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Abstract

We consider general boundary value problems for homogeneous elliptic partial differential operators
with constant coefficients. Under natural conditions on the operators, these problems give rise to
isomorphisms between the appropriate spaces with homogeneous norms. We also consider operators
which are not properly elliptic and boundary systems which do not satisfy the complementing
condition and determine when they give rise to left or right invertible operators. A priori inequalities
and regularity results for the corresponding boundary value problems in Sobolev spaces are then
readily obtained.

1980 Mathematics subject classification (Amer. Math. Soc.): 35 J 40, 35 E 20.

1. Introduction

In this paper we extend the results of Pryde (1980b) to general boundary value
problems for elliptic operators of arbitrary order acting between spaces with
homogeneous norms.

We consider partial differential operators A = A(D), with symbols A(g), of
the form

7=0

where the a,(£') are positively homogeneous of order m — j and are continuous
for £ * 0.
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[21 Elliptic boundary value problems 93

Here, and elsewhere, | = (£', £„) = (£„ . . . , £ , ) £ / ? " . As usual, A is called
elliptic if A(£) ¥= 0 for £ ^ 0.

We also consider boundary systems B = (Bj), 0 < j < p — I, with symbols
(£,(£)), of the form

(1-2) 5,(|) = 2 bJk(m,

where the ^(5') are positively homogeneous of order rrij — k and are continuous
for f 9«= 0.

Spaces with homogeneous norms are discussed in detail in Pryde (1980a).

Here we summarise their definitions. For s > 0, Z\R") is the completion of

C™(R") with the norm

\t\m\2

It is realised as a subspace of %'{Rn)/P'~n/\RH), the Schwartz space of
tempered distributions factored by polynomials of degree < s — n/2. The dual
of Z'(R") is Z~\R"), a subspace of %'{Rn) when the pairing is given by an
extension of the inner product in L\Rn). Let Rn

+ = {x = (JC,, . . . , xn) e R":
xn > 0} and /?" = /?"—/?". Then for arbitrary real s, the space of restrictions
to fl = /?" or R" of members of ZS(R"), with the infimum norm, is complete
and is denoted by Z*(Q). Relative to an extension of the inner product of L2(fl),
Z~'(Q) is dual to ZJ(fi) the subspace of ZS(R") consisting of factor classes
containing a distribution with support in Q. For s > 0 and 8 = R", R+ or R",
there are continuous dense embeddings Hs(ti) c ZJ(S2) and Z~s(ii) c H~\U),
where the //'(fi) are Sobolev spaces defined in the usual way.

In Sections 2 and 6 we show how interior and boundary value problems give
rise to isomorphisms

A:Zs(R")-*Zs-m(R"\ and
P-\

7-0

where ker^4 denotes the kernel of A in the indicated space. Moreover, the
relevant conditions on A(£) and Bj(Q are shown to be both necessary and
sufficient. At the same time we obtain results for elliptic operators that are not
properly elliptic and for boundary systems that do not satisfy the complement-
ing condition of Agmon-Douglis-Nirenberg (1959). Indeed, we give necessary
and sufficient conditions on the symbols in order that B above should be left or
right invertible.

Since spaces with homogeneous norms are not in general spaces of distribu-
tions, we prove in Section 3 a density theorem in order to use Fourier transform
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94 A. J. Pryde [31

techniques. This result is used in Sections 4 and 5 to define the action of trace
and other boundary operators on Z£etA (/?").

As a simple consequence of the previous results, we obtain in Sections 7 and 8
a priori inequalities and regularity results in Sobolev spaces.

A number of previous authors have used spaces with homogeneous norms to
study elliptic boundary value problems. For example, see Pryde (1980a) for
references to the work of Deny, Lions, Hormander, Aronszajn, Smith, Shamir
and others. These spaces are especially suited to the study of constant coefficient
operators on /?". By well-known localization techniques, Sobolev space esti-
mates for operators on bounded domains readily follow.

In Pryde (1981) we used these methods to study mixed boundary value
problems for second order elliptic operators on a smoothly bounded domain.
We obtained necessary and sufficient conditions on the coefficients of the
operators in order that the problems should give rise to Fredholm operators
between appropriate Sobolev spaces. We plan, in a later paper, to extend those
results to the higher order case. An essential ingredient will be certain results of
the present paper.

2. Operators on R"

Interior results for an operator A of the form (1.1) between spaces with
homogeneous norms take the following simple form.

THEOREM 2.1. If A is of the form (1.1) and s is real, the following are equivalent.
(a) A: Z\Rn) -H> Zs-m(R") is left invertible.
(b) A: Zs(Rn) -> Zs-m(Rn) is right invertible.
(c) A is elliptic.

PROOF. The theorem is an immediate consequence of the following lemma,
which we will also require later.

