0). Therefore, since (Pz o7,T) is closed when (7,T) is 
closed, it suffices to establish Theorem 2 under the assumption (adopted from now 
on) that 7[F] C SN~X and z = 0. 

Since 1[T] C S^"1, we obtain, from 2.1 and 2.3, D,7(0 A ••• A D/v-i7(0 = 
*7(0 • Or(7, t) • JN-XKO G AN-{R

N for LN~{ almost all t G T: also (*7) • Or(7, •) is 
LN~{ integrable on T. Thus, assuming (3 is an N — 1 form of class 00 in a neighborhood 
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of SN~\ we obtain by use of Federer's area theorem ([FED 1], Theorem 3.2.3), 

J(n,T) JT 

= /<*7(0,/J(7(0)> • Or(%t)'JN-m)dLN-l(t) 

• f \ J2 (*7(0,/?(7(0))'Or(7,0 

f [ E (*^^))'Or(770 
L{teT:l(t)=-.s} 

and we also conclude that Cross(7,s) G Z (integers) for 9( /v_1 almost all s G SN~l 

such that (*J,j8(j)> ^ 0. Thus Cross(7,s) G Z for 9i N~l almost all s G S*"1, and 

(1) [ P= [ (*siP(s)) - Crossd, s)d!H N~l(s) 
J(Tf,T) JSN~i 

whenever (3 is an N — 1 form of class oo in a neighborhood of SN~l. 
Now set U = {u G R ^ 1 : \u\ < l},Ryv(+) = {x e RN : xN > 0}, define 

p(w) = («!,••-, WA -̂1, (1 — l^l2)1/2) for all « G ( / , and let/ be a function of class oo on 
U with compact support. Then choose a corresponding function F, of class oo on R^, 
so that sptF is a compact subset of RN(+),DNF(p(u)) = 0, and DjF(p(u)) = Djf(u) 
for all u G £/. Finally, define 

P(x) = (-l)yv-1Z)7F(x)(Z)X)^(x) - (-l)^-1DNF(x)(DX)](x) 

for all x e RN. Noting that f3 is an exact N — 1 form of class oo on R^ and that 
(— l)N~lD\p(u) A • • • AZ)/v-ip(«) = *p(w) • //v-ip(w) for all u G £/, we obtain, from 
(1) and the area theorem, 

/ 0= [ (*s,/3(s)) • Cross(7,.s)d# /V~1W 

. = /" (*p(w), /3(p(w))) • Cross(7, p{u)) • JN.xp{u)dLN-\u) 
Ju 

= / DjF(p(u)) • Cross(7, p{u))dLN~\u) 
Ju 

= ( - i f " 1 /" <£>iP(«0 A • • • ADyv_ip(w),/3(p(W))) • Cross(7 • p{u))dLN-\u) 
Ju 

= / Djf(u)-Cross(l,p(u))dLN-\u) = 0, since (7, T) is closed. 

Because/ is an arbitrary function of class oo on U with compact support, we conclude 
(as in 3.4) there exists c G R such that Cross(7, p(u)) = c for LN~X almost all 
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u G U. It is now clear that Cross(7,s) = c for Of N~l almost all s G sN~l and, since 
Cross(7,s) G Z for H N~x almost all s G sN~\ we conclude that c G Z. 

Now apply (1) with /? = u)0, noting that (*s, a;o(.s)) = oc^Li for all 5 G 5 N _ 1 : we 
obtain ind(7,0) = fSN^ a^{_x • cdtt N~l(s) = c. D 

5.2. Here we show how Fédérer's Gauss-Green theorem implies a natural character­
ization of closed chains. However, to avoid auxilliary complications which lead beyond 
our scope, we must limit the context of our discussion. If 7 C R^_1, then n(T,b) 
denotes Federer's general exterior normal of 7 at ft ([FED 1], p. 477). For TV > 2, we 
say 7 is an elementary subset of RN~l if 7 is compact and there exists a corresponding 
pair (p,S) such that p : RN~2 —> RN~l is Lipschitzian, S is a bounded LN~2 mea­
surable subset of R^ - 2 , p\S is univalent, p[S] C Bndry 7, Of *"2(Bndry 7 - p[S]) = 
0, (e\A- • A^yv-2, AN-^2Dp(s)) = *w(7, p(s))-JN~2P(s) for all 5 G 5 : when N = 2, 7 
must be the union of a finite, disjointed family of compact intervals. We say (7,7") 
is an elementary N — 1 chain in RN if 7 : RN~l —-» R^ is of class 2 and 7 is an 
elementary subset of RN~l. 

THEOREM 3. Suppose (7,7) is an elementary N — 1 chain in RN. Then (7,7) is 
closed if and only if 

Y^ sign (*/i(7\ ft), Ayv_27>7(ft)) = 0 
{fc<EBndryr:7(6)=Jt} 

for Oi N~2 almost all x G RN. 

PROOF. Suppose /? is an N — 2 form of class 00 in R^. Since 7 is of class 2 on 
R""1, we have l*dj3 = J7#/3, and (by 2.4), 

/ d/3 = [ (ei A- • • AeN-Uy#d(3(t))dLn-l(t) 

= j{ex A • • • A eN-Udfp{t))dLN-\t). 

Since ^ yv_2(Bndry 7) < 00, we may transform the last integral by means of Federer's 
Gauss-Green theorem ([FED 1], p. 478 (4)), obtaining 

( d/3= [ (*/i(7\ ft), Yf3(b))d0{ N~\b). 
J(1,T) JBnàryT 

By use of Federer's area theorem and the properties of the parametrization (p, S), we 
transform the integral on the right: from the chain rule and the properties of (p, S), 
we obtain sign (e\ A • • • A ̂ - 2 , AN-2Dl o p(s)) = sign(*«(7, ft), AN_2Dl{b)) when 
ft = p(s) and 5 G S\ the result of the transformation is 

[ dP= [ \ Y, s i § n (*"<?> *)> A/v-27>7(ft)), /?(*) ) dH ' ~ 2 « 
( 7 ' 7 ) "** \ {6<EBndry7:7(6)=*} 
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Thus, (7, T) is closed if and only if the integral on the right vanishes for all choices 
of /?, and our theorem follows. • 
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