Can. J. Math. Vol. 48 (2), 1996 pp. 244-257

A PRIORI ESTIMATES FOR SOME CLASSES
OF DIFFERENCE SCHEMES

NIKOLAI BAKAEV

ABSTRACT. A new approach to the analysis of the well-posedness of difference
parabolic problems is proposed, which is based on weaker assumptions than in earlier
works. The results are applied to the study of multi-dimensional difference parabolic
problems in mesh Lebesgue spaces.

1. Introduction. Lately, work devoted to the well-posedness of difference initial-
boundary value problems (e.g., [1, 6, 8, 9, 14, 15]), have treated the case where a space
connected with the problem need not be Hilbert. In particular, this allows one to analyse
the well-posedness of difference problems in the scale of the spaces Ly;, 1 < p < o0
(the mesh analogues of the Lebesgue spaces). However, the similar results are based on
some assumptions that may be verified only for narrow classes of difference parabolic
problems in the spaces L,;, 1 < p < oo, p # 2 [2]. Consequently, up to now, we
do not have any essential results for wide classes of difference schemes in the spaces
Lpw, 1 < p < 00, p # 2 when nonuniform spatial meshes, input operators with mixed
derivatives or discontinuous coefficients in their principal parts, and curvilinear domains
are used. On the other hand, the Hilbert case p = 2 is well studied by means of the theory
of self-adjoint operators [17].

In order to investigate the problem of well-posedness in wider classes of difference
parabolic problems, we apply a new approach in the present work. Our main requirements
are weaker than in the previous works, although the a priori estimates established below
are slightly weaker than, for example, in the theory of [1, 8, 9, 13—15]. At the same
time, these hypotheses turn out to be easily verified in the applications concerned with
multi-dimensional finite-difference operators on nonuniform spatial meshes.

Recently, in [3], the author has considered similar subjects, including applications
to the well-posedness analysis of multi-dimensional difference parabolic problems in
the scales of the mesh Lebesgue spaces L,;, 1 < p < o0o. The tools used in [3] are
based on slightly different assumptions and lead to the slightly different a priori estimates
than in the present work. Namely, the estimates from [3] contain the singular multiplier
In*(2 + H~'), where H is the minimal stepsize of a spatial mesh, and the estimates estab-
lished below contain the singular multiplier In""!(2 + #,)~!, where ¢ is a corresponding
discrete time moment, and r is some natural number. Note that the multiplier In*(2+H~")
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depends on the characteristics of a spatial mesh, and the multiplier In"'(2+#)~! depends
on the characteristics of a temporal mesh. Moreover, it could be shown that the estimates
with In"*!(2+#)~! are stronger than, for example, those with In"*!(2 +7)~!, where 7 is a
temporal mesh stepsize. At the same time, the estimates from [3] are established under
more general assumptions than below.

2. Abstract formulations. Unless otherwise noted, we use the symbols C or
Cy, C,,. .. for different constants in our formulas.

Let a family of Banach spaces E}, depending on a parameter # € #{, be given. In the
family of spaces Ej, h € %, the following initial value problem with a parameter # is
considered:

dy

) E+Ahy=ﬁ,(t), 0<t<o0; yt=0)=yon,

where y = y(f) is a (E;)-valued function interpreted as a solution of (1), 4, is a certain
linear bounded operator acting on Ej, f;(?) is a given (Ej)-valued function determining a
forcing term in the differential equation, yo, € Ej is an initial value.

We introduce on the interval [0, co) the mesh w, with a stepsize 7 > 0

G ={te=krk=0,1,...}.

Let us consider in the family of spaces E;, h € # the following difference scheme
corresponding to the problem (1)

Vi Va
@) W) = () — TzlbjAhn?k) +T bt e, k=01,
J= J=
Wto) = Yo,

where Y}k) € Ej, are determined from the system of equations

121 V2
G YO =By -y @AY +rY @kt em), j=1,2,...,0.
=1 I=1

Here y(#;) is a (E;)-valued function of a discrete argument #; being a solution of the prob-
lem (2), (3); v1, v2 are some natural numbers and b;, b,, Bj» @i, Gjr, €r3 sl = 1,2,...,v1,
r=1,2,...,v; are some complex parameters determining a concrete form of the scheme

(INE)

