A GENERALIZATION OF COX'S CHAIN OF THEOREMS
M. W. Al-Dhahir }
(received December 8, .1960)

i. Introduction. In [5,p.105] attention has been called
to a set of propositions, due to H. Cox [3,p. 67], which are '
related to another set, due to Clifford [2,p.145; 4, p. 447],
concerning points and circles in the plane or on the sphere.
One may state Cox's chain of theorems as follows:

In a projective 3-space, S3, let (1), (2), (3), (4) be four
points lying in a plane a such that no three of them are
collinear. Every two determine a line; let one plane such as
[12], pass through each line. There are six such planes. The
planes [12], [23], [13] determine a point (123); there are four
such points. The first theorem of the chain states that they all
lie in one plane [1234]. It is not difficult to see that this is, in
fact, a rewording of Mobius's theorem on mutually inscribed
pairs of tetrahedra [4, p. 444].

Now if we take a fifth point (5) in a, then any four of them
give rise by the first theorem to a plane, so that we have five
planes [1234], [1235], [1245], [1345], [2345]. The second
theorem of the chain states that these planes pass through the
same point (12345).

Continuing in this manner, by introducing a new point in
each step, we obtain Cox's general theorem [4, pp. 446-447] to
the effect that d coplanar points with arbitrary planes through
their lines of of intersections determine an incomplete (Cox's)
configuration which is, in fact, complete. The configuration
consists of 24-1 points and 2d-1 planes with d points on each
plane and d planes on each point.
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The purpose of this note is to extend this chain of theorems
to higher spaces. We shall be more concerned with the propo-
sitions of the chain than their corresponding configurations.

We develop a chain of theorems in odd-dimensional spaces which
specializes to Cox's chain in 3-space. In the next section, we
give a detailed treatment of the developed chain in 5-space; and
in the last section, we establish the chain in its general form.

2. Five-dimensional analogues. Let (1), (2), (3), (4),
(5), (6) be six points on a hyperplane a of a projective 5-space,
S5, such that no subset, of this set of points, is linearly depen-
dent. Every four of them determine a 3-space; let an arbitrary
hyperplane, different from @, such as [1234], pass through
each. There are fifteen such hyperplanes. The hyperplanes
[1234], [1235], [1245], [1345], [2345] determine a point (12345);
there are six such points. Then these points lie in one hyper-
plane [123456].

The figure involved in this generalization of the first
statement of Cox's chain is (unlike its 3-space analogue) not
symmetric. However, it admits a natural projection, from a
line joining any two of the given points, into an arbitrary
3-space not contained in @, which yields the corresponding
Cox's configuration in S3. Indeed, if we project, for example,
from the line joining (5), (6), by planes passing through it, we
obtain the four points (1)', (2)', (3)', (4)', which are the images
of (1), (2), (3), (4) respectively, lying in one plane. The six
hyperplanes, each containing a pair of the latter four, are
projected into six planes, each passing through a line deter-
mined by a pair of the former four. Discarding the two points
(12345) and (12346), the remaining four points (12356), (12456),
(13456), (23456) are mapped into the points (123)', (124)', (134)',
(234)' respectively (we erase the digits 5, 6). These incidences
obviously define an incomplete Cox's configuration correspond-
ing to the first statement. The configuration is complete, that
is, the four points (123)', (124)', (134)', (234)' are coplanar,if
and only if the resulting six points lie in one hyperplane
[123456].

To obtain, in Sg, an analogue to the second step of the
chain, let (7) be a seventh point in a. Every six of them, by
the first step, give rise to a hyperplane like [123456]; there
are seven such hyperplanes. We shall prove that they all meet
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in one point (1234567). Let B o be an arbitrary 3-space. Pro-
ject the figure from the line (6) -(7) into B. The five points
(1), ... , (5) are mapped onto five points (1)', ... , (5)'
respectively, lying in a plane common to a and . The ten
hyperplanes, each passing through a pair of the first set,are
projected into ten planes, each passing through a line joining a
pair of the second. Discarding the two hyperplanes [123456]
and [123457], the remaining five hyperplanes, namely [123467],
[123567], [124567], [134567], [234567] are projected into the
five planes [1234]', [1235]', [1245]', [1345]', [2345]' respect-
ively (here also we erase the digits 6,7). The primed five
points with the ten planes, each passing through a line joining a
pair of them, together with the five primed planes, determine
an incomplete Cox's configuration in B = S3, corresponding to
the second statement of the chain. Hence the configuration
closes with the point (12345)'. The two hyperplanes [123456]
and [123457] intersect in a 3-space y. The plane, determined
by the point (42345)' and the line joining (6), (7), intersects vy
in a point. This point is incident to the projected five hyper-
planes because it is the image of the point of intersection of -
their projection planes. Thus the seven hyperplanes intersect
in one point (1234567).

