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1. Introduction

As the applications of category theory increase, we find ourselves
wanting to imitate in general categories much that was at first done only
in abelian categories. In particular it becomes necessary to deal with epi-
morphisms and monomorphisms, with various canonical factorizations of
arbitrary morphisms, and with the relations of these things to such limit
operations as equalizers and pull-backs.

Call an epimorphism / : A ->• B regular if it is a coequalizer in some
general sense (made precise below) and call it extremal if it factors through
no proper subobject of B. These classes of epimorphisms have been con-
sidered by various authors, but most completely by Isbell ([4], [5]). He
supposes that the category stf in which we operate satisfies some fairly
strong completeness conditions, and then shows the following:

For an arbitrary morphism / there is a smallest regular epimorphism r
through which / factors as / = nr; r = 1 only when / is monomorphic. In
general n is not monomorphic and admits a similar factorization n = n1r1;
proceeding thus we get / = nasa where sx = rara_^ • • • rxr. We can in
fact continue transfinitely, and ultimately na is a monomorphism and the
process stops. Then / = nasa is the unique factorization of / with na mono-
morphic and sa an extremal epimorphism. This factorization has good
properties, and extremal epimorphisms themselves have good properties,
always supposing the original completeness hypotheses to hold; in more
general cases extremal epimorphisms are not, for instance, even closed
under composition.

The main object of this paper is to consider the relation of these things
to pull-backs and push-outs, and in particular to consider the following
classes of epimorphisms: we call an epimorphism / persistent if every pull-
back of / exists and is an epimorphism; very regular if it is persistent and
regular; and totally regular if every pull-back of / exists and is itself a regular
epimorphism. These are defined (with different names) by Grothendieck
([2]» [3]). but there seems to be scarcely anything proved about them in the
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literature. The only results I know of are due to Pupier ([7], The'oreme 5)
and Oort ([6]); these are in one way or another special, and relate primarily
to additive categories; they will be special cases of results proved below.

We try to avoid unnecessary completeness hypotheses and in particular
are unwilling to accept those under which, because of the particular applica-
tions he has in mind, Isbell establishes his results. It seemed best, therefore,
to include an account of regular and extremal epimorphisms, making this
in part a survey paper. Our own results appear in section 5, while those in
sections 2—4 are essentially Isbell's, re-proved under other and usually
weaker conditions. In particular we have abandoned extremal epimorphisms
as a basic concept, replacing them by what we call strong epimorphisms.
These ate always well behaved, and reduce to extremal epimorphisms under
mild completeness conditions.

NOMENCLATURE. We use limit and colimit for what some call 'left
limit' and 'right limit'. (The dual of any concept is denoted by 'co-' except
that the duals of monomorphism, subobject, and pull-back are epimorphism,
quotient object, and push-out.) A category is complete [finitely complete]
if it admits all small limits [finite limits].

We understand product and fibred product in the usual sense; the
fibred product of a family fa : Aa-> B is a family ga : C ~> Aa. When
we take the fibred product of just two morphisms fx and /2, we call

a pull-back diagram, and we say that g2 is the pull-back of fxby f2.\lAx = A2

and fx = /2 = /, we call the pair glt g2 the discriminant of /; it is terminal
among pairs x, y with fx = fy, and has the property that / is monomorphic
if and only if gx = g2 (in which case we may take g1 = g2 = 1).

We use the term equalizer only for the equalizer of a single pair
/, g : A -> B. By the simultaneous equalizer of a family of pairs fa,ga:A-^-Ba

we mean a morphism k : K -> A terminal among those for which fak = gak
for all a.

We call / a monomorphism if fx = fy implies x = y. We pre-order
monomorphisms with range A by setting / > g if g is of the form fh; the
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equivalence classes for the relation '/ > g and g > /' are called subobjects
of A. Note that for epimorphisms with domain A we write / > g if g is of
the form hf. We often confuse a subobject with a representative mono-
morphism /, and we call the subobject regular etc. if the monomorphism /
is regular etc. If a family fa : Ka -> A of monomorphisms has fibred product
ga : I -»• Ka, the common value faga is also a monomorphism and we call
it the intersection of the fa, although the term more properly applies to the
corresponding subobjects of A.