LEMMA 2.2. Let P = (Pjk) be ap X r matrix of pseudo-differential operators Pjk,
0 < j < p — I, 0 < k < r — 1, with symbols Pjk(£) which are positively homoge-
neous of order X^ — fik and continuous for £ ¥= 0. For each real s, P determines a
bounded operator

r-l p - \

P: II ZS-*(R")^> II Z"-\R")
k=0 7=0

for which P is left {right) invertible if and only //rank P(£) = r (respectively p) for
all {#0.

https://doi.org/10.1017/S1446788700018504 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018504


[4] Elliptic boundary value problems 95

PROOF. Let £>(£) = (£>,*(£)) where QJk(g) = |£|"* "*»/%(£) are positively homoge-
neous of order 0 and are continuous for 1=^0. Let Jx(£) and J2(Q be the
diagonal matrices with entries |£|*~^ and \tz\^~s respectively. These matrices are
the symbols of bounded operators Q, Jx and J2 satisfying

r-\ P~\

Q = JXPJ2: II L2(R")^ II L2(R")

and /, , J2 are isomorphisms between the appropriate spaces with homogeneous
norms. So P is left (right) invertible if and only if Q is left (right) invertible, and
rank P(0 = rank Q(g) for all £ ^ 0.

Suppose Q(0 has rank r for each £ * 0. Set AT(© = [Q(Q*QM^O®*, Q(Z)*
being the conjugate transpose of Q(0- Then K(£) is positively homogeneous of
order 0, continuous for £ ¥= 0, and J^(£)6(|) = /. So K(g) is the symbol of a
bounded left inverse of Q.

Conversely, if rank Q(i)) < r for some r\ =£ 0, take a unit vector c = (ck) such
that (2(TJ)C = 0. Take «// e ^ (Z?") with ^(Q > 0 for all & MQ = 0 for |£| > 1
and l l^l l^ . ) = 1. For e > 0, set gE(£) = £-n /^(( | - i,)/e)c. Then ge G
ni".oL2(i?") and ||ge|| = 1. Let ft be the inverse Fourier transform of ge.
Then||/e|| = 1 and

2 /
7 = 0 |«-i)|<e

p - \

2 SUP
7 = 0 |f-i)|<e

r-l 2

- 0 as e -» 0.

So g is not left invertible.
Since Q* is a pseudo-differential operator with symbol Q(Q*, the remainder

of the lemma follows by duality.

COROLLARY 2.3. If A is an elliptic operator of the form (1.1) and s is real, then
(a) A: Z\Rn

+) -> Z*-m(/^) w left invertible;
(b)A: Z'(Rn

+) -+ Zs-m(Rn
+) is right invertible.

PROOF. ZS(R+) is a closed subspace of ZS(R1), which proves (a), and (b)
follows by applying (a) to the formal adjoint of A and taking duals.
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96 A. J. Pryde [s]

3. A density theorem

Our aim in this section is to prove

THEOREM 3.1. If A is an elliptic operator of the form (1.1) and s, s' are real then
//^er/((/?") is dense in Z£erA(R1). That is, the intersection of the two spaces is
dense in the second.

Before proving the theorem, we define reflection operators P as in Pryde
(1980a). Given a positive integer /, let fik be the unique reals satisfying

(3.2) 2 [(-ky + (-k)-J] /3k = 1, for 0 < j < I.
k**l

The coefficient matrix of this system is a sum of Vandermonde matrices. Using
techniques similar to those in Van der Poorten (1976), the determinant of the
matrix is found to be

2 ( ( / + i ) ! ) - ' n J ( / - y ) ( y - i )

which is nonzero. For u G Co(R~l) define Pu G CQ(R") by

W(JC) if xn > 0,

(3.3) (Pu)(x)= ' i 1 , - , , , w ( , . . . M« -. ^ n
2 [ u(x', -kxn) + u{x', -k '*„)] pk if *„ < 0.

As shown in Pryde (1980a), P extends by continuity to a bounded operator

P: Zs(Rn
+) -^ Z\R") f o r O < i < / .

Moreover, if R: ZS(R") -> Zs(Rl) is the natural projection, then RP = I. In
fact, because of our choice of fik, these results are true for - / + 1 < s < /. To
show this, we define an operator P~ as follows. For u £ CQ~~'(/?") let P'u G
( ^ ' ( / O b e g i v e n b y

(3.4) (/-*)(*)-. %{-k<^-^n)-k-^x',-k-xn)\^k if*n>0,

u(x) if xn < 0.

Then P~ extends by continuity to a bounded operator P~: Z~\R") -» Z'\R")
when 0 < s < / - 1, and if R~: Z~\R") -> Z~\R") is the natural projection
t h e n R P = I .
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[6] Elliptic boundary value problems 97

By Pryde (1980a), (3.11), each of the following sequences of operators is
exact:

where 0 < -s < / — 1, / is the embedding and j = /'"'(/ — P'R). Taking duals
we obtain exact sequences

0*±Z*(/r) (^± Zs(Rn)£± Zs(Rn
+)*±0,

(p-y P

where R = i* and P = j * .

LEMMA 3.5. For -I + 1 < s < /, the operator P: Z\R"+)-> ZS(R") is the
unique bounded extension of the operator defined by (3.3) and satisfies RP = / .

PROOF. For s > 0, the result is discussed above. So suppose - / + 1 < s < 0.
Let M e C{,(k~l) n ZS(R"+) and v e Cf(Rn) which is dense in Z-\R"). Then

= / u(x)v(x) dx+ I

= f (Pu)(x)v(x) dx,

where this last P is given by (3.3). Finally, since R i = 0, RP = i*j* = (Ji)* =
[/-'(/ -P / ? ) / ]* = /.

