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A non-empty subset / of a semigroup S is called an ideal if ab, bael
whenever a e I, b e S. A subset R of S will be called a retract if there exists
a retraction of S onto R, that is a homomorphism of S onto R which leaves
each element of R fixed. The purpose of this paper is to study semigroups
in which every ideal is a retract. For convenience we shall call such semi-
groups retractable. Such semigroups seem to arise naturally; for example,
it is easy to show that if the lattice of congruence relations on S is a com-
plemented lattice then S is retractable.

In Section 1 we give three examples of retractable semigroups. The first
example begins with an arbitrary branching tree-like diagram, and defines
the semigroup product of two elements to be the greatest lower bound of
those elements. In the second example, following a method of construction
introduced by Clifford [1941] in his study of semigroups which are unions
of groups, we associate an arbitrary group with each element of a tree, take
S to be the union of these groups, and define the semigroup multiplication
with the aid of certain homomorphisms between the groups. The third
example is formed by starting as in Example 2, and then adjoining extra
elements, each of which acts like one of the elements already present.

In Section 2 we begin the general study of retractable semigroups. The
structure of such a semigroup is reduced (Lemma 2) to that of a certain
subsemigroup, which, with the aid of ideas introduced by Green [1951]
in the general theory of semigroups, can be shown to be a union of non-zero
parts of 0-simple semigroups (that is, semigroups with 0 in which not every
product is 0 and xay = b is solvable for x and y whenever a =£ 0). Finally
(Lemma 5) the semigroup multiplication is described in terms of certain
mappings between the non-zero parts of the 0-simple semigroups.

In Section 3 we show that every retractable semigroup can be con-
structed by a generalization of Example 3, in which, instead of arbitrary
groups, we use arbitrary 0-simple semigroups. This result, in effect, reduces
the study of retractable semigroups to that of 0-simple semigroups. It is
not completely satisfactory since 0-simple semigroups are not yet completely
known. For the case of finite retractable semigroups, the result is more
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satisfactory, since Suschkewitsch [1928] and Rees [1940] have determined
the structure of finite 0-simple semigroups. An easy corollary of the main
theorem states that every commutative retractable semigroup is isomorphic
to a semigroup constructed as in Example 3; this, in effect, reduces the
study of such semigroups to that of groups.

1. Examples of retractable semigroups

EXAMPLE 1. Let T be a partly ordered set satisfying the following
conditions

(1) For all a,b eT there exists x e T such that a ^.x and b ^ x
(2) If A is a non-empty subset of T having an upper bound in T then

A actually contains a greatest element.

In the case where T is finite, the effect of these conditions is to assume
that T can be represented by a branching tree-like diagram rising from a
unique least element. We define multiplication in T by letting ab be the
(necessarily unique) greatest lower bound of a and b, that is the greatest
element in the set {x : a 5; x, b ^z x}. It is easy to see that the ideals are
those subsets / ^ 0 of S for which a ^b el always implies a el. Moreover,
if I is any ideal we can define a retraction n of 5 onto / by letting an be
the greatest element in the set {x e I: a 22 x}. From now on, we shall call
a semigroup constructed as in this example a tree.

EXAMPLE 2. Let T be any tree. For each i e T, let Gt be an arbitrary
group, all the groups being disjoint. For each i, j eT with i > j , let nu

be a homomorphism of G4 into Gs satisfying the condition that a nu7ijlc = anik

whenever a e Gf and i > j > k. For each i e T, define nH to be the identity
automorphism on G{. Let S be the union of all the groups. Define multi-
plication in S as follows. If a e Gt and b eG,, let k be the product */ formed
in the tree T. Then let ab be the product (ajiik) (b7ijk) formed in the group
Gk. It is easy to check that each ideal of 5 can be formed by letting / be
an ideal of T, and taking the union of all groups G{ for i e I. Moreover,
we can define a retraction <p oi S onto this ideal by letting n be a retraction
of T onto I, as in Example 1, and then defining gq> = gnifin whenever