If the operators gj(t4y), j,I = 1,2,...,v; are well defined, where the matrix
((gﬂ(z))) is inverse for ((6j1 + zaﬂ)) and 4;; is the Kronecker delta, one can exclude the
elements YJ(.k) from (2), (3), and the scheme (2), (3) may be represented in the following
canonical form
C)) Yter1) = [ — U p(t) + 7Fn(), k=0,1,...,

Wto) = yon,
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where the linear operator U, and (E;)-valued function F,(#;) are defined by

vy Vi

Uop =AYy Y biBigi(tAs),

j=ll=1
vy vy vy

Fout) = Y- (B = 3 3 TAubiangurAn) s + &m).

r=1 j=1i=1
Note that the operators 1, and
vy V)
u),(TAh) = Z ZTAhbjalrgjl(TAh), r=1,2,...,1»
j=1i=1

may be well defined even this is not valid for gj(t4,), j,! = 1,2,...,v,. Therefore we
can consider the problem (4) as a generalized difference scheme for the problem (1).

DEFINITION 1.  The operator 11, in (4) is called a generator of scheme.
The generator of scheme 11,;, may be represented as follows

uTh = T—IQ(TA;,),

where a(z) is the rational function given by

Vi

a(z) = zi

b;Bigi(2).
==

DEFINITION 2.  The function a(z) is called a scheme generator symbol. The functions
wy(z),r =1,2,...v given by

vy V)
wlz) = 3" zbjangu(z)
eyt

are called correcting symbols.
Schemes like (2) and (3) were introduced and studied in [1]. In the present work we
deal with the generalized scheme (4). Our main aim is to analyse the well-posedness of

).

DEFINITION 3. A bounded linear operator B: E, — Ej is said to be uniformly (with
respect to b € H) almost sectorial of power r (r is some natural number) on E}, if there
exist constants 9 > 0, ® > 0 such that the set

{z;|argz| > 7/2 — xep,|z| > 0}
belongs to the resolvent set of B for all A € H and the inequality
RO, AW llg, < CeT" A"

holds forall h € H, ¢ € (0, 0], and X such that | arg \| > 7/2 — xe.
Note that in [1] and in the other works on the approximations of solution of evolu-
tion equations (see, e.g., [8, 9, 13—15]) an input operator is assumed to be (uniformly)
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sectorial. This assumption is stronger than that of (uniform) almost sectorialness. It is
known for some problems that it is difficult to prove that an input operator is (uniformly)
sectorial, but there is a possibility of establishing that it is (uniformly) almost sectorial.
A similar situation is considered in the final section of this work.

Further, the well-posedness of the scheme (4) will be established under the assump-
tions that the operator 4, is uniformly almost sectorial of power r on E}, and a discretiza-
tion method leading to (4) is 4-stable.

3. Auxiliary results. Here we study the behaviour of the resolvent of the operator
a(tAy), where o(z) is the scheme generator symbol. First note that, for the operator A,
to be uniformly almost sectorial of power 7 on E,

(5) IR, 74T ||, < Ce T8 A"
holds forall h € #H, £ € (0,0), 7 > 0, and X such that |arg \| > 7/2 — xe.

LEMMA 1. Let the operator Ay, be uniformly almost sectorial of power r on Ej,. More-
over, assume the scheme (4) is generated by an A-stable discretization method, and the
Jfollowing conditions are satisfied:
() Tp by =1
@) |[1—Xo| < 1.
where )\ is defined by

6) X = Illim a(z)
and a(z) is the scheme generator symbol.
Then the estimate
%) IR(X, ard)) ||Eh < Ce= D28y 2!
holds for allh € H, e € (0,e0/2], 7> 0, X € IntA,, where
®) Ac=M\U{z|1 —z| <1—doe}, dop=const, 1 —3doeo > |1 — N,
and the set M., is the image of the sector {z ;| argz| < 7/2 — e} under the map o(z).

PROOF. Since a discretization method leading to the scheme (4) is A-stable, the con-
ditions
[1—az)=1 and () =0
are not satisfied simultaneously for any point zy with Rezp = 0. It also follows from the
A-stability that for any point zo such that Rezyp = 0 and a(zo) = 0 there holds

Imo/(z0) =0, Rea'(z)>0.