LEMMA 3.6. Let A be an elliptic operator of the form (1.1), take t > 0, and let P
be a reflection operator corresponding to an integer I > max(/w + 1, / — m). If
u G H'(R") then AlPRAu G H'(Rn).

PROOF. Let M G H'(Rn) and take 0 < s < t. then u e Z\Rn) so RAu G
ZJ~m(/*"). By Lemma 3.5, since -l+l<-m<s-m<t-m<l, PRAu G
Z'-m(R"). By Theorem 2.1, AlPRAu G Z*(/T). So AlPRAu e / / ' ( / T ) .
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98 A. J. Pryde [7]

PROOF OF THEOREM 3.1. Let P be a reflection operator corresponding to an
integer / such that -I + \ < s < I, I > m + \ and I > s' - m. Let u £
ZLA(R"+) and take <p,. e Cf(Ra) n Z\Rn) with <*>, -* P« in Zs(Rn). Set i//, =
<p, - A-tpRAv. By Lemma 3.6, ^ e Hl+m(Rn) c # ' ( * " ) . But A^PRAy, =

AlPARPu = ^ ^ M = 0, so ,//,. -> PM in ZJ(/?n). Finally, AR$, =
ipRAw = /̂?<p, - /M^'P/Mtp,. = 0. So Jty,. £ H(aA(R"+) and

in Zs(i?^).

4. The trace operator

For s > \, the trace operator y0 defined by (YoM)(x') = M(-x'> 0) extends to a
bounded operator y0: Z\R"+) -+ ZS~O/2\R"-1). Indeed, if u is smooth and P is
a suitable reflection operator, (you)"(f) = 1/ VJTT {^(PU)'^', £,) </£„. Hence

< C | | M | | ! - ( « ; ) , i f s > ~ .

In this section, we construct from y0 a bounded operator y0: Z£aA(R+)->
Zs~(l/2\R"~'), for arbitrary real s, and A an elliptic operator of the form (1.1).

For such an A, denote by A' the formal adjoint of A. So A '(£) = A (|).
As usual, set Z)t = (l//)(9/9-x*)> 1 < k < n, and define y,. = yo£> .̂
Let (5,: 0 < j < m — 1} be the adjoint system of boundary operators for (y,:

0 < j < m — 1} relative to A. That is, the S, are the uniquely determined
homogeneous boundary operators of order m — j — 1, satisfying Green's for-
mula

m - l

(4.1) (Au, v) - («, A'v) = 2 <T,«, «/>> for u, v G Co
m( J?£ ).

Here ( , ) and < , ) denote respectively the inner products in L2(/?") and
L2(/?"-'). The Sj have symbols of the form 5,(0 = S™;^1 dJk(?)i£, where the
dJk(g) are positively homogeneous of order m — j — k — 1 and are continuous
for I' ^ 0. Since /I is elliptic, the 5, are normal. That is, dJm_J_l(i') ¥= 0 for
f * 0.
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f8j Elliptic boundary value problems 99

Now let / be a positive integer. Then 8 = (8m_v . . . , SQ, y^A', . . ., y,_tA') is
a Dirichlet system of order m + I. That is, all components are normal and their
orders run from 0 through m + I — 1. It follows that

m + I-l

(4.2) 0^>Zm + '(Rn
+)^ Zm+'(Rn

+)^> II Zm+'-J-il/2\R"-1)-*0
j-o

is an exact sequence. Indeed 8 = D̂y where y — (y0, . . . , ym+/_!) and ^ =
(tyjk), 0 < 7 , k < m + I — 1, is a lower triangular matrix of homogeneous
differential operators ^ of orders j — k acting in the boundary R"~l. By
the normality, <>D is invertible and its inverse is also a matrix of differ-
ential operators. Consequently <3) defines an automorphism on
H ^ - i Zm+i-k-o/2)(Rn-\y B y P r y ( j e (198oa), Theorem 4.1, sequence (4.2)

with 8 replaced by y is exact. The present result is therefore proved.
I f X m + ' ( R n

+ ) = { v e Z m + l ( R n
+ ) : ( « „ , _ „ . . . , « „ y o A ' , . . . , y , _ x A ' ) v = 0 }

then A': Xm+'(Rl)^> Z'(/?") is a bounded operator, and the following se-
quence is exact:

c

So the rows in the following diagram are exact and we define y0:
—> Z~'~^/2\R"~l) to be the unique bounded operator which makes the diagram
commute.
(4.4)

f\ . ^ —/ / n n \ r^ ~*( J?" \ ^ r7 ~* — ̂ ( D" \ ^ f\

I y I (A.'\* J /

0 -> Z-'-V/2\R"-1) -+ Xm+'(RD* -* Z-'-m(Rl) -+ 0.

For s > -I we define y0: Z^etA{Rn
+) ^ z 5 " 0 ^ / } " " 1 ) to be the composite of

the following sequence of bounded operators

(4.5) Z ^ ( * : ) ' T Zk-e'r,(/?:)^ Z-'-^\R"-lfZ" Z-W*>(R"-i).