We call the category si additive if each s/(AB) is an abelian group and
composition is bilinear; we do not require finite products to exist.

2. Regular epimorphisms

We call a morphism / : A ->• B in a category si a regular epimorphism
if any g : A -> C satisfying

ga; = g?/ whenever fx = fy

is of the form g = hf for a unique A. The requirement that A be unique may
of course be replaced by the equivalent requirement that / be epimorphic.

In other words, / is a regular epimorphism if and only if it is the simul-
taneous coequalizer of the family of all pairs x, y with fx = fy. On the other
hand, the simultaneous coequalizer of any family of pairs is seen at once
to be a regular epimorphism. In particular the coequalizer of a single pair
is a regular epimorphism. A retraction / (that is, a morphism / with fi = 1
for some i) is the coequalizer of the pair if, 1; and thus is a regular epimor-
phism. If si admits discriminants, every regular epimorphism is a coequal-
izer, namely of its discriminant. If si is additive every cokernel is a regular
epimorphism, since the cokernel of x is the coequalizer of the pair x, 0;
if further si admits kernels, every regular epimorphism is a cokernel,
namely of its kernel.

Epimorphisms are of course closed under composition, as are retractions.
Regular epimorphisms in general are not, even if si is complete and co-
complete, well-powered and co-well-powered, and additive. Consider the
following category J introduced by Isbell.

<& is the category of abelian groups and f the full subcategory deter-
mined by those groups with no elements of order 4, i.e. those in which
4a; = 0 implies 2x = 0. For G in <3 let Go be the 2-primary subgroup of G,
let FG = G/2G0, and let y : G -> FG be the canonical map. Then F is a
reflexion of '& into J, so that S like 'S is complete and cocomplete; limits
in S are formed as in IS, and colimits by first forming the colimit in 'S and
then composing with y. It follows too that J like ^ is well-powered; it is
easy to see that it is also co-well-powered, for / : A ->• B is epimorphic in
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J exactly when its cokernel in J', r(BjfA), is 0, i.e. when BjfA is a divisible
2-group, which is impossible if B has no elements of order 4 and if the
cardinal of B is infinite and greater than the cardinal of A.

The monomorphisms / : A ->• B in«/ are those that are monomorphisms
in ^ , and / is a regular monomorphism if and only if it is the kernel of its
cokernel in J', i.e. if and only if B/fA is in J'. Thus 2 : Z ->• Z is a regular
monomorphism; however its composite with itself, 4 : Z -*• Z, is not. Note
that the regular epimorphisms in J are those that are already epimorphisms
in IS, and that these are in fact closed under composition.

We do have however:

PROPOSITION 2.1. fg is a regular epimorphism if f is a regular epimorphism
and g is a retraction.

PROOF. Let gi = 1, and suppose that hx = hy whenever fgx = fgy.
Since fg\ = fgig we have hi = hig. Next, fu = fv implies fgiu = fgiv and
thus hiu = hiv; since / is a regular epimorphism we conclude that hi = kf
for some k. Then h = hig = kfg, as required.

Again, if fg is an epimorphism or a retraction, so is /; we say that these
classes are closed under right division. The class of regular epimorphisms
is not so in general; in the category . / the regular monomorphism
(Q) : Z->Z ® Z2 is the composite of (2\ : Z -+ Z ® Z2 (where e =£ 0)

/1O\

and IQQI : Z ® Z2 -» Z © Z2, and the first of these is not a regular
monomorphism. We do have however:

PROPOSITION 2.2. / / fg is a regular epimorphism and if g is an epi-
morphism, f is a regular epimorphism.

PROOF. Let hx = hy whenever fx = fy. Then hgu = hgv whenever
fgu = fgv, so that hg = kfg for some k, fg being a regular epimorphism.
Since g is an epimorphism we have h = kf, as required.

PROPOSITION 2.3. Lei ga : A -> Ba be regular epimorphisms and let
fa : Ba->C be their fibred coproduct. Then the cointersection faga is a regular
epimorphism, as are all the fa.

PROOF. By Proposition 2.2 the fa will be regular epimorphisms if faga

is. Let hx = hy whenever fo,gax = fagay. Then hx = hy whenever, for some
«•> g*% = g*y, since ga is a regular epimorphism we conclude that h = kaga

for some ka. Since kaga is independent of a, it follows from the definition
of fibred coproduct that kx = wfa for some w. Thus h = wfaga, as required.