EXAMPLE 3. Let S be formed as in Example 2. Let D be any dilation
of S. That is, let D = (UzesSJ u 5, where, for each x e S, Sx is an arbitrary
set, all of these sets being mutually disjoint and disjoint from S. Define
multiplication in D as follows. If a, b e S, c e Sa, d e Sb, then the products
ab, cb, ad and cd are all defined to be the product ab formed in S. One can
check that each ideal KotD arises by taking an ideal / of S, as in Example 2,
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together with an arbitrary subset of Uxej^x- Finally, we can define a
retraction ip of D by starting with a retraction (poiS onto / as in Example 2,
and extending cp to all of D by: cxp — a<p if c e Sa and c £ K, cip = c if
c e Sn n K.

2. Preliminary results

Throughout this section let S be a retractable semigroup. An ideal
generated by a single element a is called a principal ideal and denoted J(a).
Thus J(a) consists of a itself together with all its left, right and two-sided
multiples.

LEMMA 1. The principal ideals of S, partly ordered by set inclusion,
form a tree..

PROOF. We must show that the set of principal ideals satisfies (1) and
(2). For (1), let J(a) and J(b) be given, and note that J(a) D/(a&) and
J(b) 7^J(ab). For (2), let {/(«»)} be a set of principal ideals having J(a) as
an upper bound. Thus J(a) 2 J(a() for all *. Note that the set union u J(at)
is itself an ideal. Let n be a retraction onto u J(at). Since n is a homo-
morphism, it preserves the divisibility relation, and hence preserves in-
clusion of ideals. Hence from J(a) 2/(«*) follows J(an) 2/(«j7f) = /(«,)
for all i. On the other hand, aneu J{at). Hence anejfaj) for some /. Hence
J(ai) HJia71)- By transitivity of inclusion we have J{ai) D / ( a . ) for all *.
This proves (2).

Green [1951] defined the principal factors of any semigroup to be those
semigroups obtained by taking a principal ideal J(a), letting I be the set
of those elements of J(a) which do not generate J(a), and then forming the
semigroup J{a){I (that is, the homomorphic image of the semigroup J(a)
modulo the congruence relation having/ as one congruence class, every other
congruence class being a single element). Green showed that each principal
factor is either a 0-simple semigroup, or a simple semigroup (that is, one
in which xay = b is always solvable for x and y), or a null semigroup (that is,
one in which every product is equal to the zero element). He called a
semigroup semisimple if each of its principal factors is either 0-simple or
simple. Thus, semisimple semigroups are characterized by the property
that every principal ideal has two generators whose product is a generator.
As pointed out by Clifford and Preston [1961, p. 76, exercise 7(a)], a semi-
group is semisimple if and only if whenever / is an ideal and a el, there
exist x,y el such that xy = a.

LEMMA 2. S is a dilation (as defined in Example 3) of a semisimple
retractable semigroup.
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PROOF. The set S2 of all products of elements of S is an ideal of S.
Hence there is a retraction n of S onto S2. For each a e S2, define
Sa = {x e S : x $ S2, xn = a}. Now suppose a, b e S2, c e Sa, d e Sb. Then
cd e S2, so that n leaves cd fixed. Hence cd — {cd)n = {en) {dn) = ab.
Similarly cb = (C6)TI = {en) {bn) — ab and ad = {ad)n = {an) {dn) = aft.
Thus, we have shown that S is a dilation of S2. Now let / be any ideal of S2.
Since S is a dilation of S2, it is easy to see that I is also an ideal of 5. Hence
there exists a retraction <p of S onto / . The restriction of q> to S2 is a retraction
of S2 onto I. Thus, we have shown that S2 is retractable. Finally, given
a el, write a in the form xy for x,y e S . Then a = a<p = {xy)q> = {x<p){y<p).
Thus, we have written a as a product of two elements of / , so that S2 must
be semisimple.

For a e S, we shall denote by / „ the set of all generators of J{a). Thus,
the principal factor associated with J{a) is either / „ itself (in the case where
J{a) is a minimal ideal) or Ja with a zero element adjoined. For each b e S
we choose a retraction q>b of S onto J{b). For all a, b e S with J{a) D/(6),
we define nab to be the restriction of q>h to / „ .