Furthermore, note that the relations

za!(z)

© 770 =

a(2) = iz (2)

6 argz
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are valid and complex vectors that correspond to the values

%Zla(z) and %;gza(z)

are orthogonal to each other. By the above, we get

(10) C1 > |zd(2)| = Glaz)|, C1,C2 >0

forallz:Rez =0, d, < |z| <d), di,d> = const > 0, where d| is chosen so that
|1 —a@@)] <1—2deo

(do is the constant in (8)) for all z such that |z| > d;, Rez > 0, and d; is chosen so that
the equation

(11) a(z) =0
has the only root z = 0 for |z| < d,. Moreover, using
ld'@2)| > C>0
for |z| < d,, we have
(12) Cila(@)| > |z @)| > Gola@)|, C1,C2>0
for all z: |z| < d5. It follows from (9), (10), (12) that -
13) |A—p| = Ce(A| +ul), C>0

forall e € (0,£0/2], A € IntA,, p € M.
In order to study the behaviour of R()\, a(TA,,)) for A\: A € IntA., we use the repre-
sentation

(14
R(M\a(74p))

= - Dem)” [ & [ dée— & H — a@I" — (O = 20) " HRG, DT
+A—X) Y, X EIntA,,
where the contour I' is defined as
I'={z;argz = +(n/2 — 2xe)},

and the integration path from 0 to z belongs to the contour I'. The formula (14) is based
on the evident relation

!
— | 46— —a@©1 — (A =20) '}/ =2)! = D= a@] — (A=)

dzr-1
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and follows from the well known generalization of the Cauchy formula
15) 1@ = n! @miy™! ff(()(C —2)7 " g

(see, e.g. [16, p. 172]). Since the operator [74;] is bounded for all fixedT > Oand h € H,

formula (15) may be easily generalized to the operator case. Therefore, (14) holds if we

replace the contour I by a closed contour surrounding the spectrum of the operator [74,].

As will be shown below, the norm of the integrand function in (14) tends to zero quickly

enough as |z| — o0 so that the closed contour may be transformed into the contour I".
By (14), we derive

IR(A, edr4i)) s,
<€ [| e — ey — @' — (A — o) eIzl
for all A such that A € Int A.. In addition, by (13), we have

X — @] — = 20)7'| = [az) — Jo]A — Xo) ' [A — al@)] 7'}
< Ciladz) — Xo[|A| + @)1

(16)

a7 _ _
<G+ +le@T!
< Gs[|A] + |21
for all X such that A € IntA,, z: argz = +(n/2 — 2x¢). Finally, using (16), (17), we
obtain ol
IR( aran) ], < Crer7 [ lael 12272 [7 1A+ dx
= G [7 P (1 4y dy
= Ce T 2|\ /owyze—z In(1 +y)dy
S C35_(’+1)'T_2EtA|25_1
forall \: A € IntA,, e € (0,60/2),7>0,h € H . This completes the proof. =

4. Well-posedness of difference schemes. Here the conditions of the well-posed-
ness of the difference scheme (4) are established.

THEOREM 1. Let the conditions of Lemma 1 be satisfied and assume
deglw,(2)] <0, r=12,...,1;

where w,(2), r = 1,2,...,v, are the correcting symbols. Then, for any solution of (4),
the a priori estimate

Ep@lle,
< Cl™?(2+ [k + )] ™)
(18) k
X {[(k + D1 |youl, +T§[(k — I+ 1y ,max Vfa(ti—1 + &), },

.....

k=0,1,...
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holds for all > 0, h € H, £ € [0,1], where ,;, = 7~ 'a(7A}) is the generator of
scheme, a(z) is the scheme generator symbol.

PROOF. Let us use the representation
19) [ — a(rAp)]* = Qmi)™! /r (A= XR(\, ardp))dr, k=1,2,...

where the contour I'; coincides with the boundary of the set A, (A; is defined as in the
formulation of Lemma 1). It follows from (9), (10), and (12) that

(20) |1 =Xl <1 —ape|)|, ag=const>0
forall e € (0,e0/2], A € TI,. Taking into account Lemma 1, we obtain from (19) and
(20
17— e, < Cre™ D77 | exp(—aoke  ADIAPdA|
(21) < Cpe~ 2 [ /000 exp(—a kex)x® ! dx + exp(—azke)

< Ce "2 (kr)E gp,ap =const >0, k=1,2,...
forallT>0,h € H, e € (0,£0/2]. In the same way, we get
2 |l a@A — a@A g, < Ce W), k=1,2,...

forallT > 0,h € H, e € (0,60/2]. Using the moments inequality (5) and taking
e = [In(2+&n)™)]"", we derive from (21), (22) that

(23) 1S, — a(r A ||z, < Cln™' (2+ (k) ') k)8, k=1,2,...

forallT> 0,h € H, ¢ € [0, 1]. Moreover, taking k = 1, £ = 0 in (23), we get
I~ a@alle, = Ul < Cl™ @ +77 ™!

forall T > 0, h € #{. This yields the fact that one can substitute (k + 1) for & in the
right-hand side of (23). Obviously, the estimate (23) will be valid after such substitution
for k = 0 too. To conclude the proof, one applies the results of [4]. [

5. Concrete families of difference schemes. Letus considernow the concrete fam-
ilies of difference schemes that may be investigated on the basis of the results obtained
above.

