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SETS ON WHICH MEASURABLE FUNCTIONS ARE
DETERMINED BY THEIR RANGE

MAXIM R. BURKE AND KRZY SZTOF CIESIELSKI

ABSTRACT. We study sets on which measurabl e real-val ued functions on ameasur-
able space with negligibles are determined by their range.

1. Introduction. In [BD, Theorem 8.5], it is shown that, under the Continuum
Hypothesis (CH), in any separable Baire topological space X there is a set M such that
for any two continuous real-valued functionsf and g on X, if f and g are not constant
on any nonvoid open set then f[M] C g[M] impliesf = g. In particular, if f[M] = g[M]
thenf = g. Sets having thislast property with respect to entire (analytic) functionsin the
complex plane were studied in [DPR] where they were called sets of range uniqueness
(SRU’s). We study the properties of such setsin measurable spaceswith negligibles. (See
below for the definition.) We prove a generalization of the aforementioned result [BD,
Theorem 8.5] to such spaces (Theorem 4.3) and answer Question 1 from [BD] by showing
that CH cannot be omitted from the hypothesisof their theorem (Example5.17). We also
study the descriptive nature of SRU’s for the nowhere constant continuous functions on
Baire Tychonoff topological spaces.

When X = R, the result of [BD, Theorem 8.5] states that, under CH, there is a set
M C R such that for any two nowhere constant continuous functionsf.g:R — R, if
f[M] C g[M] thenf = g. It is shown in [BD, Theorem 8.1] that thereis (in ZFC) a set
M C R such that for any continuous functionsf. g: R — R, if f hascountable level sets
and g[M] C f[M] then g is constant on the connected components of {x € R : f(x) #
g(x¥)}. In the case where g is the identity function, these properties of M are similar to
various properties that have been considered in the literature. Dushnik and Miller [DM]
showed that, under CH, there is an uncountable set M C R such that for any monotone
(nonincreasing or nondecreasing) function f:R — R, if {x € R : f(X) = x} is nowhere
dense, thenf[M]NM is countable. Building onthisresult from [DM], Biichi [Bu] showed
that, under CH, thereisaset M C R of cardinality ¢ such that for any X C M and for
any Borel functionf: X — M, f[{x € X : f(x) # x}] has cardinality lessthan ¢. He calls
such setstotally heterogeneous. He also observesthat if instead of saying “for any Borel
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functionf: X — M” wesay “for any Borel function belonging to collection A” for special
classes A of Borel functions, the use of CH can be avoided. This is true, e.g., for the
classof all Borel functionsf: R — R suchthat f[X] C M and for eachy € R, f~1({y})
is either countable or of positive Lebesgue measure (a class which contains monotone
functions, for example). In the last section of the paper, we shall discussthe relationships
between some of these properties and the SRU property for various classes of functions.

2. Preliminaries. Our set-theoretic terminology is standard: see [Kul] or [Je]. In
particular, R, Q and Z will stand for the sets of real humbers, rational numbers and
integers, respectively. We will write Bor for the Borel o-algebra of R.

Atriple (X, Z,N ) isameasurablespacewith negligiblesif % isac-agebraof subsets
of Xand N isaproper o-ideal of subsetsof X generatedby NN . (See[F] for the basic
properties of such spaces.) By analogy with the case where = and N are respectively
the o-algebra of measurable sets and the o-ideal of null sets for a measure on X, we
will call the elements of = measurable sets and refer to the elementsof N as negligible
sets. We will also call the membersof =\ N positive sets. (So, in particular, positive
sets are measurable.) If = and N are clear from the context, we will write X in places
whereit would be more appropriateto write (X, £, N ). In particular, whenM C Xisnot
negligible, we shall identify M with thespace (M, . Ny ) whereZy = {ENM : E € 5}
andNy ={NNM:NeN }. Wesay that (X, =, N ) isX;-saturated if every pairwise
disjoint family of positive setsis countable. An atomof (X, =, N ) isapositive set which
doesnot havetwo disjoint positive subsets. (X, £, N ) isnonatomicif it hasno atoms. The
completion of (X, %, N ) isthe space (X.2,N ) whereS = {EAN:Ee€ =, Ne N }.

Now, let (X, %, N ) be a measurable space with negligibles. A functionf: X — R is
Z-measurable (or simply measurableif X is clear from the context) if f~1(U) € = for
each open set U C R. The family of all measurable functions from X into R will be
denoted by Ms(X). We will often write M (X) in place of Ms(X) when  is clear from
the context. If E C X, then f [ E denotes the restriction of f to E. For f,g € M (X) we
writef = gto meanthat {x € X: f(x) # g(x)} isnegligible. Thelevel setsof f € M (X)
arethesetsf~(y) fory € range(f). We say that f isnowhere constant if it is not constant
on any positive set, or equivalently, if itslevel setsare negligible.

DerINITION 2.1. Let (X.Z, N ) be a measurable space with negligiblesand let F C
M (X) be a family of measurable functions. A set M C X is an SRU (a set of range
uniqueness) for F if whenever f,g € F are nowhere constant functions, f[M] = g[M]
impliesf = g. A set M isastrong SRU for F if for any positive set E and any nowhere
constant f.g € F, if fiIMNE] C g[M] then fTE = gIE. We will frequently have
F =M (X). It will be convenient, when M isan SRU (resp. astrong SRU) for M (X), to
call M an SRU (resp. a strong SRU) for (X, =, N ) or, when the structure is clear from
the context, simply an SRU (resp. astrong SRU).

Note that if (X, %, N ) is a measurable space with negligiblesand F C M (X) then
every strong SRU for F isan SRU for F, andif F € G C M (X) then any SRU (resp.
strong SRU) for G is also an SRU (resp. astrong SRU) for F .
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All topological spaces considered in this paper are assumed to be Tychonoff. A
topological spaceis Baireif it satisfiesthe Baire Category Theorem, i.e., if every meager
subset of X has empty interior. A Cantor set is a nonvoid zero-dimensional compact
metrizable spacewith no isolated points, i.e., ahomeomorphic copy of the Cantor middie
third set. If X isatopological space, we write C(X) for the family of all continuous real-
valued functions on X. An s-set (in X) isa set S C X with the property that for every
Cantor set P C X, thereis a Cantor set Q C P such that QN S = (). (See [Mi2] for the
basic facts about sp-sets.) We will say that S C X isastrong sp-set if f[S] isan sp-setin
R for every f € C(X).

To any Baire topological space X we can associate a hatural measurable space with
negligibles (X, =, N ), where N is the o-ideal of meager subsets of X and X is the o-
algebra of Baire subsetsof X, i.e., the o-algebragenerated by the family { f~*((a. o)) :
ae€ R&f € C(X)}. When we consider a topological space as a measurable space
with negligibles, it is this structure we have in mind, unless otherwise stated. Note that
C(X) C M (X). When X is Baire, the term “nowhere constant” applied to a continuous
function f € C(X) considered as a member of M (X) coincides with the usual meaning
of “not constant on any nonvoid open set.” On the few occasions where we consider
spaceswhich are not Baire, we will clarify the meaning of “nowhere constant.” (See also
Remark 5.16.)

We record the following simple observation for future reference.

PROPOSITION 2.2. Let X be a Baire topological space. If M C X is an SRU (strong
SRU) for M (X) then M is an SRU (strong SRU) for C(X). Moreover, for any f, g € C(X)
and any positiveE € 2,

fTE=glEifandonlyiff[E =glE. ]

Proposition 2.2 will be our main tool for producing SRU’s for Baire spaces. However,
we shall also see (Example 5.20) that the converseto thefirst part of Propostion 2.2 can
fail.