THEOREM 4.6. / / A is an elliptic operator of the form (1.1) and s is real, yQ:
Zker/((/?")-> Z'"(1/2)(/J""') w ;Ae M/w'̂Me bounded extension of the mapping
u -> «|i?"-' OR zk

J
er/4(/?;) n c°(J«j).

PROOF. First take J = -/. Let u G Z^tA(Rn
+) n Cm(^i) and set g = wl/?""1.

Let (p G Co00^"-1) n Z'+ll/2\R"-1) which is dense in Zl+(-l/2)(R"-1), the dual
of Z''~^/2\R"~X). We show <yo«, <p> = <g, <p>. Since 8 is a Dirichlet system,
there exists v G Hs (/?"), where J' can be taken arbitrarily large, such that
8v = (0, . . . , 0, <p, 0, . . . , 0) where q> occupies the position corresponding to 80.

https://doi.org/10.1017/S1446788700018504 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018504


100 A. J. Pryde [91

If s' > m + I then v G Xm+'(R1) and u and v satisfy Green's formula (4.1). So

<Yo«. <P> = <- ( « T V ) * « , 80V>

m-l

= - (AU, V) + 2 <Y,"> «,
o

So yo« = g for such u. However, Hs"(Rl) is dense in Z^A{Rl) (Theorem 3.1)
and HS\R"+) c Cm(k~i) if s" > n/2 + m. Hence C m ( ^ ) is dense in
ZkaA(R+) aQd Yo is uniquely determined as claimed. The result for s > -I now
follows.

5. Other boundary operators

Let A be an elliptic operator of the form (1.1) and B a boundary system of the
form (1.2). By Theorem 4.6, for each real s, B determines a bounded operator

7 = 0

We proceed now to represent Bu in the form %yu where B is a pseudo-
differential operator acting in the boundary, and yu is the Cauchy data of u.

For each £' ^ 0, A(g, z) has /•(£') roots zk(g), 0 < k < r(£') - 1, with positive
imaginary part. They are not necessarily all distinct. Set A(£', z) —
A+g, z)A~{S, z) where A+(£, z) = Uk(z - z * O and let r - r(A) -
max{r(f): f * 0}.

By the continuity of yl(|), if « > 2 then r(f) = r for all £ =?«= 0. Similarly, if
n = 2 then r(£') takes at most two values, one for positive £' and one for negative
£'. Recall that if A(g) is an even order polynomial, it is called properly elliptic if
/•(£') = m/2 for all £' ^ 0.

Let <S (O = (®,*(£')) be the^ X r matrix given by

(5.1) U/f, z) = 2 ^ ( f ) z * (mod v4 +(f, z)),

for 0 < j < p - I, with %*({') = 0 if /•(£') < A: < r - 1. So <%(£') is positively
homogeneous of order m, — k and is continuous for £' ^ 0. Hence ® (|') is the
symbol of a bounded operator

r - l P~\

(5.2) S: II Zs-k-(X'2\Rn-x)^ II Z'-"
A=0 j-0
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[ 10 ] Elliptic boundary value problems 101

Recall that if A is properly elliptic and p = r = m/2 then B satisfies the
complementing condition (or the Shapiro-Lopatinski condition) with respect to
A if ® (£') is non-singular for £' =£ 0.

Finally, set y = (YQ, . . . , Yr-i) which by Theorem 4.6 extends uniquely to a
bounded operator

(5.3) rZ^A(Rl)^ II Z'-

THEOREM 5.4. Let A be an elliptic operator of the form (1.1), B a boundary
system of the form (1.2) and s real. Then Bu = "Syw for all u e Z{aA(Rn+).

PROOF. By the density theorem (3.1), it suffices to prove the result for
u e H^^RI) for suitably large /. Now

BjG, *) = "2 ®>*ttV + 9,(1', *M+(f, *)
k-0

where Qj(i', z) is a polynomial in z which is positively homogeneous in (£', z) of
order w,- — r(£'), and is continuous for £' # 0. So

, % j

k-0

for a suitable reflection operator P. It suffices to prove that QjA +Pu E
H'-'XR!!) (ckcryj.

Now /4PM G L2(R?) and by the Paley-Wiener theorem, for almost all £' =* 0,
the Fourier transform (APu)"($,', z) is analytic in Im z > 0 and

(5.5) sup C\A(g, [i + iv)(Pu)'(i', li + irj)|2 dp. < oo.
T|>0 •'-00

It follows that (A +Pu)~(g, z) is analytic in Im z > 0 and (5.5) remains valid with
A replaced by A+. So for almost all £' ¥= 0, the partial Fourier transform
(A+Pu)~(g, -) e L\Rl) n H'-«t\Rl) = W'"^/?^). Hence

' " ) as required.

6. Boundary value problems

In proving the theorem of this section we construct left and right inverses of
boundary operators. The main step is the following:

LEMMA 6.1. Let V be a positively oriented simple closed contour in the complex
plane on and within which the function f(z) is analytic except for a finite number of
poles, interior to T, whose orders total r. If r > 0 there exist unique polynomials
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102 A. J. Pryde [ill

Pj(z) for 0 < j < r — 1, of order at most r — 1, independent of the particular
contour enclosing the given poles, and satisfying

(6.2) ^f(z)z%{z) dz = Sj, for 0 < jj < r - 1.