REMARK 2.4. Retractions are not closed under cointersections; a
counter-example to the dual is given by the following pullback diagram
in the category of abelian groups, where e =£ 0:
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If a morphism / in si has a factorization / = nr where r is a regular
epimorphism and where rx = ry whenever /a; = /«/, we call nr a regular
factorization of /. It comes to the same thing to say that r is the simultaneous
coequalizer of the family of all pairs x, y with fx — fy. Thus if a regular
factorization of / exists, it is essentially unique. If every / in s# has a regular
factorization, we say that s/ admits regular factorizations. We shall give in
section 4 sufficient conditions for this to be so; it is really in itself a
'completeness condition' of a fairly mild kind.

The following proposition is evident:

PROPOSITION 2.5.If f has the regular factorization nr, n is an isomorphism
if and only if f is a regular epimorphism, and r is an isomorphism if and only
if f is a monomorphism.

PROPOSITION 2.6. Suppose that bf = ga and that f, g have regular factor-
izations f = nr, g = ms. Then there is a unique c rendering commutative the
diagram

PROOF. Whenever rx = ry we have bnrx = bnry and thus msax = msay.
Since ms is a regular factorization we further have sax — say. Since r is a
regular epimorphism we conclude that sa = cr for a unique c. Then since
bnr = tncr and since r is an epimorphism we also have bn = me.

A composite nr is certainly a regular factorization if r is a regular
epimorphism and n is a monomorphism. However the n in a regular factor-
ization nr is not in general a monomorphism. In fact:
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PROPOSITION 2.7. If jrf admits regular factorizations, the following
assertions are equivalent:

(a) Regular epimorphisms are closed under composition.
(b) In every regular factorization nr, n is a monomorphism.

PROOF. Given (a) let / = nr be a regular factorization and let the regular
factorization of n be n = ms. Then / = mt, where t = sr is a regular epi-
morphism by (a) and where fx = fy implies rx = ry and so tx = ty; thus
mt is a second regular factorization of /. The uniqueness of regular factoriza-
tions implies that s is an isomorphism and so, by Proposition 2.5, that n
is a monomorphism.

Given (b) let / and g be regular epimorphisms and let fg have regular
factorization fg = nr. Since lg is a regular factorization there is by Proposi-
tion 2.6 an s rendering commutative

Since g is an epimorphism and since sg = r is a regular epimorphism,
s is a regular epimorphism by Proposition 2.2. Since by (b) n is a mono-
morphism, ns is a regular factorization; but / = ns also has the regular
factorization 1/; we conclude from the uniqueness of regular factorizations
that n is an isomorphism and thus that fg = nr is, like r, a regular epi-
morphism.

There is a dual concept of regular cofactorization f = im where i is a
regular monomorphism and where xf = yf implies xi = yi. If / has both a
regular factorization nr and a regular cofactorization im, Proposition 2.6
applied to the regular factorizations nr and t l , with 1 • nr = il • m, gives
a unique c with cr = m and ic = n. We call / = icr the regular bifactorization
off.

3. Strong epimorphisms

We call an epimorphism / a strong epimorphism if, whenever vf = iu
with i monomorphic, there is a w rendering commutative the diagram
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Note that w is unique, and that if either of the triangles in the above diagram
commutes, the other necessarily commutes too, given that i is monomorphic
and / epimorphic.

PROPOSITION 3.1. Regular epimorphisms are strong epimorphisms.

PROOF. Let / be a regular epimorphism and let vf = iu where i is
monomorphic. Applying Proposition 2.6 to the regular factorizations 1/
and »1, with v • 1/ = i\ - u, we get a unique w with v = iw and wf = u.

PROPOSITION 3.2. Strong epimorphisms are closed under composition,
right division, and cointersection.

PROOF. COMPOSITION. Let vfg = iu where i is monomorphic and /, g
are strong epimorphisms. Because g is a strong epimorphism there is a w
with iw = vf. Then because / is a strong epimorphism there is a z with
iz = v. Thus fg is a strong epimorphism.