Finally, note that if in some measurable spacewith negligibles (X. =, N ) there are no
nowhere constant measurable functionsf: X — R then every subset of X is (vacuously)
a strong SRU. This happens, for example, if X has an atom. (See also Corollary 3.8.)
Of course, this situation is of no interest and we shall be interested in spacesin which it
does not happen.

DEFINITION 2.3. Let (X,Z,N ) be a measurable space with negligibles. We shall say
that X isflexibleif there is a nowhere constant measurable function f: X — R. If Xisa
Baire topological spacethen we say that X islocally flexibleif for every openset U C X
there isa continuousfunction f: X — R whichisidentically equal to zero outside U and
nowhere constant in U.

Notethat if (X, Z, N ) isthe natural measurable space with negligibles associated with
some atomless countably additive nontrivial o-finite measure on X then X isflexible.
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The notion of local flexibility is better suited than the notion of flexibility to the study
of SRU’s the class C(X). Thiswill be more apparent in Section 5. Notice, however, that
there are compact topological spacesthat are flexible but not locally flexible. The space
X =10,1] x (wy +1) withits natural topology is one example. Its flexibility iswitnessed
by the projection onto the first coordinate. The failure of local flexibility is witnessed by
theopenset U = [0, 1] x w;. (See[BS, examples1 and 2].)

The next proposition is established as part of the proof of [BS, Theorem 1]. It shows,
for example, that a space with no isolated points which is either separable or metrizable
islocally flexible.

PROPOSITION 2.4. Let X be a space with no isolated points such that either (i) X is
separable or (ii) X isnormal and has a dense set which is a countable union of closed
discrete sets. Then X islocally flexible. ]

3. Properties of SRU’s for M (X). In this section we establish some results con-
cerning the nature of SRU’s.

PropPosITION 3.1. Let (X,Z,N ) be a measurable space with negligibles, and let

M C X.

(a) Let X beflexible. If M C Xisan SRU (a strong SRU), then M is not empty, and for
every positive E, MNEisan SRU (a strong SRU) for M (E). In particular, an SRU
must meet every positive subset of X.

(b) If Misan SRU and f, g: X — R are nowhere constant measurable functions such
that f # g, then f[M]Ag[M] is uncountable.
If M isastrong SRU, E isa positive set, and f TE # g/E, thenf[M N E] \ g[M] is
uncountable.

(¢) If Misan SRU (for M (X)), N € N NZ, and C C X iscountablethen (M \ N)UC
isan SRU (for M (X)).
If Misastrong SRU (for M (X)), N € N ,and C C Xiscountablethen (M\ N)UC
isa strong SRU (for M (X)).

PROCF. (@) Let f:X — R be a nowhere constant function from the definition of
flexibility of X and let g: X — R be given by g(x) = f(x) + 1. Then g is a nowhere
constant measurable function which does not agree with f anywhere. So clearly M
cannot be empty.

Let E beapositiveset. Wewill show that MNEisan SRU for M (X). The proof for the
strong SRU caseissimilar. Let hy, hy: E— R be nowhere constant measurabl e functions
suchthat hi)[MNE] = ho[MNE]. Fori = 1, 2, extend h; to X by letting h;j(x) = f(x) when
x € X\ E. Then h;[M] = hy[M] and hence hy = h,. In particular, hy TE = hy 1 E.

(b) We provethefirst statement; the second is proven similarly. By way of contradic-
tion suppose that C = f[M]Ag[M] is countable. By (), M is not negligible, and hence
f[M] and g[M] are uncountable. So, we can choosey € f[M]Ng[M]. Definef.g: X — R
asfollows: f(x) = f(x) if x Z f~1(C), and f(x) = yif x € f~}(C). Similarly, g(x) = g(x) if
X Z g}(C), and g(x) = yif x € g7}(C). We havef = f # g = g. Thus, it is enough to
show that f[M] = g[M], since this contradicts that M is SRU for M (X).
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_ By symmetry, itisenoughto provethar[f_[M]_g gIM]. So, letx € M. If x € f~1(C) then
f(x) =y € gIM]\C = gIM]. If x # f~1(C) thenf(x) = f(x) € f[M]\C = g[M]\C = gIM].
Thus, f[M] C g[M].

(c) First wewill provethisin the casewhen C = .

Letf,g: X — R be nowhere constant measurable functions. Suppose M isan SRU, N
isameasurablenegligible set, and f[M \ N] = g[M \ N]. Letf,J X — R bethefunctions
which agree on X \ N with f. g respectively, and are identically equal to 0 on N. Then
f.g € M (X) and f[M] = g[M]. Since M is an SRU, we havef = g and hencef = g.
ThusM \ N isan SRU for M (X).

Next suppose M is a strong SRU for M (X), N is negligible, E is a positive set and
f[(M\N)NE] C g[M\N]. ChooseN’ € NN suchthatN C N’. Thenf[MN(E\N’)] C
fI(M\ N)NE] C g[M\ N] C g[M]. SinceE \ N’ is positiveand M is astrong SRU for
M (X), we havef[[E\ N'] = gI[E\ N’] and hencefE = g/E. ThusM \ N is astrong
SRU for M (X).

Now, to prove the general case we can assume by what we proved above that N = {).
But then, the desired result follows easily from (b). ]

Proposition 3.1(c) suggests that possibly MAN is an SRU (strong SRU) for X if
N € N NZ and M is an SRU (strong SRU) for X. However, this is false already for
X =R, sinceif K C R is any Cantor set, then M UK is not an SRU for C(R) for any
strong SRU for M (R). (See Theorem 5.6(5).) However, we do not know the answer to
the following question.

ProOBLEM 3.2. If XisaBairetopological space, is Proposition 3.1(c) true with M (X)
replaced by C(X)?

(It is consistent that there is a strong SRU for C(R) which is not an SRU for M (R), as
we will show in Example 5.20.)

The next proposition gives special circumstances in which no SRU can exist. It will
be useful later.

ProPOSITION 3.3. Let (X, 2, N ) be a measurable space with negligibles. In any of

the following circumstances, thereis no SRU for M (X).

(@) Zisthecollection of all subsetsof X, the cardinality of X isat most ¢, and (X, =, N )
is nonatomic.

(b) Xisflexible, ¢ isregular, N C 3, N containsall setsof cardinality lessthan ¢, and
Xis covered by less than ¢ negligible sets.

(c) There are more than 2¢ pairwise nonequivalent (modulo N) nowhere constant
measurablefunctions X — R.

PrOCF. If (a) holds, we argue asfollows. Since X is nonatomic, singletonsare negligi-
ble. Thus any one-to-onefunction f: X — R isanowhere constant measurable function.
Clearly there are such functions since X has cardinality at most ¢. Thus, X is flexible.
Suppose M C X were an SRU. By Proposition 3.1(a), M is not negligible. Fix any
one-to-one function f: X — R. Write M as the union of two digjoint sets A and B of
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equal cardinality and find a bijection h: X — X such that h[A] = B and h[B] = A. Define
g:X— Rbyg="foh. Thenf[M] = g[M] but f # g and hence M is not an SRU.

If (b) holds, suppose M C X were an SRU. Since sets of cardinality less than ¢ are
negligible, M has cardinality at least ¢. Since X is covered by lessthan ¢ negligible sets
and ¢ isregular, there is a negligible set N C M of cardinality ¢. Let h: N — R be any
surjection. Since X is flexible and N is measurable, there are many distinct nowhere
constant measurable extensions of h to X. All of these extensions map M onto R, and
hence M is not an SRU.