Taking vy = v, =v,b; = Bj, a; = ay, B = 1;j,1 = 1,2,...,vin (2), (3), we obtain
a discretization method belonging to the class of v-stage Runge-Kutta methods [10]. We
shall study some methods from this class.

First of all we describe the so called simplifying conditions B(m), C(m), D(m) intro-
duced into the theory of Runge-Kutta methods by Butcher [7]. Consider the condition

Bm): Y b =k7', 1<k<m
Jj=1
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the condition
C(m): Iiaﬂc‘jf‘l = k"c"]’-‘, 1<k<m 1<j<v,
=1
and the condition

D(m): Y bief'ay=k'b(1—¢f), 1<I<v,1<k<m.
j=1

Let us now consider the v-stage Radau IA and Radau IIA methods [10]. Both families
of methods lead to schemes of the order of accuracy (2v — 1). For the Radau IA methods,
the abscissae ¢;,j = 1,2,. .., v are determined from the equation

P,_1(26— 1)+P,2c—1)=0

and b; and ay, j,! = 1,2,...,v are determined from the simplifying conditions B(v),
D(v). For the Radau IIA methods, the abscissae ¢j, j = 1,2,...,v are the roots of the
equation

P,_i(1-28)+P,(1—2¢)=0,

and the other coefficients are founded from the simplifying conditions B(v), C(v). It
follows from [10] that the methods of both families are A-stable and the eigenvalues of
the generating matrices ((aﬂ)) belong to the sector {z ;| arg z| < m/2}. Since the matrices
((aﬂ)) are non-degenerate [10], the conditions

(24) deg[%(z)] S _1’ .] = 1’23---’1/

hold, where w;(z) are correcting symbols. Furthermore, the condition
(29) 2. bi=1

reflects the fact that the corresponding v-point quadrature formula is exact for constant
functions. By the representations for [1 — a(z)] given in [10], we easily get that Ao = 1.
Thus the schemes (4) based on the Radau IA and the Radau IIA methods satisfy the
conditions of Theorem 1.

Let us also carry out an analysis of the v-stage Lobatto IIIC methods [10]. These meth-
ods generate the difference schemes of the order of accuracy (2v — 2). Their abscissae
¢,j =2,3,...,v — 1 coincide with the roots of the equation

d
’r 126 —1) =0,

and ¢, = 0, ¢, = 1. The other coefficients are determined from the conditions B(v),
C(v — 1) and the additional conditions a;; = by,j = 1,2,...,v. It follows from [10] that
the methods of this family are A-stable and (25) is valid for all of them. Moreover, the
eigenvalues of the matrices ((aﬂ)) belong to the sector {z ;|argz| < 7/2}, (24) holds,
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and )9 = 1. Hence the schemes based on the Labatto IIIC methods satisfy the conditions
of Theorem 1.

Vinokurov has suggested a family of methods not contained in the class of Runge-
Kutta methods. At the same time, the schemes generated by these methods are also de-
scribed by (2), (3). It is significant that the relations vy > v, @ = ay,j = Imodv;
hold for Vinokurov’s methods. Such methods have an increased economy in calculations.
Simple analysis shows that the two methods of this family of higher order described in
[20] are A-stable. Moreover, for both methods, Ag = 1, the eigenvalues of the generating
matrices ((ajl)) belong to the sector {z; | argz| < m/2}, the conditions

deglw@] <0, j=12,...,1
hold, and
V|
2. bisi=1
j=1
Thus the methods from [20] satisfy the conditions of Theorem 1.

6. Applications. Analysis of difference schemes approximating initial-boundary
value problems for the heat conduction equation. In the present section, the ab-
stract results established above are applied to the analysis of the difference schemes ap-
proximating initial-boundary value problems for the multi-dimensional heat conduction
equation. Further, the operator 4, considered above as abstract is the difference operator
approximating an elliptic differential operator (with the boundary conditions of the first
kind).