RIGHT DIVISION. Let fg be a strong epimorphism, and let vf — iu
where i is monomorphic. Then vfg = iug, so that, because fg is a strong
epimorphism, there is a w with iw = v. Thus / is a strong epimorphism.

COINTERSECTION. Let ga : A -> Ba be strong epimorphisms and let
fa: Ba->C be their fibred coproduct. Let vfaga — iu where i is mono-
morphic. Since ga is a strong epimorphism there is a ka with kaga = u.
Since kaga is independent of a, there is by the definition of fibred coproduct
a w with &a = z0/a. Then wfaga = u, so that faga is a strong epimorphism.

PROPOSITION 3.3. / / / is both a strong epimorphism and a monomorphism
it is an isomorphism.

PROOF. We have 1/ = /I where / is a strong epimorphism and where
/ is a monomorphism; thus there is a w with wf = 1 and fw = 1.

If a morphism / in s/ has a factorization / = ip where p is a strong
epimorphism and where t is a monomorphism, we call ip a canonical
factorization of /.

PROPOSITION 3.4. Suppose that bf = ga and that f, g have canonical
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factorizations f = ip, g = jq. Then there is a unique c rendering commutative
the diagram

P

PROOF. Apply the definition of strong epimorphism to the equality
bi-p = j • qa.

COROLLARY 3.5. Canonical factorizations are essentially unique.

PROOF. If in the above proposition a = 1 and 6 = 1, then c is a strong
epimorphism because cp = q is, and c is a monomorphism because jc = *
is; thus c is an isomorphism by Proposition 3.3.

If / : A -> B has a canonical factorization / = ip, we call the subobject
i of B the image of / and the strong quotient object p of A the strong coimage
of /. The image i is the smallest subobject of B through which / factors;
for if / = tg with t monomorphic, we have only to apply Proposition 3.4
to the canonical factorizations ip and t\, with 1 • ip = t[l • g, to see that
i < t. Similarly the strong coimage p is the smallest strong quotient object
of A through which / factors. If / has a factorization / = jq where / is a
strong monomorphism and q is an epimorphism, we call jq the canonical
cofactorization of /, and we call j and q the strong image and the coimage of /.
If / factorizes as / = jkp where / is a strong monomorphism, p is a strong
epimorphism, and k is a bimorphism (i.e. k is both a monomorphism and an
epimorphism), we call jkp the canonical bifactorization of /. In this case
(jk)p is clearly the canonical factorization of /, and j(kp) the canonical
cofactorization. Conversely, if / has both a canonical factorization ip and
a canonical cofactorization jq, Proposition 3.4 applied to the canonical
factorizations ip and /I shows the existence of a unique k, necessarily a
bimorphism, with / = jkp.

It follows from the above that a strong epimorphism / : A -> B factors-
through no proper subobject of B, i.e. that / is an extremal epimorphism.

PROPOSITION 3.6. Extremal epimorphisms are strong epimorphisms if sf
admits pull-backs or if s/ admits canonical factorizations.

PROOF. If s/ admits canonical factorizations and if an extremal epi-
morphism / has canonical factorization ip, i is an isomorphism and so /,
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like p, is a strong epimorphism. If «s/ admits pull-backs let vf = iu where
i is a monomorphism and / an extremal epimorphism. Form a pull-back
diagram

y

Since vf = iu there is a z with yz = f and xz = u. Now it is easy to see that
y, being the pull-back of a monomorphism i, is itself a monomorphism (see
Proposition 5.2 below); it is therefore an isomorphism because / is extremal.
We now have v = ixyx, so that / is a strong epimorphism.

Without some conditions, extremal epimorphisms are not closed under
composition or cointersection, which is why we have considered strong
epimorphisms in their stead. There is one consideration however where
extremal epimorphisms rather than strong ones arise. It is usual to call a
category balanced, if every bimorphism is an isomorphism; and it is clear
that this is equivalent to the assertion that all epimorphisms are extremal
epimorphisms, or equally to the assertion that all monomorphisms are
extremal monomorphisms. If we call a category strong when all epimorphisms
are strong epimorphisms, strong categories are balanced and the converse
is true under mild conditions. This property is self-dual:

PROPOSITION 3.7. If every epimorphism in si is a strong epimorphism
then any monomorphism is a strong monomorphism.