If (c) holds, thenfor any M C X there are, by the pigeonhole principle, two nonequiv-
alent nowhere constant measurable functionsf, g: X — R such that f[M] = g[M]. Hence
M is not an SRU. ]

To state the next result we need the following definition.

DEFINITION 3.4. Let (X, %, N ) be ameasurable space with negligibles. A setE € £
isameasurablecover of M C X if M C E and every positive subset of E meets M.

LEMMA 3.5. LetM C X and let f:M — R be a measurable function.
(a) Thefunctionf extendsto a measurablefunction f: X — R.
(b) SupposeM has a measurable cover. If f is nowhere constant in M, and X isflexible,
then f extendsto a nowhere constant measurable function f: X — R.

PrOCF. (a) Of course this is well-known. Here is a sketch of the proof. For each
rational number g, let E; € X be such that {x € M : f(x) < q} = E;N M. For
xe E=U{Es:qec Q}, weletf(x) =inf{qg € Q:x € Eq} andfor x € X\ Ewelet
f(x) = 0. It isstraightforward to check that f is as desired.

(b) Fix a nowhere constant measurable function g: X — R. First notice that every
positive subset of E must have a nonnegligible intersection with M. If not, there would
beapositiveF C EandN € ZNN with FNM C N andthen F \ N is apositive subset
of E which does not meet M.

Extend f to E using (). By the above remark the extension of f to E is necessarily

nowhere constant. Now extend f to X by letting it agree with g outside of E. ]
We leave the straightforward proof of the following consequenceof Lemma3.5(b) to
the reader.

COROLLARY 3.6. Let (X,Z, N ) be a flexible measurable space with negligibles and
suppose that every subset of X has a measurable cover. If M C X is an SRU (a strong
SRU) for M (X), then M is also an SRU (a strong SRU) for M (M). "

The next proposition and its corollary show that in an N1 -saturated measurable spaces
with negligibles, the assumption of flexibility is not very restrictive when we are consid-
ering SRU’sfor M (X).

Recall that a Souslin algebra is a ccc nonatomic complete Boolean algebrain which
the intersection of any countable collection of dense open sets is a dense open set (or
equivalently, every countable collection of maximal antichains has a common refine-
ment). See [Je, pp. 220, 274] for the basic properties of these algebras.

https://doi.org/10.4153/CJM-1997-054-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-054-8

SETS OF RANGE UNIQUENESS 1095

PROPOSITION 3.7. Let (X,Z, N ) be a nonatomic, X;-saturated, measurable space
with negligibles. Then X isflexibleif and only if ¢ /N g isnot a Souslin algebra for any
positive E.

ProoF. Suppose Z¢ /N isa Souslin algebrafor some positiveE € £. Letf:E — R
be measurable. For each q € Q, let Aq be the collection of positive subsets A of E
such that A C f~}(—o0,q) or A C (g, 00). If we denote by A; the image of A, in
Ze/NE, thenA(; isdenseopenin g /Ne. Since Zg /N g isaSouslin algebra, thereis an
A € Ngeq Aq. Clearly f is constant on A, and thus E (and hence X aswell) isnot flexible.

Suppose, conversely, that none of the algebras g /N is a Souslin algebra. Since
2 /N s ccc, to show that X is flexible it suffices to show that for each positive set E
thereisapositive E’ C Ewhichisflexible. Sofix apositive set E, and let A, C g\ Ng,
n < w, be partitions of E which have no common refinement. Give each A, the discrete
topology and let f: E — M,A, be given by f(x) = the unique sequencein MN,A, whose
n-th term contains x for each n. Clearly f is measurable and its range is homeomorphic
to asubspaceof R. Let A = {f~Y(y) : y € MpA,, f~1(y) positive}. A is an antichain
which refines each A, and hence A is not maximal. ThusE’ = E \ A is positive and
isflexible sincef I E’ is nowhere constant. ]

In particular, under the assumptions of Proposition 3.7, if Souslin’s Hypothesisistrue
or X isac-finite measure space then X isflexible. The following structural result follows
easily from Proposition 3.7.

CoROLLARY 3.8. If (X, 2, N ) isan X;-saturated measurable space with negligibles,
then X admits an essential ly unique decomposition into three pieces X = AUSUF, where
A'is a countable union of atoms, £s/N s is a Souslin algebra if Sis not empty, and F is
either empty or flexible. n

4. Exigtence of SRU'sfor M (X). The next lemma states that sufficiently generic
generalized Lusin sets are strong SRU’s. Since the conditions given here will be used
several timesin the rest of the paper, we make the following definition.

DerINITION 4.1. Let (X, Z. N ) be a measurable space with negligibles and let x be
an uncountable cardinal. A set L C X is called a k-strong SRU (for X) if for each pair
f.g € Mx(X) of nowhere constant functions there exists asubset C; 4 of L satisfying the
following properties.

(i) Card(LME\ f~(g[Ctg])) > & for each positive set E, and Card(L NN) < « for
each negligible set N.
(i) Card(Ctg) <, andf(x) # g(y) for every distinct x.y € L \ G g.

Notice that if  is regular, then we can drop the “\ f~(g[C g])” in clause (i) of
Definition 4.1, asit is taken care of by the other parts of clauses (i) and (ii). (The other
partsof (i) and (i) imply that LNf~1(g[Cr g]) = U{LNfX(y) : y € 9[Ct ] } istheunion
of lessthan x many sets of cardinality lessthan x.)

LEMMA 4.2. Let (X,Z,N ) be a measurable space with negligibles and x be an
uncountable cardinal. If L C X is a k-strong SRU, then for any nowhere constant
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functionsf, g € M;(X) and any positive set E suchthat f 'E # g E, f[L N E] \ g[L] has
cardinality at least x. In particular L is a strong SRU for M;(X).

PrOOF. For each pair u,v € Ms(X) of nowhere constant functions fix a set C,, as
given by Definition 4.1. Let f, g, E be as in the hypothesis of the lemma. Let N be a
negligible set on whose complement f and g agree with Z-measurable functionsf and g
respectively. By shrinking Ewecanassumethat ENN = andE C {x € X : f(X) # g(xX)}.
But then E is the countable union of the measurablesets {x € E: f(x) < g < g(X)} and
{XeE:g(X <qg<f(X)}, whereq € Q. So, at least one of these setsis positive, and
shrinking E even further we can assumethat f[E] N g[E] = (.

Now, since L is as-strong SRU, the set K = (LN E) \ (f_‘l(gj[cfjg]) UCrguUCr, f—)
has cardinality at least x. Since K C L \ Cr 1, f is one-to-one on K and hence f[K] has
cardinality at least k. We havealso ) = f[K]Ng[L] = f[K]Ng[L], sinceK C Eisdisjoint
from N Uf‘l(g—;[C;g]) U Csg. Hence, f[K] N g[L] € g[L N N] has cardinality lessthan .
So, f[LNE] \ g[L] D f[K] \ (f[K] Ng[L]) hascardinality at least «. "

THEOREM 4.3. Let (X, 2, N ) be a measurable space with negligibles. Suppose that
> hascardinality ¢ and no positive set can be covered by lessthan ¢ negligible sets. Then
thereisa c-strong SRU for X. In particular, thereisa strong SRU for (X, >, N ).