Moreover, if f{z) = /i(

(6-3) /2(z)

Moreover, iff{z) = /i(z)/2(z) where f^z) is analytic on and within T then

«(*) - 2 SMPM) [ fiUWS) *
/=o •'rj-0

is analytic on and within T, apart from removable singularities, whenever w(z) has
that property.

PROOF. Consider the matrix (qJk) where qJk = frf(z)zJ+k dz for 0 < j , k <
r — 1. If this matrix is singular, there exist complex numbers ak, not all zero,
such that 1r

k~J0 qjkak = 0 for each j . Setting g(z) = "Zr
k~J0 akz

k, it follows that
frf(z)g(z)h(z) dz = 0 for all polynomials h(z) of order at most r — 1. Within T,

f(z)g(z) has poles whose orders total at least 1 and at most r. So we can choose a
polynomial h(z) of order r — 1 such that f(z)g(z)h(z) has precisely one pole
within F and that of order 1. But then fTf(z)g(z)h(z) dz =fc 0, contradicting a
previous conclusion.

So (qjk) is non-singular and there exist unique complex numbers pkj, satisfying
2*-o ijkPkf = 8jr> 0 <j,f <r - 1. Setting pf(z) = 1r

k~-opkfz
k we obtain (6.2).

The uniqueness also follows.
Now suppose the distinct poles of /(z) and /2(z) within T are ZQ, . . . , zq with

orders m0, . . . ,mq where m0 + • • • +mq = r. Using the notation Res[/(z), f]
to denote the residue of a meromorphic function/(z) at J, we obtain from (6.2)

q

1 = 0
2m 2 Res[/,(z)/2(z)z>P/(z), z,] = Sj,.

Setting g/(z) = Mz)P/(z), a^z) = (z - z,rf2(z)zj, and
dmg(z,)/dzm we obtain

= 2*«2o 2

This can be considered as a matrix equation, and since the index (/, s) runs

through the r values given byO<l<q, 0<s<m — I, the product can be
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112 ] Elliptic boundary value problems 103

reversed to give

for 0 < / ' < q and 0 < s' < mr — 1. Multiplying by u(s\zj) and summing over /
and s we obtain

1 m,-l r - \ ,
(j')/ -. « . ^ ^1 ^1 (S')( \ '

u (zr) - Lm 2J ZI 2J SJ \zv) tm _ j>

Hence the singularities on and within T of expression (6.3) are removable as
claimed.

LEMMA 6.4. Suppose f G L2(/?^)", g is a function satisfying \ g(z)\ > c > 0
outside some compact set K in Im z > 0, am/ h = / / g is analytic in Im z > 0.
Then h G L\RX_)'.

PROOF. We have only to show that sup,,>0 /!^|A(| + nj)|2</£< oo. Take
> r > 0 with K <z Ki = {z = £ + i-q: -R < | < R, r <-q < R} and set

= (0, r) U (/?, oo). Then since/ G L2(/?_!)",

+ ir,)\2 di < - . sup r°°|/(€ + /7,)|2 rf| < oo;
C T I > 0 •'-oo

sup
TIES •'-OO C 7)>0 •'-OO

and

sup / | A ( f + /r,)|2 rf{ = sup ( f \h(i + iV)\2 di + (*\h(Z + n,)|2
/ \J\i\ J-R

SUP ( I
< - 1 sup f" | /(€ + hi)|2 </« + 2R sup

< oo.

We come now to our main result.

THEOREM 6.5. Let A be an elliptic operator of the form (1.1), B a boundary
system of the form (1.2) and s real. Then B: Z^A(Rn

+) ->np0
lZJ-">-(1/2)(/?'<-1)

is left (right) invertible if and only if rank ® (£') = r(£') (respectively p) for all
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104 A. J. Pryde [131

PROOF. Let h be a suitably large integer and for each unit vector TJ' e R" '
set /(TJ', Z) = (z + /)~^4(TJ', Z)"1. Let T be a positively oriented simple closed
contour in Im z > 0 which encloses all the roots of A(t)', Z) in Im z > 0. For
0 < j < r(ij') — 1, let/>,(Tj', z) be the corresponding polynomials in z given by
Lemma 6.1. Since ^4(TJ', Z) is continuous in TJ', SO too are the Pj(y\', z). For
H.Vt) < j <r - 1, let/>/Tj', z) = 0, r again denoting max{r(£'): f =̂  0}.

We define a bounded operator Q: W/LQ ZS-J~^1/2\R"-1)-* Z'(R") to be
used in constructing inverses, as follows. Let g = (#„, . . . , gr_{) £

1) n C^R"-1), and set

r

Then/ G L2(R") and

< c

where c is independent of g. Indeed,

L2(R")

12,-2,-1

= c\\g\\2.

Defining Qg = |V|"*/we conclude Qg e Z\R") and ||Gg||z.(J,.)
c||g||. Extending Q by continuity, we obtain a bounded operator as indicated.