PROOF. Dualizing the definition of strong epimorphism, we see that a
monomorphism i is strong if, whenever vf = iu with / epimorphic, there
is a w with iw = v and wf = u. If all epimorphisms / are strong, this is
satisfied for any monomorphism i, by the definition of strong epimorphism.

PROPOSITION 3.8. If every strong epimorphism in s/ is a regular epi-
morphism, regular epimorphisms are closed under composition. The converse
is true provided that s/ admits regular factorizations.

PROOF. The first assertion is immediate from Proposition 3.1 and
Proposition 3.2. For the second, let / be a strong epimorphism and let
/ = nr be its regular factorization. By Proposition 2.7, n is a monomorphism;
since / is an extremal epimorphism, n is an isomorphism; hence / like r
is a regular epimorphism.
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We call si regular if every strong epimorphism is regular, with coregular
for the dual; thus the category J is regular but not coregular. The categories
of sets, pointed sets, groups, and compact hausdorff spaces, are strong,
regular and coregular. The categories of topological spaces, hausdorff spaces,
and short exact sequences of abelian groups, are regular and coregular but
not strong. The full subcategory of J determined by the finitely-generated
groups in J is, unlike J itself, strong, and is, like J, regular but not co-
regular. Equational categories of algebras are regular but in general not
strong or coregular; that the category of semigroups is not coregular follows
from Example 5.1 of [5]. We shall see below (immediately before Proposition
5.8) that the category of small categories is not regular.

In a regular category any canonical factorization ip is at the same time
a regular factorization. If the category admits regular factorizations, any
regular factorization nr is also a canonical factorization, for n is mono-
morphic by Propositions 3.8 and 2.7. Thus if si admits either type of factor-
ization it admits the other and they coincide. In more general categories the
relation between the two kinds of factorization is shown by the following
proposition:

PROPOSITION 3.9. Let si admit regular factorizations and cointersections.
Given a morphism f : A -*• B define for each ordinal a. a factorization f = nara

by the following trans finite induction:
(i) let r0 = 1 and n0 = f;

(ii) if a = /S+l , let nasa be the regular factorization of nfi and set

(iii) if a is a limit ordinal, let ra be the cointersection of the rfi with /S < a.

Then if ra is stationary for a 2; some X, which it will be if A has only a
set of strong quotient objects, f = nxrx is the canonical factorization of f.

PROOF. Each ra is a strong epimorphism by Propositions 3.1 and 3.2.
By Proposition 2.5 we have rx+1 = rx if and only if nx is a monomorphism,
which means that we have arrived at the canonical factorization of /.

4. Existence of factorizations

LEMMA 4.1. If f : A ->- B has a regular factorization f = nr, r is the

smallest regular quotient object of A through which f factors. Conversely if
there is a smallest regular quotient object r of A through which f factors, and
if further si admits coequalizers, f has a regular factorization f = nr.

PROOF. For the first statement, let / = ms where s is a regular epi-
morphism. Proposition 2.6 applied to the regular factorizations Is and nr
shows that r < s. For the second statement let nr be the factorization of /
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through r and let fx = fy. If s is the coequalizer of x, y then / factors through
the regular epimorphism s and so r < s; since sx = sy we have rx = ry,
as desired.

Weak limits are defined exactly like limits, except that the uniqueness
requirement is dropped from the definition. Thus a weak discriminant u, v
of / is a pair such that fu — fv and such that whenever fx — fy we have
x = uk, y = vk for some k.

PROPOSITION 4.2. s/ admits regular factorizations if either of the following
assertions is true:

(a) s/ admits coequalizers and weak discriminants.
(b) sf admits coequalizers and cointersections, and every object has only

a set of regular quotient objects.

PROOF. Let / : A ->• B be a morphism. In case (a) let u, v be a weak
discriminant of / and let r be the coequalizer of u, v; clearly / has a regular
factorization nr. In case (b) the cointersection of those regular subobjects
of A through which / factors is by Proposition 2.3 the smallest such, and
we appeal to Lemma 4.1.