PROOF. Let (f, : o < ¢) bealist of al nowhere constant functions from Ms(X),
let (E @ a < ¢) bealist of al positive sets in which each set is listed ¢ times and let
(Ny : @ <c)bealistof N NZ.

Inductively choose pointsx, € X asfollows. Let S, = {X; : 8 < «}. Sincethe level
sets of f, are negligible, and E,, cannot be covered by less than ¢ negligible sets, there
isapoint X, € E, which does not belong to any sets of the form N or f[;l(fw,(x(g)) with
8,7 <aandé < a.

We shall show that L = {x,, : & < ¢} isac-strong SRU with witnessing sets given by
Cig=Syforany o < csuchthatf,g e {f; : 3 < a}. First noticethat x, # x; for every
B <a<c sincexy, £ f(fa(xs)).

To seeclause(ii) of Definition 4.1, supposethat x and y aredistinct elementsof L\ S,.
Thusx = X3, y = X, for some distinct 3,7 > «, say 8 < 7. Thenx, ¢ g~*(f(x5)) and
hencef(X) = f(x;) 7 90%) = g(y).

Clause (i) of Definition 4.1 now follows easily. ]

COROLLARY 4.4. Consider the measurable space with negligibles (R, Bor, N ). If
either
(i) N istheo-ideal of null setsin R and the union of less than ¢ many null sets does not
cover R; or
(i) N istheo-ideal of meager setsin R and the union of lessthan ¢ many meager sets
does not cover R,
then there exists a strong SRU for the completion of (R, Bor. N ). .

Note that the conclusion of Corollary 4.4 cannot be proved in ZFC for either of the
ideals. This follows from Proposition 3.3(b), since in the Cohen model every subset of
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R of cardinality < ¢ isnull and R is the union of less then ¢ many null sets, while in the
random real model every subset of R of cardinality < ¢ is meager and R is the union of
lessthen ¢ many meager sets. (See, e.g., [Mi1].) But what about the existence of astrong
SRU, or an SRU, just for (R, Bor, N ), with N asin the corollary?

To answer this question we will need the following theorem of P. Corazza[C].

PrROPOSITION 4.5. [C] It is consistent with ZFC that ¢ = w», every subset of R of
cardinality less than ¢ has strong (so Lebesgue) measure zero, and for every subset
M of R cardinality ¢ there is a uniformly continuous function f: R — [0, 1] such that
f[M] =0, 1]. n

From this we can easily deduce the following.

COROLLARY 4.6. It is consistent with ZFC that there is no SRU for (R,Bor.N ),
whereN isthe o-ideal of null setsin R.

PrROOF. This happens in the model from Proposition 4.5. First recall, that in this
model the real line is covered by less than ¢ sets of measure zero, i.e., R = Jg,, N¢
for some null sets N,. (See, e.g., [C] or [Mi3].) Now, if M were an SRU then, by
Proposition 3.1(a), M cannot be null. So, it has cardinality ¢. Hence, thereis & < w; such
that M = MNN; € N has cardinality ¢. Let h:R — [0, 1] be a uniformly continuous
map such that h[M’] = [0, 1]. There are many pairwise nonequivalent extensionsof hf M’
to nowhere constant Borel functions from R into [0, 1]. Since these extensions all have
the sameimage of M, M is not an SRU, contradiction. ]

We do not know whether there is a model of ZFC in which there is no SRU for
(R,Bor,N ), where N is the o-ideal of meager sets. (See Problem 5.18.) However,
in models where every set of reals of cardinality ¢ maps uniformly continuously onto
[0, 1], there is no SRU for (R,Bor,N ) of cardinality ¢. (See Theorem 5.6(5) and the
comments before Lemma 5.5.) On the other hand, the following observations, that arose
in conversationswith S. Todorcevic, show that thereisan R;-strong SRU for (R, Bor, N )
in the models from [C] and [Mi3].

Forany setL, letL@ = {(a,b) € L>: a#b}.

DEFINITION 4.7. [To, Section 6] Let N bethe ideal of subsets of R consisting either
of the meager setsor of the sets of L ebesgue measure zero. Let N, be the corresponding
ideal of subsetsof R2. A set L C Riscalled 2-Lusin for N if L is uncountable, but for
every N € N, the set NN L@ does not contain an uncountable disjoint set, where two
ordered pairs (a, b) and (c, d) aredigoint if {a,b} N {c.d} = 0.

PROPOSITION 4.8. Consider the measurable space with negligibles (R,Bor,N )
where N is either the ideal of meager sets or the ideal of sets of Lebesgue measure
zero. If Lisa2-Lusin set for N which has uncountable inter section with every positive
set, then L is an X;-strong SRU for (R, Bor, N ).

PrROCF. Let L bea2-Lusinsetandletf, g: R — R benowhere constant Borel functions.
We claim there is a countable set C; 4 such that f(x) # g(y) for any distinctx.y € L\ C.
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(Then the rest of Definition 4.1 is easily checked.) By way of contradiction assume that
this is not the case. Inductively choose distinct points Xo. Yo € L \ Ug<o{Xs. y5} such
that f(X,) = 9(Ya). Theset F = {(x,y) € R? : f(x) = g(y)} is Borel and contains all
the points (X4, Y»). Since L is 2-Lusin, it follows that F is not negligible. By Fubini’'s
theorem (by which we mean [Ox, Theorem 15.4] if N is the meager ideal), there is
anx € Rsuchthat F, = {y € R : (x.y) € F} isnot negligible. But g~*(f(x)) = Fy,
contradicting the fact that g is nowhere constant. ]

Under CH thereis a 2-Lusin set having uncountable intersection with every positive
set (by aminor modification of the proof of [To, Proposition 6.0]). It now follows from
Proposition 4.8 that thereis an X;-strong SRU for (R, Bor, N ) in theiterated perfect set
model for N equal to either the meager or the null ideal, and in the model of [C] for N
equal to the meager ideal. The pointisthat in all of these situations, (i) the ground model
coded negligible Borel subsets of the plane are cofinal in the ideal of negligible subsets
of the planein the extension and (ii) every positive Borel subset in the extension contains
aground model coded positive Borel set, and hence aground model set whichis2-Lusin
and has uncountable intersection with every positive set retains these properties in the
extension. (Preservation of the 2-Lusin property can be seen by noticing that for L C R
and N a negligible subset of the plane, saying that N does not contain an uncountable
sequence of disjoint pairsfrom L is equivalent to saying that there is a countable subset
Cof L suchthat for any distinct x,y € L\ C, (x,y) £ N.)

We now give aversion of Theorem 4.3 for several measurable spaceswith negligibles
simultaneously.

THEOREM 4.9. Let (X.Z,N;), i € N, be X;-saturated measurable spaces with neg-
ligibles. Suppose that < has cardinality ¢ and, for eachi € N, nosetin =\ N; can be
covered by lessthan ¢ membersof N;. Thenthereisaset M C X whichis a strong SRU
for all the spaces (X, Z, N;) simultaneously.

PROOF. Let ((ix-fa.00-Eo) © @ < ¢) bealist of al quadruples (i.f.g.E) where
i €N,f,g: X — R arenowhere constant measurablefunctionswith respectto (X, Z, N;),
E e\ Nj, andf[E] Ng[E] = 0.