It is interesting to observe that one could have obtained

- the result directly by projecting into the three-space of inter-
section of the two hyperplanes [123456] and [123457]. In fact,
let us denote the hyperplane [123456] by a7, ... , [234567] by
ay. The five hyperplanes ao; (i=1, 2, ... , 5) determine a
point P67' We shall prove that Pg7 is incident to the 3-space
ag7 common to ag,a7; and then the result follows. Project
the whole figure from the line joining (6), (7) into agq- The
five hyperplanes a; intersect ag; in five planes e ¢+
(i=1, 2, ... , 5), and the arbitrary hyperplanes intersect ag7
in planes, each passing through a line joining a pair of the
images of (1), (2), ... , (5). As before, this defines an incom-
plete Cox's configuration corresponding to the second statement.
Hence the configuration closes by the point of intersection of
a;47 Provided that the @;, all, contain this point; and conversely.

3. Odd-dimensional analogues.

THEOREM 1. Let (1), (2), ... , (n + 1) be a set of points,
in general position, lying in a hyperplane a of a projective
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odd-dimensional space Sn(n > 1). Every n - 1 of them deter-
mine an (n - 2)-space, S, _p; let an arbitrary hyperplane,

such as [12 ... n - 1] different from a, pass through each.
There are (™ ; 1 ) such hyperplanes. The hyperplanes

[123 ... n-1], [123 ... n-2 n], [123... n~3 n-1n}], ...,
[23 ... n] determine a point (123 ... n); there are n+ 1 such
points. Then these points lie in one hyperplane [123 ... n + 1].

THEOREM 2. Let another point (n + 2) be added to the
set of points in a. By the procedure followed in theorem 1,
we have n + 2 hyperplanes. Then these hyperplanes are
incident to one point (4123 ... n + 2).

THEOREM 3. If a further point (n + 3) is added, then
n + 3 points would be obtained. These points will be contained
in one hyperplane [123 ... n + 3].

And soon ... .

Proof of theorem 1. Project the figure from the line
n.(n + 1) into an arbitrary S, _, ¢ o. The points 1), (2)',

, (n - 1)', which are the images of (1), (2), ... , (n - 1)
respectively, lie in one hyperplane of S, _ . The (" 2 )
hyperplanes passing through the projecting line are projected
into hyperplanes of S, _ 2 passing through (n - 3)-spaces of the
primed set of n -~ 1 points. Thus we obtain an incomplete
figure, corresponding to the same statement, in S, _; and
therefore the completeness of either is necessary and sufficient
for the completeness of the other. As n is odd, successive
projections of this type will eventually lead to an incomplete
Cox's configuration, corresponding to the same statement, in
S3. Hence the closure of the last is equivalent to that of the
first in S .

We remark that an analytic proof of this theorem is given
in [1,p.226]. There, it arose as a special case, in odd dimen-
sions, of a theorem in all dimensions. Incidentally, since the
2-dimensional theorem of Pappus is equivalent to the 3-dimen-
sional theorem of Mobius [4, p. 445], we have proved the
following

COROLLARY. Theorem 1 characterizes the commutativ-
ity of multiplication in odd-dimensional projective spaces
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defined over (not necessarily commutative) fields.

Proof of theorem 2. Denote the n + 2 resulting hyper-
planes by a; (i=1, 2, ...,n+ 2), where i indicates the
missing integer in the symbol of each. The first n of them
determine a point P, 4 42, while the last two determine an
(n - 2)-space o, 1, n+2° Projecting the whole figure from the
line (n + 1).(n + 2) into ap 4 4, n4 2. We have the a; (i=1, 2, ...,n)
mapped into @; p4 4, n+ 2-hyperplanes of ap 44, n+2'which are
(n - 3)- spaces in S, _p=ay44, pn4+2- The arbitrary hyperplanes
passing through the projecting line are projected into hyper-
planes, of 5, _,, each passing through an (n - 4)- subspace
determined by every n - 3 points of the n images (1), (2)',
... , (n)'. These incidences define an incomplete (Cox's)
second figure in @y 4 4 542, which is of odd-dimension. Con-
tinuing the process of projection in this manner, into the next
lower odd-dimensional space in each, we would arrive at Cox's
second configuration in S3; the last configuration is closed if,
and only if, the first figure, in S, is closed. This completes
the proof of the theorem.

The proofs of theorem 3 and the successive theorems of
the chain are clear now. In each, we project, from a line
joining two of the given points, into the next lower odd-dimen-
sional space, to get the same figure in that space; and hence
the corresponding configuration in 3-space. Thus, we reduce
the theorem to the 3-dimensional case.

Finally, we note that Cox's original chain of propositions
is self-dual. It remains to be seen whether it is possible to
obtain a self-dual extension.
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