With g as before, we now show RAQg = 0. For this let (Dn + i\V'\Y, as
defined in Pryde (1980a), be the pseudo-differential operator with symbol
(£, + i\0,'\Y- The complex powers £* are determined by taking -IT < arg f < IT.
Now set w = (Dn + i\V'\Y~mAQg. Then w e L2(R") and

r i

It follows that

for each £'(6.6)
sup |
tj>0

^ 0, w(g, z) is analytic in Im z > 0, and
+ ifi)\\r2tR"\ < 00.
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Indeed, the analyticity is obvious. Further \pj(£', z)\2 < c(l + |z|2)r~' for all
z,j and unit vectors £'. Hence for TJ > 0,

c| |f *+2"-2(|n
2 + („

7 - 0

T
j-o

provided h > s — m + r — 1. This last expression is integrable ifh>s — m + r
— \, in which case (6.6) is proved.

By (6.6) w 6 L2(/?D. But (£>„ + i| V'1)*-"1: Z*-m(/lf) -» L2(/?^) is an isomor-
phism. Hence AQg e Z j m ( / ? D and RAQg = 0.

It follows that we have a bounded operator

(6.7) RQ: TlZ*-k-V/2KR'-1)^ZZaA(Rl).
fc-0

Suppose now that rank $ (£') = /? for all | ' # 0. As in the proof of Lemma
2.2, ®(|') = /,(O®(r/|f |)/2(O where /,(f) - diagflfl"*) and

*)- Set

S o f o r O < & < / - - 1, 0 < y < /» — 1, ®^(l') is positively homogeneous of order
k - rrij and is continuous for {' ^ 0. Also % (g)<& '(f) = / and

P-\
W = RQ<&': I I ZJ-">-(1 /2>(/?"-1)^.Z^r^(JRi)

7-0

is a bounded operator. We show that BB' = / .
For this let

P-\

g = (go- • • • . gp-x) e II Z*-"
7-0
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and set g' = BB'g. It suffices to show that g' = g. By Theorem 5.4, B = %y and
sog' = %yRQ<$'g. Hence

r-l

= 2
k' = 0

r-l

= 2

V1 6ft
ZJ •"//,

k'-O

U' +

k'-O

^O f̂t
Zj J 3 /J

P-l

j-o J

(since ®

j-o J

fc'W / Zi •aKpS '
7=0

k"0

Pk\ i>/i > ' 1 ^*'

rik.(f) = 0for r(i

>\ V 6a ' /•i'Mf

1,(1')

D< * < r - 1)

' | -*8^ (by (6.2))

= gf(g), as required.

Conversely, suppose B is right invertible. Since B = "35 y, we conclude •& is
also right invertible. Hence, by Lemma 2.2, rank <$> (£') = p for all | ' T̂  0.

Suppose now that rank <& (I') = r(f) for aU £' =̂ 0. Then for these |', ® (f) =
[®,(f)|0] where a , ( f ) is a /> X r(f) matrix with left inverse ®,'(|') =
(®i( | ' )*®iO"I®i(0*- Let ® '(!') denote the r X ^ matrix

Setting 5 ' ', we show that BB = /.
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For this, let u e ZlaA(R%) and set

w = (Dn + i\V'\Y(Pu -

where P is a suitable reflection operator. So w G L2(R ") and it suffices to prove
that w G L\R2). For then, Pu - Q%"%yPu e Z\R?) and B'Bu =
/?0<S"Syi>u = /?P« = u.

Now /L4Pw = 0, so o = v4Pu E Z'~m(R?). As L2(/?^) is dense in Zs-m(Rn),
there exists u, G L2(R?) with ^, -» t; in ZJ~m(/?r). Then RA~lv( -+ u in ZJ(/?^.)
and

M,. = (Z)B + i|V'l)*^-1©, - Q%'<$>yA-xv) -* w in L\Rn).

Now for £' =̂ 0,

• 2 W\~

Take T = TR = [-R, R]\j SK where
and R is sufficiently large. Then

f * 4 4 ( f , z ) - 1 ^ ! ' , z)dz <cf
JSR

 JO

[
0 J-

is the semi-circle \z\ = R, Im z > 0,

m+x\ot(Z,Rem)\dB

5,(f, * , ) | <**„ «»,[(
Vjd', xn) again denoting the partial Fourier transform of u,(x', xn). Now since
0 < j < r ~ I < m — 1, the integrand is dominated by the integrable function
|e,-(£'> *„)! on the region G of integration. Moreover, as R —» oo the integrand
converges pointwise ahnost everywhere on G to zero. By Lebesgue's convergence
theorem, the integral converges to zero as R -» oo. Hence

lim - l
«,(€) —

By the Cauchy-Goursat theorem, this last integral is independent of R for R
large enough. By (6.3), for almost every £', #,(£) has an analytic extension to
Im i, > 0. Setting g(z) = (z + j|£|)-"l4(f, z) and/(z) = g(z)w,.(f, z), it follows
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that / and g satisfy the conditions of Lemma 6.4. So for almost every £',
w,.(£', £„) G L\R])~. This means w,. G L\R") and hence so does H>, as was
required.