Inductively choose points x, € X so that g;*(fo(Xs)) € Nien Ni, asfollows. The set
Cq, ={y € R: g, (Y) # Nien Ni} is countable since each (X, Z, N;) is X;-saturated.
Hencef, *(Cq,) € Ni,. The sets g;* (5(xs)), for 8 < a arein oy Nii by theinduction
hypothesis. The sets f;(a(Xs)), for 3 < a, arein N;, since f, is nowhere constant.
Thuswe may choose apoint X, € E, which avoidsall these lessthat ¢ membersof N;, .
We have g, (f.(X)) € Nien Ni, sincex, # f,1(Cy,).

Now let i < N and, with respect to (X, Z,N;), let f. g: X — R be nowhere constant
measurable functionsand E C X apositive set such that f E # gTE. By shrinking E we
may assumethat f[E] N g[E] = . Now, let o < ¢ besuchthati, =i, E, =E, f, =f and
0. = g. Itis straightforward to verify that f(x,) ¢ g[M]. ]

REMARK 4.10. Consider the spaces (X,Z,N ) where X = R, £ = Bor, and N is
either theideal of meager sets or the ideal of sets of L ebesgue measure zero.
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(@) Itfollowsfrom Theorem4.9that if R can be covered neither by lessthan ¢ meager
sets, nor by lessthan ¢ sets of measure zero then thereisaset M C X which is astrong
SRU simultaneously for both spaces under consideration.

(b) Another way to get a set which is a strong SRU for both spaces simultaneously,
is to force with an R;-stage finite support iteration (P, Q, : o < w1) where Q, isa
P,-name for Cohen forcing if « iseven and for random forcing if « is odd. The generic
set of realsM = {r, : « < w1} isastrong SRU for both spaces simultaneously. Since
thereareLusin and Sierpifiski setsin thismodel, the covering assumption of Theorem 4.9
failsfor both idealsif ¢ > R;. The proof that M isastrong SRU iseft as an exercise for
the reader.

(c) A setwhichisastrong SRU for both spacessimultaneously satisfiesthe following
stronger property. Let f, g: R — R be Borel functions. If f[M]Ag[M] is countable, then
thereis aBorel set E such that f[R \ E] and g[R \ E] are countable and f(x) = g(x) for
al x € E except for x belonging to a meager set of measure zero. (Compare this with
Theorem 4.13.)

(d) NosetM C R can be an SRU for the completion of both spaces simultaneously.
Thereasonisthat thereisasetH C R of measure zero and whose complement is meager.
Oneof MNH, MN (R \ H) would have the same cardinality as M, say the former. Then
given any two nonequivalent L ebesgue measurablefunctionsf, g: R — R, we can easily
modify f I(M N H) and gl (M N H) to arrange f[M] = g[M].

The next example shows that an SRU need not be a strong SRU. (The assumptions
ontheideal N are satisfied by the ideal of countable sets. They are also consistently
satisfied by the meager and null ideals.)

EXAMPLE 4.11. Consider a measurable space with negligibles (X, =, N ) in which
X = R, Z is the Borel o-algebraof R and {—x : x € N} € N for every N € N .
Assume that singletons are negligible and no positive set can be covered by less than
¢ negligible sets. Then thereisaset M C R which isan SRU for (X,2,N ) and such
that {|x| : x € M} C M. In particular, M is not a strong SRU for the piecewise linear
functions.

ProoF. Clearly, such aset M is not astrong SRU, for if welet f(x) = |x| and g(x) = x
forevery x € R, wehavethat f and g arenowhereconstant (sinceN containssingletons),
f[M] C g[M], andf £ g.

Note that since N is a proper ideal, R is not negligible. Thus, from the symmetry
assumption on N , neither (—oo, 0) nor (0, oo) is negligible. Let h: R — R be given by
h(x) = —x for all x € R. To construct M, let F be the family of all triples ( f. g, E) such
that f and g are nowhere constant Borel functions, EisapositiveBorel set, f[E|Ng[E] = ()
and either

(i) E C (0, 00), Or

(i) E C (—00.0) and f[E] N g[—E] = 0, where —E = {—x: x € E}.
Let <<f(,. Ow Eo) i < c> list all elementsof F with each triple appearing ¢ many times
andlet (N, : o < ¢) bealist of all negligible Borel sets.
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By induction on o < ¢ defineasequence (X, : o < ¢) of real numbers such that

Xe €Ex\ U [NH Ut (falxs)) UL (Gal(xX5)) U ﬂ:[ 3 (9/30(6))]]
B<a
Such a choice can be made, since each set Ny U f1(fa(xs)) U i (da(EXs)) U
+[f5%(9s(x5)) | isnegligibleand no positive set isthe union of lessthan ¢ many negligible
sets.

LetM={xy:a <c}U{|Xs| i x <c}.Clearly {|x : xe M} C M.

To seethat M isan SRU for (X.2,N ) let f,g € M;(R) be nonequivalent nowhere
constant. Let N be a negligible Borel set on whose complement f and g agree with Z-
measurablefunctionsf and g respectively. In particular, f and gare N -nowhere constant
and not equivalent. Note that

thereis apositive Borel set E C X \ N such that either (f,g.E) € F or (g.f.E) € F.

Thisis clear if f (0, 00) Z /(0. oo) since then <f_,§. E) € F for any positive Borel
set E C (0,00) \ N such that f[E] N g[E] = ). So, assume that f [ (0. c0) = g (0, o).
Thenfr(—oo 0) # gl (—00,0). Choose a positive Borel set E C (—00.0) \ N such that
f[EINg[E] = (. By shrinking E, if necessary, we can also assumethat (foh) [ E = (goh) TE,
since f (0, 00) = gl (0. 00). Now either fTE £ (f o h)[E or gTE # (g o h)[E, since
otherwise we would havef E = (f oh)IE = (goh)IE = glE. Assumethe former case
the other being similar. Then we can shrink E further to arrangef[E] N (f o )[E] =
But (f o h)[E] = (g h)[E] = g[—E]. So, f[E]Ng[—E] =0 and (f,§.E) € F.

_ By symmetry we can assume that (f.g.E) € F. Now, let « < ¢ be such that

(f,09.E) = (f4. Qas Ex)- Then, f(Xy) = fo(Xs) £ 9o[M] = g[M], becauseof thefollowing.

—fo(Xe)) 7 Gu(2X) fOr 3 < @ since Xy £ f72(9u(EX9)).

—fo(Xa) # Gul(Xs) SiINCE X, € Ey and fo[Ea] N Ya[Eq] = 0.

—fa(Xa) # 9u(|X|)- This follows from the previous line if x, > 0. If x, < O then
Ex C (—00.0) and fo[Eo] N gal—Ex] = f. S0 and fo(Xe) # Gal—Xe) = Gal|Xal),
sincex, € E,.

—fo(Xe) 7 Ga(2X) fOr 8 > o sincethen x; # £[g;% (fa(Xa)) |

Since each f,(X.) # fo(Xg) for every 3 < a < ¢ and each element of F islisted in
our enumeration ¢ many times, we conclude that f[M] \ g[M] has cardinality contin-
uum. But M N N has cardinality less than continuum since N = N,, for some o < c.
Hence, f[M]A f[M] and g[M]Ag[M] have cardinality lessthan ¢ and so, f[M] \ g[M] is
nonempty. "

When (X, Z, N ) is ¥, -saturated, we can give a version of Theorem 4.3 which shows
that any measurable function is essentially determined by its range on a strong SRU.
First we prove the following lemma.