LEMMA 4.3. The following assertions are equivalent:
(a) s/ admits canonical factorizations.
(b) Given f : A -»• B there is a smallest subobject of B through which f

factors; and if f factors through no proper subobject of B it is a strong epi-
morphism.

(c) Given f : A -> B there is a smallest strong quotient object of A through
which f factors; and if f factors through no proper strong quotient object of A,
it is a monomorphism.

PROOF. This is evident in view of the remarks about images and strong
coimages in section 3.

LEMMA 4.4. If s/ admits equalizers, a morphism f : A ->• B that factors
through no proper strong subobject of B is an epimorphism.

PROOF. If xf — yf, f factorizes through the equalizer of x, y, which is
a strong subobject of B. Therefore this equalizer is an isomorphism, and
x = y.

PROPOSITION 4.5. si admits canonical factorizations if either of the
following assertions is true:

(a) s/ admits intersections, equalizers, and pull-backs, and each object
has only a set of subobjects.

(b) sf admits cointersections and coequalizers, and each object has only
a set of strong quotient objects.
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PROOF. In case (a), given / : A -> B, let * : I -»• B be the intersection
of all the subobjects of B through which / factors, and so the smallest such.
If / = ipt p factors through no proper subobject of / ; therefore p is an
extremal epimorphism by Lemma 4.4 and a strong epimorphism by Proposi-
tion 3.6.

In case (b), let p : A -»• 7 be the cointersection of all the strong quotient
objects of A through which / factors, and so the smallest such. If / = ip,
i factors through no proper strong quotient object of / , and thus * is a
monomorphism by Lemma 4.4.

The conditions in Propositions 4.2 and 4.5 about subobjects of certain
kinds forming a set may be implied by the existence of generating sets of
certain kinds. A set {G} of objects of si is called a generating set if, whenever
/ ^ g : A -> B, there is a G in {G} and a. w : G ->A with fw ^ gw. If T
is the functor from s/ to sets given by TA = 2 G -^(GA), it comes to the
same thing to say that T is faithful. This implies that / is epimorphic
whenever Tf is, and similarly for monomorphic. If / is known to be a strong
monomorphism, it follows that / is an isomorphism if Tf is an isomorphism.
The generating set {G} is called a strong generating set if / is always an
isomorphism when Tf is an isomorphism.

PROPOSITION 4.6. / / s/ has a generating set, each object has only a set of
regular quotient objects; if further s/ admits finite intersections, each object
has only a set of strong subobjects; if besides all this the generating set is strong,
each object has only a set of subobjects.

PROOF. If {G} is the generating set, a regular epimorphism r : A -*• C
is the simultaneous coequalizer of the family of all pairs x, y : G ->• A with
G in {G} and rx = ry; there are only a set of such families.

If s/ admits finite intersections define the functor T as above. Note
that two subobjects i, j of A are different if and only if, in the pull-back
diagram

m

at least one of m, n is a non-isomorphism. Note further that, if i, j are
strong monomorphisms, so are m, n by Proposition 3.2. Since T preserves
both monomorphisms and intersections, T maps the strong subobjects
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(or if {G} is strong, the subobjects) of A injectively into those of TA, of
which there are only a set.

5. Relations with pull-backs

We shall constantly use the following lemma, parts of which at least
are well known; the easy proof is left to the reader.

LEMMA 5.1. (a) In the commutative diagram

c a

let the right square be a pull-back. Then the left square is a pull-back if and
only if the exterior rectangle

is a pull-back.
(b) / / the diagrams

b bd

are both pull-backs, there is a unique c with e = ac and dh = gc.
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We say that a class of morphisms is preserved under push-outs if,
whenever g is of the given class and

is a push-out diagram, / too is of the given class.

PROPOSITION 5.2. Epimorphisms, strong epimorphisms, and regular
epimorphisms are preserved under push-outs.

PROOF. Suppose we have the push-out diagram above. If g is an epi-
morphism let xf = yf. Then xfa = yfa and so xbg = ybg; thus xb = yb
since g is an epimorphism. By the uniqueness clause in the definition of
push-out, from xf = yf and xb = yb we deduce x = y. Thus / is an epi-
morphism.

If g is a strong epimorphism let vf = iu where i is monomorphic. Then
vbg = vfa = iua, and so since g is a strong epimorphism there is a z with
zg = ua. Since the diagram is a push-out, there is a w with u = wf. Thus
/ is a strong epimorphism.