Conversely, suppose rank ® (rj') < r(rj') for some TJ' ^ 0. By Lemma 2.2 % is
not left invertible. Now if /•(£') is constant for £' ^ 0 then, by what has been
proved already, y = (y0, . . . ,yr_x) is an isomorphism. Hence B = %y is not
left invertible.

So suppose r(£') is not constant. Then n = 2. Let v// G L2(R) with i£ G
), fe = 0 for |f | > i|i,'| and / | &tf)|2 df = 1. For 0 < e < 1, set

where z0, . . . , zq are the distinct roots of A +(i7'/h'l> •z) with multiplicities
m0, . . . , mq and gb(g) are continuous functions to be determined.

Now ue S L\R1) and is therefore the partial Fourier transform of a function
ut G L\Rl). In fact ue G Z^rA(Rl) for each real 5. Furthermore,

-j. 1

2 2 2
,_o , - 0 A-O

and

1-0 s-o

As before write ®(TJ') = [®,(TJ')|O] where ^ ( T J ' ) is a/> X r(ij') matrix. Then
rank ®I(TJ') < A-(TJ') SO there exists a unit vector c = (c,) such that ®,(TJ')C = 0.
Consider the system of equations

(6.8) (y,uer(f) = e - ( n - 1 ) / 2 ^ ( ^ ^ ) c , , 0 < j <

There are r(?j') equations in the r(rj') unknowns gfa(|')- Now the determinants

where 0 < j < r(Tj') -l,O<I<q,O<s<m,- 1, has the value
q m,- \ I i—\

n n *i n w\ -
which is nonzero. See Van der Poorten (1976). Hence the system (6.8) can be
solved for functions g&(|') continuous when {' =£ 0.
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Finally,

and it follows, as in the proof of Lemma 2.2, that But -» 0 as e -* 0. However,

Since the integrand is zero outside the interval TJ' — ||T/' | < £' < TJ' + ^|TJ'| we
conclude that

So ||Y«J| and ||Me|| are uniformly bounded away from zero, yet But -»0. Hence B
is not left invertible.

COROLLARY 6.9. Let A be an elliptic operator of the form (1.1) and s real. Then

(Yo. • • • • Y,-.): Z 'y-o

« /e/if (right) invertible if and only ifp > r(£') (respectively p < rig)) for all £' =pt 0.

PROOF. When p > r(£,'), <$> (|') = [̂  g] where / is the /•(£') X /•(£') identity
matrix. When p < /•(£'), ® (f) = [/ 0] where / is now the p X p identity. The
result now follows.

COROLLARY 6.10. Let A be an elliptic operator of the form (1.1), B a boundary
system of the form (1.2), and s > max(w, + | ) . Then

P-I

(A, B): Z\Rn
+)~*Zs-m(Rn

+) X II Z'-m>-iX/2\R"-1)
j-0

is left (right) invertible if and only if rank $ '(£') = r(£') (respectively p) for all
f # 0 .

PROOF. By Theorem 2.1, ,4: ZJ(rt£) -> ZJ-m(/J^.) is right invertible. By
application (4.2) of the five lemma of Pryde (1977), (A,B) is left (right)
invertible if and only if Z?|ker A is left (respectively right) invertible.
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7. A priori inequalities in Sobolev spaces

We use the results of the previous sections to obtain a priori inequalities for
boundary value problems in Sobolev spaces. For the case when A(g) is of even
order similar results were obtained by Schechter (1959), Agmon-Douglis-
Nirenberg (1959), Browder (1959), and others.

Let A be an operator whose symbol is of the form

k=0j-0

where the a/(£') are positively homogeneous of order k — j and are continuous
for £' J= 0.

Then A is called elliptic if its principal symbol A m(£) = 2™-o ajm(OH i s

non-vanishing for real £ ¥= 0. Further, A is called homogeneous if A(g) = A ""(£).
Let B = (Bj), 0 < j < p - l . bea boundary system with symbol of the form

(7.2) Bj(i) = 2 BJ(Q,
1=0

where, for / < m,, Bj(g) is positively homogeneous of order / and continuous for
1 ^ 0 , and Bp(Q = 2^_ 0 bjk(?)i£, with &,*(£') positively homogeneous of order
ntj — k and continuous for £' ^= 0.

Again, B is called homogeneous if (By(Q) = (5,"*(|)).
If ^ is elliptic, we can construct the matrix % (£') and the numbers /•(£') from

y4 m(£) and (5y">(0) as in Section 5.
Let Q = {x e /?": |x| < 1} and 2 + = { x 6 0 : jcn > 0}.

THEOREM 7.3. If A is an operator of the form (7.1) and s is real, the following are
equivalent

(a) ||K||/,.(*.) < cfll^Klljy.—^.) + \\u\\H-\R")for al1 " e H'(R") with support
in Q;

(b) A is elliptic.

THEOREM 7.4. If A is a homogeneous elliptic operator of the form (7.1), B is a

boundary system of the form (7.2) and s is real, the following are equivalent:

(a) ||M||#»(/{») < c(ll^"||.w + \\u\\H'-'(R"))for °H u *= ^ker/<(-^+) w^n support in

(b) rank ® (f) = /-(f) /or a// £' ̂  0.
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THEOREM 7.5. If A is an elliptic operator of the form (7.1), B is a boundary
system of the form (7.2) and s > max(w/- + \ \ the following are equivalent:

(a) II«IUW)_< c{\\Au\\H,^(Rl) + \\Bu\\H + \\u\\H,->(R.J for all u G H'{R"+)
with support in Q + ;

(b) rank % (f) = r(f) for all f ^ 0.