LEMMA 3. JIO6 is a partial homomorphism of Ja into Jb, that is a mapping
°f Ja in*0 Jb which satisfies {xnab){ynab) = {xy)nab whenever x, y and xy
are all in Ja.

PROOF. Let xeja. Then J{x) = J(a) 2 / ( 6 ) . Since <pb preserves the
inclusion relation for ideals, J{xnab) =J{xcpb) = J{a(pb)'2J{b(pb) — 7(6).
On the other hand, since xq>bej{b), we have J{xnab) = J{xq>b) QJ(b).
Hence J{xnab) = J{b). This shows that xnab e Jb, so that nab maps / „ into
7». It is obvious that nab is a partial homomorphism, since it is a restriction
of a homomorphism.

LEMMA 4. / / J{a) 2 7(6) 2 J{c), then

(3) (ajro6jr6c)c = {anac)c, and
(4) c(awrt»,e) = c{anae).

PROOF. First note that c, ac ej{c) QJ{b). Hence both <pb and <pc (and
also their composite q>b<pe) leave fixed the elements c and ac. In particular
{ac)<pe = {ac)(pbq>e. But {ac)<pc = (ay j {c<pe) = (o^Jc and {ac)<pb<pe =
^fbfe) (c'Pb'Pe) — (a9?»9'e)c- Combining the last three equations, we conclude
{aq>e)c = («99(>93(.)c. But by the definition of the n's in terms of the <p's,
this is precisely (3). (4) is proved similarly.

LEMMA 5. For all a, 6 e S, ab = {anae){bnbe), where J{c) is the largest
principal ideal for which

(5) (anae){bnbe)eje.

https://doi.org/10.1017/S1446788700005838 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700005838


[5] Semigroups in which each ideal is a retract 243

PROOF. First note that (5) is satisfied if we replace c by ab, since
(a^a,at){b^t,ab) = {a(Pat) (b<Pat,) = («&)9>ai, = abejah. Every principal ideal
J(c) satisfying (5) must be contained in J(a), since nae is defined only when
J(a) 3 / ( c ) . Hence by Lemma 1 there exists a largest such principal ideal
J(c). In particular J(c) D/(«&)• Hence ab ej(c) so that (ab)<pe = ab. Now
note that nac and nbc are restrictions of cpe. Thus ab= (ab)<pe = (aq>c)(b<pe) =
(a7tac){bnbc).

3. Main theorem

EXAMPLE 4. Let T be any tree. If T contains a (necessarily unique)
least element i0, let Gt be an arbitrary simple semigroup. For each i eT
which is not a least element of T, let Gt be an arbitrary 0-simple semigroup.
For each i,jeT with i > j , let nu be a partial homomorphism of the non-
zero part J{ of Gf into the non-zero part J} of Gj} subject to the following
conditions:

(6) (071^71^)0 = {anih)c whenever i > / > k, a e Jf, c e Jt

(7) ciaXijTito) = c(a7ith) whenever i > j > k,ae Jit c e Jk

(8) If a ejf and b ejs, where neither i nor / is a least element of T,
then there exists k eT such that i > k,j > k and the product (ajcik) (bnik)
formed in Gk is not the zero element of Gk.

For each i e T, define nu to be the identity mapping on Jt. Let S = U<ET/<-

Define multiplication o in S as follows. If a ejt and b e Jit let k be the
largest element of T such that (anilc) {bnik) ^ 0 in Gk, and define
aob= (anik) (bnjk).

EXAMPLE 5. Let S be formed as in Example 4. Let D be any dilation
(as defined in Example 3) of S.

THEOREM. A semigroup is retractable if and only if it is isomorphic to
a semigroup D constructed as in Example 5.