If g is a regular epimorphism let hx = hy whenever fx = fy. Then
haw = haz whenever faw = faz, that is whenever bgw = bgz, and in partic-
ular whenever gw = gz. Since g is a regular epimorphism we have ha = kg
for some k. Since the diagram is a push-out we have h = qf for some q.
Thus / is a regular epimorphism.

REMARK 5.3. The example of Remark 2.4 shows that retractions are
not preserved under push-outs.

PROPOSITION 5.4. / / the above diagram is a push-out and if f is epimorphic
so is g, provided that the category is additive.

PROOF. If xg = 0 then xg = Oa, so that for some y we have x = yb,
0 = yf. Since / is an epimorphism we have y = 0 and so x = 0.

REMARK 5.5. In a pointed category with null-object 0 the push-out of
f : A -+ B by 0 : A -+ 0 is the isomorphism 0 : 0 -> 0 provided that the
cokernel of / is 0; which does not imply that / is epimorphic. Thus Proposi-
tion 5.4 is false in the non-additive case and is best-possible in the additive
case.
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We now consider preservation under pull-backs.

PROPOSITION 5.6. Retractions are preserved under pull-backs.

PROOF. Let the diagram above be a pull-back and suppose that fi = 1.
Then we also have the pull-back diagram

It follows from Lemma 5.1(b) that 1 = gj for some /.

REMARK 5.7. A pull-back of a regular epimorphism need not even be
an epimorphism. The following diagram (where e =fi 0) is a push-out in the
category ^ of section 2, and 2 is a regular monomorphism:

We have given in section 1 the definitions of persistent epimorphism,
very regular epimorphism, and totally regular epimorphism. Proposition
5.6 shows that a retraction is totally regular provided all its pull-backs exist.
Totally regular epimorphisms need not be retractions; every epimorphism
is totally regular in the category of abelian groups. In the category of topo-
logical spaces the epimorphisms are the surj ections and they are all persistent;
the strong and the regular epimorphisms coincide and are the identification
maps; thus every identification map is very regular. However they are
not all totally regular; Bourbaki ([1], p. 151, ex. 6) gives an example of an
identification map / : X -> Y and a space Z such that

/Xl :XxZ->YxZ

is not an identification map; and / x 1 is the pull-back of / by the projection
YxZ ->Y. Remark 5.7 shows that regular epimorphisms need not be very
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regular. On the other hand a strong persistent epimorphism, even one all
of whose pullbacks are strong epimorphisms, need not be regular, as is
shown by the following example kindly provided by the referee. s# is the
category of small categories, A the category with two objects P, Q and one
non-identity map s : P^-Q, B the category with one object R and a single
non-identity map t: R -> R satisfying t2 = t; an epimorphism of the
required kind is the functor / : A -> B taking s to t.

From Lemma 5.1 we conclude at once:

PROPOSITION 5.8. Persistent epimorphisms and totally regular epi-
morphisms are preserved under pull-backs.

We call a diagram

K - *- L

a pull-back of pairs if
(i) ch = ga and dh = gb;

(ii) whenever cz = gx and dz = gy we have x = aw, y = bw, z = hw
for some unique w.

We call a, b the pull-back by g of c, d, and we call h the pull-back by
c, d of g. If finite products exist it comes to the same thing to say that the
diagram

h

A*A

is an ordinary pull-back, but we do not want to assume unnecessarily that
products exist.

LEMMA 5.9. / / all pull-backs of g exist, so do all pull-backs of g by pairs.
If further all pull-backs of g are epimorphisms, so are all pull-backs of g by
pairs.
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PROOF. In the diagram below, let each cell be a pull-back:

A

[17]

The right cells exist by hypothesis, and the left cell exists by Proposition
5.8. If we set a = pm, b = sn, and h = qm = rn, it is immediate that we
have a pull-back of pairs with the notation as in the above definition. If
every pull-back of g is an epimorphism, then r, n are epimorphisms (n
being a pull-back of g by Lemma 5.1), and so h = rn is an epimorphism.

PROPOSITION 5.10. The composite fg is a regular epimorphism if f is a
regular epimorphism and g is a very regular epimorphism.