Here, \\Bu\\H denotes the norm of Bu in Hp} H^^-V^XR"'1). These three
theorems follow respectively from Theorem 2.1, Theorem 6.5, and Corollary
6.10. We give the details for one case only.

PROOF OF THEOREM 7.4. Suppose (a) holds. For suitably large integer /, let
u G Ci(Rl) n Z^A(Rl), which by Theorem 3.1 is dense in Z^erA(Rl). Define
uc(x) = es~(n/2)u(x/e). Then there exists e0 > 0 such that ue G CQ(Q+) if 0 < e
<€0. As e-^0, | k l | * W ) - > llullz-t,.), ||^||tf-HI(*/»*<)|lz. where Z =
npo1 z'-^-WiR1-1), and |K||w.-.(J,.+)->0. Hence

(a') | | « | | z W ) < c\\(Bpu)\\z for all u G Z ^ ^ ^ J ) .
So (-By*) is left invertible and by Theorem 6.5 rank % (£') = /-(f) for all £' =̂ 0.

Conversely, if rank <S (f) = r(£') for f =̂  0, then inequality (a') holds. In
particular (a') holds for all u G C&Q+) n Z£aA(Rl). But the Sobolev and
homogeneous norms are equivalent on this space (Pryde (1980a), Theorem 6.1)
and so

(a") I N , , W ) < c\\{Bpu)JH < c(\\Bu\\H + \\u\\H,-,(R,J.
Finally, the closure of CQ(<2+) n Z^e r A(Rl) in Hs(Rl) has finite codimension
in {« G H*(R1): support u c Q+}- On any complement of that closure,
ll"lltf '(«;)~ II"II*-•(*;)• H e n c e inequahty (a) holds.

8. Regularity results

THEOREM 8.1. Let A be an elliptic operator of the form (7.1) and s real.
(a) Ifu G L\Rn) andAu G Hs-m(R") then u G HS(R").
(b) / / A is homogeneous with u G L2(R") and Au G Zs~m(R") then u G

PROOF, (b) Since A is homogeneous and elliptic, ||M||Z-(/{«) ~ H^MUZ,-..^,) by
Theorem 2.1. Hence u G Z\R") n L\R") C H\Rn).

(a) Write v4 = Am + A0 where A0 here denotes the lower order part of A. The
proof is by induction on s. Firstly, the result is trivial for s < 0. Suppose it holds
for s < k where A: is a non-negative integer and consider k <s < k + I. By part
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(b) it suffices to prove that Amu & Zs~m{Rn). Now Au G H'-m(Rn) c
Hk~m(R") and so, by the induction hypothesis, u G Hk(R"). So y4°« G
Hk-m+\R") c H*-m(R") and ^mw = ^M - y4°w G H'~m{R") n Z""(/?").
But for positive w and J there exists c such that

| i r m < c[(l + l^)^--")/2 + II)-] for all i.

Hence A"^ G Zs~m(R") as required.

THEOREM 8.2. Le/ v4 £e an elliptic operator of the form (7.1) and B a boundary
system of the form (7.2) with rank ®(£') = lijt) for % =£0. Let s be real and
t > max(w, + 5).

(a) / / w G H'(Rl), Au G Hs~m(Rl) and Bu G n£~d ^-"J-^/2^/?"-1) ^ n
u G ^^(/?;).

(b) If A and B are homogeneous with u G H'(Rl), Au G Z'-m(R1) and
Bu G npo1 Z—"*-<-l/\RH-x) then u G /fJ(/?^).

(c) If A and B are homogeneous with u G L\Rn
+), AU = 0 a/u/ Bu G

IIpo1 Z*""*" 0 / 2 ^"- ' ) //ten M G Hs(Rl).

PROOF, (C) Since rank « ( f ) = r(O for f # 0, 5: L^ery<(/?^) ^ .
IIJJo1 Z-"*-(1/2)(/*"~x) has a bounded left inverse 5 ' (Theorem 6.5). By taking
the constant h, in the construction given for B', large enough, we can ensure that
B' extends to a bounded operator B': nj~d Z ' " " * - ^ ^ " - 1 ) - * Z ^ ^ ^ ^ ) . So
« = 5 ' ^ ) G Z£CTA(Rl) n L2(/?:) c H^A{Rl).

(b) Let f be a suitable reflection operator and set v = u — RA~xPAu. Since
u G H'(Rl), by Lemma 3.6, t> G H'(Rn

+). Moreover, Bv = Bu - BRAlPAu G
jj,-j5,-(i/2) (/{"-l) a n d Av = 0 B y p a r t (C); t, G H'(R"+). Again by Lemma 3.6,

RAlPAu G # ' ( /?:) n Z ' ( i ^ ) c Hs(Rn
+). So M G //*(/?:).

(a) This is proved by induction on s using part (b) as in the proof of the
previous theorem.
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