PROOF. First we show that S constructed as in Example 4 is a retractable
semigroup. Associativity may be shown by using the definition of o and
applying (6) and (7). One can check (as in Example 2) that every ideal of S
is of the form Ui€j/» for some ideal / of T, and that the mapping which
takes each g e ]t to gni>iq), where <p is a retraction of T onto / , is a retraction
of S onto the ideal \JieIJi. Next note (as in Example 3) that a dilation of a
retractable semigroup must be a retractable semigroup. This proves the 'if
part of the theorem. For the converse, suppose D is a retractable semigroup.
By Lemma 2, D is a dilation of a semisimple retractable semigroup S. Let T
be the set of principal ideals of S, which by Lemma 1 form a tree. For each
i e T, let Gt be the principal factor of S corresponding to the principal ideal i.
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Since S is semisimple, each G{ is either a O-simple semigroup or a simple
semigroup. Moreover, we pointed out in Section 2 that simple principal
factors correspond to minimal ideals; thus Gt is simple if i is the least
element of the tree T, and O-simple in all other cases. Let J{ be the non-zero
part of Gt. For each j eT choose a retraction <Pj of 5 onto the ideal /. Define
(for all i > /) nu to be the restriction of q>} to J{. Thus TTH is the same thing
as the mapping nab (where a and b are generators of i and / respectively)
defined in Section 2. Note that nit is automatically the identity mapping
on J{, since nu is derived from a retraction onto the ideal i, which contains
/ , . By Lemma 2, nu is a partial homomorphism of Ji into Jt. (6) and (7),
being merely restatements of (3) and (4), follow from Lemma 4. To prove
(8), let ae Ji and b e J} be given, where neither i nor / is a least element
of T. By Lemma 5, there is an ideal J(c) for which (5) holds. Thus we can
take k to be either J(c) itself or (if it should happen that J(c) coincides
with i or /) any principal ideal properly contained in J(c), and obtain (8).
Now we assert that 5 is isomorphic to the semigroup constructed as in
Example 4 using the T, G{ and nu which we have just defined. First note
that each element of S generates a principal ideal, and hence can be regarded
as an element of some Jt. This gives a 1—1 correspondence between S
and Uier/.- By Lemma 5, the product ab in S is {anac){bnbe), where J(c)
is the largest ideal satisfying (5). This is the same thing as the product
a o b defined in Example 4. Thus we have shown that 5 is isomorphic to a
semigroup constructed as in Example 4. We immediately conclude that D
itself, being a dilation of 5, is isomorphic to a semigroup constructed as in
Example 5.

l i vre vrae interested oiv\y in iinite semigroups, several simpViiicatioivs
could be made in Example 4. The tree T and the semigroups G4 could, of
course, be taken to be finite. From (6) and (7) we could conclude

(9) an^n^ = anik whenever i > j > k, a e J{

since one can show (using the structure theory of Suschkewitsch [1928] and
Rees [1940]) that two elements of a finite [0]-simple semigroup must be
equal if they always act the same as left and right multipliers. Since (9)
obviously implies (6) and (7), we could replace them by (9). Also, (8)
could be omitted, since T being finite contains a least element i0, and the
product {a7iii(t)(b7iHij) in the simple semigroup G(<> is automatically non-zero.

If we were interested only in commutative semigroups, we could take
each Gt to be either an abelian group or an abelian group with zero adjoined
(since a commutative [0]-simple semigroup must be a group [with zero
adjoined]). Thus each /,- would be an abelian group. From (6) and (7), (9)
would follow by cancellation in the group Jk. (8) could be omitted, since
every product of elements of the group J s is itself in Jk and hence not 0
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Moreover, the definition of multiplication could be simplified as follows, aob
was defined in Example 4 to be (anik){bnjk) for the largest keT for which
(anik) (bnik) ^ 0. Since, as we have just pointed out, the product is never 0,
k is merely the greatest lower bound in T of i and /. If we apply all the
simplifications in this paragraph, we note that we have reduced Example 4
to Example 2. Hence, Example 5 is reduced to Example 3, so that we have
proved the following:

COROLLARY. A commutative semigroup is retractable if and only if it is
isomorphic to a semigroup constructed as in Example 3, with all the groups
Gf used in the construction being abelian.
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