PROOF. Let kx = ky whenever fgx = fgy. Then kx = ky whenever
gx = gy, and so, because g is a regular epimorphism, k = wg for some w.
Now let fc = fd, and form the pull-back of g by the pair c, d with the
notation as in the above definition; this exists by Lemma 5.9, and by the
same lemma h is an epimorphism. Since fc = fd we have fch = fdh and
thus fga = fgb; by hypothesis therefore we have ka — kb, that is wga = wgb,
and thus wch = wdh. Since h is an epimorphism, we conclude that we = wd.
Because this is true whenever fc = fd and because / is a regular epimorphism,
w = zf for some z. Thus k = wg = zfg, as required.

PROPOSITION 5.11. Persistent, very regular, and totally regular epi-
morphisms are closed under composition.

PROOF. The result for persistent epimorphisms is immediate from
Lemma 5.1. From this result together with Proposition 5.10 we get the
result for very regular epimorphisms. From this result together with Lemma
5.1 and Proposition 5.8 we get the result for totally regular epimorphisms.

PROPOSITION 5.12. / / fg is a persistent or a very regular or a totally regular
epimorphism, so is f, provided that all pull-backs of f exist.
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PROOF. For persistent epimorphisms this is immediate from Lemma
5.1. Once we have proved it for very regular epimorphisms it follows for
totally regular epimorphisms by Lemma 5.1 and Proposition 5.8. Suppose
then that fg is a very regular epimorphism; we have to show that / is regular.
Form a pull-back diagram

Since fg • 1 = / • g there is a t with 1 = rt, g = st; so r is a retraction.
Therefore fgr is a regular epimorphism by Proposition 2.1. Thus fs is a
regular epimorphism, and s is an epimorphism because fg is a very regular
epimorphism; therefore / is a regular epimorphism by Proposition 2.2.

REMARK 5.13. The above classes of epimorphisms are not in general
closed under cointersection or preserved by push-outs; this is shown by the
diagram of Remark 2.4, interpreted now however as a pull-back not in 'S but
in J; we saw in Remark 5.7 that 2 is not a persistent monomorphism in J.

From Proposition 3.8 and Proposition 5.10 we have:

PROPOSITION 5.14. / / every regular epimorphism in s/ is very regular,
then every strong epimorphism in si is regular (i.e. s/ is regular), provided
that s/ admits regular factorizations.

REMARK 5.15. The converse of Proposition 5.14 is false. The category
of hausdorff spaces is coregular, since the regular monomorphisms are
those / : A -> B where A is a closed subspace of B and / is the inclusion,
and these are closed under composition. Yet not all regular monomorphisms
are very regular. Let X be a non-normal hausdorff space and A, B disjoint
closed sets in X which do not have disjoint neighbourhoods. Let C be the
closed subspace A u B of X; the inclusion i : C -+ X is a regular mono-
morphism. Let D be the discrete space consisting of two points x and y,
and define / : C -> D by f(A) = x, f(B) = y. The push-out of i by / in the
category of all topological spaces is the map g : D -»• E, where E is obtained
from X by identifying A to a single point a and B to a single point b, and
where g(x) = a, g(y) = b. The push-out of i by / in the category of hausdorff
spaces is the composite D -> E -> F, where F is the greatest hausdorff
quotient space of E. But h identifies a and b, which have not disjoint
neighbourhoods in E; so that hg is not a monomorphism.
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If sf is additive, however, the converse of Proposition 5.14 is true:

PROPOSITION 5.16. Let si be additive and finitely complete. If every
strong epimorphism is regular then every regular epimorphism is very regular.

PROOF. Consider a pull-back diagram

where / is a regular epimorphism. To say that this is a pull-back diagram
is to say that ( * ) : A -+ B © C is the kernel of (/ 6) : B ®C-+D. Since
the composite of (/ b) with l 0 ) : B -*• B © C is the strong epimorphism /,
it follows from Proposition 3.2 that (/ b) is a strong epimorphism. It is
therefore by hypothesis a regular one, and therefore it is the cokernel of
its kernel (_?„)• This, however, implies that the diagram above is a push-
out, and now it follows from Proposition 5.4 that g is an epimorphism,
as required.
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