Let D, = [0,1] x --- x [0, 1] be the n-dimensional unit hypercube, and suppose
x = (x1,X2,...,X,) is a sequence of n one-dimensional coordinates. In the segment D; we
introduce the non-uniform meshes @y = {x}k),k =0,1,...,7A},1=1,2,...,n, where
A1 =1,2,...,nare some natural numbers suchthatx}o) = O,fo) =1,1=12,...,n.
Let the stepsizes hf") of the mesh &y, be

AR =0 D =12, k=1,2,..., 7
Further, we shall use the notation

A9 =m0 +neN 2, 1=1,2,..n, k=1,2,..., N~ 1,

H= min (B .. i%).
15k159\6—1,(1 »)

ISan'M—l

Denote by @y \ (! = 1,2,...,n) the meshes obtained from &y, [ = 1,2,...,n by ex-
cluding the boundary nodes x§°) and x}N’). In the hypercube D, let us introduce the multi-
dimensional rectangular mesh

En

h = Why X 0 X Why
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and also the mesh of inner nodes
Whp =wp X+ X Wy

Let vy, be the set of boundary nodes so that Y, = &, \ & Let S;, denote the linear space of
complex-valued functions y(x) defined on the mesh @, and such that y(x) = 0 for x € V.
Also, let a;(x)), I = 1,2,...,n, x € Dy be coeflicients such that

(26) afx)>ap=const>0, I=1,2,...,n, x;€D.

Suppose 4, is the multi-dimensional difference operator determined by

@7 [Ay)ex) = { (;21=1(‘11)’x‘z)fn i g ::

for all y(x) € 3’;, (here and further on the standard notation for difference derivatives is
used [17]), where @; = ai(x;), [ = 1,2,...,n, x; € Oy are the mesh functions defined as

ey = gV + 1M 2), 1=1,2,...,n, k=12, N~

The operator 4, approximates on the mesh &, with first-order accuracy the differential

operator
n

0 0
A=—) —alx)—
I; p 1(er) e
with boundary conditions of the first kind at the boundary of D,; and the difference prob-
lem (4), (27) approximates on the mesh &, X &, the first initial-boundary value problem
for the multi-dimensional heat conduction equation.

In addition, we introduce the norms

TN Mot otk kD L pEP ] < p < oo,
Wiz, = k=1 k=1 VX n 1 n
" max,e,, Iy(x)la pP=

for all y(x) € S} so that the space S, with the norm || - ||,,, 1 < p < oo, is the mesh
analogue of the Lebesgue space L,, 1 < p < oo.

LEMMA 2. The operator Ay, given by (26) satisfies

(28) IRA AL, <371, 1<p<oo

forall &y, A > 0.

PROOF. Forp = o0, (28) follows from the maximum principle [17]. Using the tools
of [5], we can establish that the operator 4 is self-adjoint. By this fact, (28) is valid for
p = 1 too. To conclude the proof, it remains to apply the Riesz interpolation theorem
[19]. =
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LEMMA 3. For the operator A, given by (27) the inequality
(29) IR AW, < Ce'IA[7', p=1,00
holds for all &y, € € (0,7/2), and X such that |arg \| > m/2 +e.

PROOF. By Lemma 2, it is sufficient to use the method of an analytical continuation
of the resolvent into the corresponding sector [12]. u

Let us introduce in the space 3‘;, the auxiliary norms || - ||, 0 <j < n, defined by
)iy

Ai-1 - A ) i
= _ max {Z Z e, .. ,Xf,""’lzh‘,"')mhf,"f)]/, forl <j<n—1
k=1 k=1

1<kjs) N1 —1
IVOllag = VOllz.,  forj =0,

and
yOllagy = VOllzy,  forj = n.

LEMMA 4. The imbedding inequalities

(30) Ollag-1y < CII[A Oy, 1<j<n

hold for all &y, y(x) € Sy, where Ay; are the mesh operators given by

(aj)’x )i, X E Wy,
G1) Ui = | @ TEM

PROOF.  Letus denote by Ags; the mesh operators given by (31) in the case a;(x;)) = 1.