LEMMA 4.12. Let (X,Z,N ) be a flexible X;-saturated measurable space with neg-
ligibles and let « be a cardinal such that the union of any collection of less than «
many negligible setsis negligible. If M C X is a strong SRU then M has the following
properties.
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(@ If f.g € M (X) are such that f[M] \ g[M] has cardinality less than x then E =
X\ (f*l(cf) U{x e X:fx = g(x)}) is negligible, where G = {y € R :
f~1(y) is positive}.

(b) Iff,g € M (X) are such that f[M]Ag[M] has cardinality lessthan «, then thereis a
measurableset U suchthat f[X\ U] and g[X \ U] arecountable, andf U = g'U.

PRrROOF. (a) Let C =f[M]\ g[M]. Notethat C;, Cq are countableand C has cardinality
less than . By way of contradiction suppose that E is positive. Then f [ E is nowhere
constant. Let E; C E be a positive set on which the ranges of f and g are separated by
some rational number g, say f(x) < q < g(x) for al x € E;. Since the set E; N f~1(y)
is negligible for every y € R and C U Cy has cardinality less than « we can find a
positive subset K of E; \ f~1(CU Cy). Let A = g~1(Cy). Define a measurable function
h:X — R so that h{(K U A) is any nowhere constant measurable function such that
h[K]Nf[K] = 0, and h agreeswith g on X \ (K UA). SinceM isastrong SRU, there must
beapointx € MNK suchthat f(x) ¢ h[M]. From the definition of K, f(x) £ Cy = g[A].
So, f(X)  g[A] U g[K] Uh[M \ (KUA)] = g[AUK]JUg[M \ (KU A)] 2 g[M]. Thus
f(x) € f[M] \ g[M] = C, contradicting x € K.

(b) TakeU = X\ (f7(Cr) N g~%(Cy)). By (a) applied as stated, and also with f

and g interchanged, U \ {x € X : f(x) = g()} = (X\ (fFYCHU{x € X : f(¥) =
g(x)})) U (X\ (gHCoUixeX:f(x) = g(x)})) isnegligible. .

THEOREM 4.13. Let (X, %, N ) bean®;-saturated measurablespacewith negligibles.
Suppose ¢ isregular, 2 has cardinality ¢ and the union of less than ¢ negligible setsis
negligible. Then there is a set L C X such that for any two >-measurable functions
f,g: X — R, f[L]Ag[L] has cardinality less than ¢ if and only if thereis a measurable
set E suchthat f[R \ E] and g[R \ E] are both countableand f 'E = gl E.

PROCF. First note that by Corollary 3.8, we may assumethat X isflexible, sincef and
g have essentially countable range on the atomic and Souslin parts of the space. Let L be
a c-strong SRU (Theorem 4.3). Then L has the desired properties by Lemma 4.12 and
the assumption that the union of lessthan ¢ negligible setsis negligible. ]

REMARK 4.14. The saturation assumption in Theorem 4.13 cannot be deleted. Con-
sider X = R?, 3 the Borel o-algebra of R?, N = the ideal of countable subsets of X.
By Theorem 4.3, X has a strong SRU M. By Proposition 3.1(a), M N B # 0 for every
uncountable Borel set B. Let 71, m be the projection maps R> — R onto the first and
second coordinates, respectively. Then 71[M] = m,[M] = R. However, m1(X) # m2(X)
except when x is on the main diagonal, and 1 and 7, are not both constant on any set
with more than one point.

The existence theorems we have given for SRU’s in measurable spaces with negli-
gibles deal with structures in which there are only ¢ equivalence classes of measurable
functions. Aswas pointed out in Proposition 3.3(c), there can be no SRU for ameasurable
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spacewith negligibles which has more than 2° pairwise nonequivalent measurable func-
tions. This leaves the question of what happens when there are x equivalence classes of
measurablefunctionsand ¢* < x < 2¢. The next theorem and the remark which follows
it partially addressthis question.

THEOREM 4.15. Assume GCH. Let X = 2¥2, |et 2 be the g-algebra of Baire sets for
the usual topology on X, and let N be such that (X, Z. N ) is a measurable space with
negligibles(i.e., N isaproper o-ideal and=NN iscofinal inN ). Thereisa countably
closed R,-cc forcing notion P which preserves GCH and such that in the extension VP
there exists an RX;-strong SRU for X.

In particular, it is consistent that there exists a strong SRU for a flexible measurable
spacewith negligiblesin whichthereare 2 equivalenceclassesof measurablefunctions.

PrROOF. The last statement follows from the rest of the theorem by taking N to bethe
o-ideal of meager sets in 2¥2, since any two projections onto subproducts of the form
2lxete) o~ 2w o < wy alimit ordinal, are nonequivalent nowhere constant members of
M (X). (We identify here 2~ with the Cantor middle third set C C R.) The space 2 is
flexible by Proposition 2.4, sinceit is separable.

We can assumethat X is flexible since otherwise the theoremiis trivial.

We start with few remarks on the structure of Baire sets and Baire functions in X.
First recall that for each Baire set B C X, there exists a countable set A C w» on which
B “lives’ in the sensethat

(D] peBiffge B foreveryp.g& XwithplA=qlrA.

(See [Ku2] for example.) Similarly, since every Baire function f € M (X) is fully
described by the setsf~*((a. o)) (a € Q) we canfind a countable set A C w, on which
f “lives’ in the sense that

2 f(p) =f(q) foreveryp,qe XwithplA=qlA

Note also that if f and A satisfy (2) then the function fa: 24 — R, fa(plA) = f(p) for
p € X, iswell defined and it codesf.

Now, for A C w, andf: 22 — R letf: X — R bedefined by f(p) = f(pIA). Moreover,
for D C w; let F (D) be the family of all f:2* — R such that A € [D]¥ and f isa -
measurable N -nowhere constant. Whens:C x D — {0,1} and v € C we will write s,
for the function from D into {0, 1} given by s,(5) = s(7, ) for every § € D. Define

P={(C.D.sF):Ce[w]*&De[w]*&sCxD—{0.1}&F € [F(D)]™}

and defineapartial orderonP by (C. D, s,F) < (C'.D’,s,F') providedC' C C,D’ C D,
s Cs F CF,andforeveryyeC\C' anda € C\ {7}

@ (YA€ [D]°)(vf.g € F))[dom(f) = dom(g) = 2* — f(s,1A) Za(s.[A) |-
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It is easy to see that P is countably closed. P is X,-cc since, by standard A-system
arguments, for any sequence of conditions ((C, D, s, F¢) : ¢ < wp) we can find
€ < ( < wpsuchthat C¢ = C* and s* Us isafunction. (See [Kul, Ch. VII, Section 6].)
Then (C5, D*UDS, 8" U, FEUFS) € P extendsboth (C¢, D¢, s, F¢) and (C°, DS, <. F¢)
sincecondition (3) isviciously satisfied. Thus, P preservescardina sand doesnot add any
new countable sequences of ground model elements. In particular, VP contains neither
any new real numbers nor any new code fa of any Baire functionsf.

Let G C P beV-genericand let

x=J{s:(C.D.s.F) € G}.

Clearly x isafunction from a subset of w; x wy into 2. To see that dom(x) = wy X wy it
is enough to notice that for every ¥ < w1 andé < w, thesets{(C.D.s.F) e P: Y € C}
and {(C.D.s.F) € P: 6 € D} aredensein P. For the latter thisis trivial. To seeit for
the former case, let (C,D,s,F) € Pandy € ws. Pick

peX\U{f*(d(s:IA) : a € C& f.g € F & dom(g) = 2*}.

Then (CU {7}.D.t.F) € Pwitht/C x D =sandt, = p/D extends (C,D.s.F) € P.
LetL = {X; : ¥ < wi} and notice that genericity easily implies that the x,'s are
distinct. The proof is completed by verifying that for each pair f. g € Mz (X) of nowhere
constant functions, there is a countable set C;  of L such that assumptions (i) and (ii) of
Definition 4.1 are satisfiedwith s = X;. Letf, g € Ms(X) be nowhere constant functions,
let E be apositive Baire set, and let N be anegligible Baire set. Let A C w; be countable
and such that (. A) and (g, A) satisfy (2) and choose acondition (C, D, s,F) € G such
that fa, ga € F. (Such conditions are trivially dense.) Define C; g = {X, : ¥ € C}. Itis
clear from the definition of the order on P that Definition 4.1(ii) is satisfied. Since  is
regular, Definition 4.1(i) is equivalent to: L N E is uncountable for each positive Baire
set E and that L NN is countable for each negligible Baire set N. To verify this, let E be
apositive Baire set, let N be a negligible Baire set and let o < w1. Choose a countable
set A C wp such that (B, A) and (N, A) satisfy (1). The desired properties follow easily
from the density of the conditions (C. D, s,F) suchthat AC Dands, € {pID: p < E}
for somey € C\ «, and the density of the conditions (C, D. s, F) such that 0 € C and
that there are f. g € F with dom(f) = dom(g) = 2* and N = f(g(soA)). (Such an f
exists since X isflexible.) ]

REMARK 4.16. The measurable space with negligibles (¢, P(¢),N ), where N isthe
ideal of countable subsets of ¢, hasno SRU by Proposition 3.3(a). Thus, in Theorem 4.3,
the cardinality restriction on X cannot be relaxed to 2°. If « is an atomlessly measurable
cardinal and N is the null ideal of a witnessing measure, then (x, P(k), N ) is an ¥;-
saturated measurable space with negligibles which illustrates the same point.
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5. SRU’sfor continuousfunctions. In this section we will examine properties of
SRU’s for C(X), for X aBaire topological space considered with its natural structure as
a measurable space with negligibles. (See Section 2). Many of the results do not rely
on X being Baire, however. (See Remark 5.16.) Recall, that by Proposition 2.2 we can
replace the relation = in the definition of (strong) SRU with equality. Proposition 2.2
and Theorem 4.3 ensure that, under suitable hypotheses, strong SRU’s exist in many
Baire spaces. We will need to assume, for most of our results, that our spacesare locally
flexible. Proposition 2.4 provides us with a healthy supply of such spaces.

We begin with several easy lemmas.

LEMMA 5.1. Let X be a Baire topological space considered with its natural measur-
able structure and let M C X be an SRU for C(X). If f € C(X) is nowhere constant,
K =f[M] and h: R — R isa homeomorphismsuch that h[K] = K then h(y) = yfor every
y € f[X].

ProOF. Let f, h and K be as above and by way of contradiction assumethat h(y) #y
for somey € f[X]. Theng = hof # f while g € C(X) is nowhere constant and
g[M] = h[f[M]] = h[K] = K = f[M], contradicting the definition of an SRU for C(X). m

LEMMA 5.2. Let a < b and K C (a,b) be a Cantor set. Then, every continuous
function g: K — (a, b) has an extension G: R — R such that G[(a, b)] = (a, b), G(X) = x
for all x e R\ (a. b) and G is countable-to-oneon R \ K.

PROCF. Let ¢ and d be the maximum and the minimum of K, respectively. Extend g
to a continuous function g;: [c. d] — (a, b) by defining it linearly on any component of
[c.d] \ K. Let U = U{int(g;X(y)) : y € [c.d]}. If f:[c.d] — R isthe distance function
from[c, d]\U thenitiseasy tofindaconstantk > Osuchthat G = (gy +kf): [c, d] — (a. b).
It is also not difficult to check that G is continuous and countable-to-one on [c. d] \ K.
By extending it to the identity function on R\ (a. b) and linearly on each of the intervals
(a, ¢) and (d, b) we obtain the desired function. ]

LEMMA 5.3. Let X be a Baire topological space. Let f € C(X) and g € C(R) be
nowhere constant. If either X islocally connected or g is countable-to-one, thengof €
C(X) isalso nowhere constant.

PROOF. If g is countable-to-one, then (go f)~1(y) = U{f~1(2:z € g~1(y)} ismeager,
asit isacountable union of nowhere dense sets.

If X locally connected and (g o f)~1(y) has nonempty interior, then there exists a
nonvoid open connected U C (g o f)~*(y) = f=(g~X(y)). So, f[U] C g *(y). But
f[U] C R is connected, as an image of a connected set. So, either f[U] is a singleton,
contradicting that f is nowhere constant, or f[U] contains a honvoid open interval,
contradicting the fact that g=(y) is nowhere dense. ]

REMARK 5.4. Notice also that Lemma 5.3 may fail if we require only that g is
nowhere constant. To seethis, let K C R beaCantor set and let X = K x K. Moreover,
let c: K — {0} bethe constant map and let G be the extension of ¢ given by Lemma5.2.
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Then the conclusion of Lemma 5.3 fails for g = G and f = the projection of X onto the
first coordinate.

Recall from Section 2 that SC X isan so-set if for every Cantor set P C X, thereisa
Cantor set Q C P suchthat QN S= (. Also, Sisastrong sp-set if f[J isan sp-setin R
for every f € C(R). Note that every set of cardinality lessthan ¢ isastrong S-set. There
are sp-sets of cardinality ¢ in R [Mi2], but it is consistent that there are no strong sp-sets
of cardinality ¢ [Mi3].

LEMMA 5.5. If SC Xisa strong sp-set, then Sis an sp-set and Sis zero-dimensional.

PROOF. The zero-dimensionality of Sfollows easily from the fact that X is completely
regular and the image of S by amember of C(X) cannot contain an interval. To see that
Sisan sp-set, let K C X be a Cantor set, and let g: K — R be a homeomorphism onto
its range. Since K is compact, g extends to a function G € C(R) [En, Exercise 3.2.J].
Since G[9 is an so-set, there is a Cantor set L C G[K] such that L N G[§ = ). Then
SN (G HL) NK) = 0. .

THEOREM 5.6. Let X bealocally flexible Baire topological space considered with its
natural measurable structure. If M C X is an SRU for C(X) then M has the following
properties.

(1) Misdensein X.
(2) Let U C X be nonvoid open and let f € C(X) be nowhere constant. Then f[M N U]
is uncountable provided at least one of the following conditions hold.
(@) U =f"YW) for someopen W C R;
(b) Misastrong SRU.
(3) MNU isuncountablefor every nonempty opensetU C X. _
(4) For everyf € C(X) thereisa nowhereconstant f € C(X) such that f[M] C f[M].
(5) Misastrong sp-set. In particular, M is a zero-dimensional s,-set.
(6) If Xisanonvoid analytic metric spacethen M is not analytic.

PrOCF. (1) By way of contradiction, assume that there is a nonvoid openset U C X
disioint from M. Let V = X\ cl(U) and let hy and hy be functions from the definition of
local flexibility for U and V respectively. Definef = hy + hy and g = hy — hy. Thenf
and g are continuous, nowhere constant. Moreover, f[M] = hy[M] = g[M], whilef # g,
since hy is nowhere constant on U.

(2) By way of contradiction, assume that f[M M U] is countable for some nonvoid
open U and nowhere constant f € C(X). Let Y =f[M N U].