By [18], we have
(32)
max |y(x1,. .., X,)|
Xj€Wny

1 _ _y11/2

55[ ORI ZHE IR LIRS ' R S T
1<k <A1

>

for all fixedx; € &y, I = 1,2,...,n,1 # j. Using the tool of difference summation by
parts and taking into account (26), we can also derive from (32)

(33)
max |y(x1,. ..., %,)|
Xj€p
. 1/2
<C[ |[Al/2y](x1, . ,x,-_l,xj(.k’),xjﬂ, . x,,)|2h(k)] j=12,...,n

1<k <N—1
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for all fixed x; € &y, I = 1,2,...,n,1 # j. Squaring both sides of (33), multiplying by
AR ﬁj(.’ﬁ]‘), and summing over ki, ..., kj_1, we have

- = (ki k ke
> hg"‘) .. h,('—1') max Iy(x(, Do ,xj(._’l’),xj,xjﬂ, X))

ISh<A—1 1<k <AL~ €y
- -kA
(34) SC T T A PR - B

1Sk <A-1 1Sh<SA-1
j=12,...,n
for all fixed k;: 1 <k < Aj_y,I=j+1,...,n. Inverting the order of & and max on the

left-hand side of (34) only decreases the corresponding expression so that
(35

) L - 1/2
max [ > o h(lk’)"'hj('ﬁll)b’(x(lk‘)"'"xj('—lll)’xf’xf“’”"x")|2]
ISHNT <A1 1k <A1
_ ~k)11/2
1/2. 4/ (k ANVIAC ¢
SC[ R |[A,y/y](x‘,",...,xﬁ,"))lzh(n')"'hj’)]

ISh<A-1 1<k<AG-1

j=12,...,n

forall fixed k;: 1 <k < N_;,I=j+1,...,n. Inorder to obtain (30), it remains to take
maximum values over k;: 1 <k < A;—1,1=j+1,...,n onboth sides of (35). =

LEMMA 5.  For any fixed natural number r such that r > n /2, the estimate
IR A0 L, < N>, p=1,00

holds for all &y, and X such that | arg \| > /4, where Ay is the operator given by (27).

PROOF. By Lemma 4, we have
(36)
IR AWy L

< Cil|4} 2RO AT Yl
<GS RO AN Y < - < CUAL - AT TROS AT YL,
for all y(x) € g‘;,, Wny A |arg A > /4.

Since the operators 4, j = 1,2,...,n are the self-adjoint positive-definite in the
space Ly, and commute with each other, we have instead of (36)

IR AR Vllrws < Cill(Ahs + Apa + - - + Apn)"2[ROS AT VL,
= Ci|l 45RO AR ¥y, < CIN DIy < A Yo
for all y(x) € 3‘;,, Wy and X such that | arg \| > /4, that is equivalent to

37 1RO AR ||y < CIAP2
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for all W, and A such that | arg \| > 7 /4.
Going over to adjoint operators on the left-hand side of (37) and taking into account
the symmetry of the operator 4;, we also obtain

IR\ AW ||z, < CIAM2

for all &, and X such that |arg \| > /4.
This completes the proof. L]

LEMMA 6. The operator Ay, given by (27) is uniformly (with respect to h; € (0,1],
Jj=1,2,...,n) almost sectorial of power r in the spaces Lpy, p = 1,00.

PROOF. By Lemmas 3 and 5, we can write
(38) IR, AWY N1, < Ce"|A[™, p=1,00
for all Wy, € € (0,7/2) and X such that |arg \| > 7/2 +¢, as well
(39) IR AW Iz, < A, p=1,00

for all &, and X such that | arg \| > 7/4+¢, ¢ € (0, 7/4). Using the Phragmen-Lindelof
principle [11, p. 214], we have in view of (38), (39)

(40) RO AWY ||z, < CeT X704/, p=1,00

for all Wy, € € (0,7/8], and X such that |argA\| > 7/2 — ¢. Finally, it is enough to
substitute e /(4n) for € in (40). n

THEOREM 2. Let the operator Ay be given by (27), and let the scheme (4) satisfy the
conditions of Theorem 1. Then, for any solution of (4), (27), the a priori estimate

[RERTCSI T
< C{ln(2+[(k+1)r]")}

(reD[1=2p7"|

.....

1<p<o0, k=0,1,...

holds uniformly with respect to T > 0, &, and € € [0, 1], where U1, is the generator of
scheme, a(z) is the scheme generator symbol.

PROOF. By Theorem 1 and Lemma 6, the needed assertion is true for p = 1, 0. For
p = 2 this follows from [1], since the original assumptions of that work are satisfied for
self-adjoint operators in Hilbert spaces. To prove the theorem for all p, 1 < p < oo, we
use the Riesz interpolation theorem [19]. [

In conclusion, note that all the techniques may be easily extended for the case of the
third initial-boundary value problem.
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