First noticethat Y has no isolated points. To see this, assume by way of contradiction
that Y has an isolated point y and let | C R be open such that | N Y = {y}. Then
V = UnNf1(l) is nonempty and, by (1), f[V] C flcd(MNV)] C c(fIMNV]) = {y}
contradicting the fact that f is nowhere constant.

Next notice that

there exists a < b and a countable-to-one continuous function h: R —
(x) R such that h[Y] =Y, h(yo) # Yo for someyp € Y, and h(x) = x for
X € R\ (a, b); moreover, (a. b) C Wif we arein the case (a).
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Note that this will finish the proof. Indeed, put g = hof € C(X) and notice that
f #gonU, sinceUNf~1(yo) # 0. Moreover, by Lemma5.3, g is nowhere constant and
glMNU] = h[f(MNU]| = h[Y] =Y = f[MN U] C f[M]. This gives a contradiction
with M being strong SRU, taking care of (b).

If U = f=2(W) theng[M \ U] = h[f[M\ U]] = f[M\ U] C f[M], sinceh(x) = x for all
x e f[M\ U] C R\ (a b). So, g[M] = f[M] giving us a contradiction with (a) as well.

To prove (x) consider two cases.

Case 1. cl(Y) is somewhere dense. Let (a, b) C cl(Y) be a nonvoid open interval
and assume that (a. b) C W if U = f=1(W). Then, thereis a nontrivial homeomorphism
h:R — R such that h[Y] = Y and h(x) = x for every x € R\ (a, b). Clearly h(y) # y for
somey €Y.

Case 2. cl(Y) isnowheredense. Let a < b be suchthat K = cl(Y) N (a, b) isa Cantor
setandthat (a. b) C Wif U = f~1(W). Letg: K — K C (a. b) be ahomeomorphism such
that glK NY] = KNYandg(y) #y for somey € KNY. (See [En, Exercise 4.3.H(3)]
for such a homeomorphism.) Let G be an extension of g asin Lemma5.2. Thenh =G
satisfies (x).

(3) By way of contradiction, assumethat MNU is countablefor some open nonempty
U C X. For an open set W C X let fy, stand for the absolute value of the function from
the definition of local flexibility for W. Put f = fy — fiyx\u)- Then f is continuous and
nowhere constant, and U > f~((0.00)) # 0. An application of (2) case (a) gives a
contradiction.

(4) Letf € C(X)andlet C; = {y € R :int(f~*(y)) # 0}. By (1) for eachy € C;
we can choose x, € int(f~*(y)) N M. Note that the set H = [X\ U{int(f7X(y)) : y €
CfH U{x, :y € C}isclosedin X. Let g € C(X) be as in the definition of local
flexibility of X for the set X\ H and let f = f + g € C(X). Then f is nowhere constant
and f[M] = f[MNH] =f[MNH] Cf[M].

(5) The claims made in the second statement follow from Lemma 5.5. For the proof
of the first statement, let us first verify that if f € C(R), we cannot have a Cantor set
contained in f[M]. By way of contradiction, assumethat there is a Cantor set K C f[M].
By (4) we can assume that f is nowhere constant. Let g be a continuous two-to-one
function from K onto [0, 1] and let G be an extension of g as in Lemma 5.2. Then,
G € C(R) is countable-to-one and, by Lemma5.3, F = G o f is nowhere constant. But
then, F[M] = G[f[M]| D G[K] > [0. 1], which contradicts Lemma 5.1, since there are
many nontrivial homeomorphismsh of R with h(x) = x for all x € R\ (0, 1).

Now supposethat f[M]NL # 0 for every Cantor set L C K. SinceK ishomeomorphic
to its square, and the level sets of the projection of the square onto one of the coordinates
areall Cantor sets, thereis acontinuousmap g: K — K all of whoselevel setsare Cantor
sets. Extend this function g to a member G of C(R) and note that (G o f)[M] D K,
contradicting the result established in the previous paragraph.

(6) Thisfollowsimmediately from (3) and (5). ]

PROBLEM 5.7. Are the assumptions (a) and (b) essential in (2) of Theorem 5.6?
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We will now consider some specific properties of SRU’s for C(X) where X is a
separable metric space. We begin with the following lemma.

LEMMA 5.8. Let (X, d) bea separable metric space, and let M C X a strong so-set. If
F isa closed subset of X and e > 0 then there exists a continuous function g: X — [0, €]
such that g~1({0}) = F and g[M] is countable.

PROOF. Let h: X — [0, €] be given by the formula h(x) = min{e, d(x, F)} for x € X
andfor n < wlet I, = [¢/2™2, ¢ /2. Since M is a strong so-set, for every n < w there
exists a Cantor set C, C |, suchthat C, Mh[M] = (. Let f,: 1, — |, be anon decreasing
Cantor function such that f,[C,] = In andletf: [0, e] — [0, €] bean extension of all these
functions. It iseasy to seethat h =f o g: X — [0, €] hasthe desired properties. ]

LEMMA 5.9. Let (X, d) be a separable Baire metric space without isolated points.
Let U C X beopenandlet M C U be a meager strong s-set. Then thereis a function
g € C(X) suchthat g(x) = 0for all x € X\ U, g(x) > 0for all x € X, gl'U is nowhere
constant, and g[M] is countable.

PrROOF. Let K;, be closed nowhere dense setsin X suchthat M C J,, Kn. Since X is
Baire, thereisaset {d, : n < w} C U\ Une,, Kn Whichisdensein U. Wewill construct,
by induction on n < w, asequenceg,: X — [0, ,) of continuous functions such that for
every n < w

() gn[M] is countable

(if) g7 2({0}) = (X \ U) U Ui (Ki U {ch})

(iii) en € (0,277

(iV) (Zicn 8)(dh) £ ((Ticn 8)(Gn). (Ticn Gi)(dn) + | forn > 0andj < n.

Theconstructioniseasily carried out. Itissimply amatter of choosing e, satisfying (iii)
and (iv), and then defining g, to be the function g from Lemma 5.8 applied with F =
(X\ uyu Ui<n(Ki U {di }) ande = en.

Let g =i, Gi- Then, by condition (iii), g is continuous. Also, condition (ii) implies
that for every n < w

gMNKy] = (Z gi)[M N K]

i<n

which is countable by (i). So, g[M] is countable. Moreover, by (ii) and (iv),

0@ = (L)@ £ (T o). (o) @) +e

i<n i<n i<n

5 (; 6 )(dn) = glch)

for every j < n < w. So gisnowhere constant in U. ]

THEOREM 5.10. Let (X, d) be a separableBaire metric spacewithout isolated points.
IfM C Xisan SRU for C(X) and U C X isanonvoid open set, then M NU isnot meager.

PrOOF. Let M be an SRU for C(X). By Theorem 5.6(5), M isastrong S-set. If MM U
is meager, then Lemma 5.9 gives a honnegative function g; € C(X) whichisidentically
equal to zero outside U, nowhere constant on U, and has a countable image of M N U.
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Let g, € C(X) be a nonpositive function which is identically equal to zero on U and
nowhere constant in the exterior of U. (For example, apply Lemma 5.9 with U replaced
by the exterior of U and M replaced by the empty set.) Let g = g; + g2. Then g € C(X)
is nowhere constant. Let W = g=%((0, 00)). We have g'W = g; 'W and hence W C U.
Also, gIM NW] C gi1[M N U] is countable, contradicting Theorem 5.6(2)(a). ]

COROLLARY 5.11. A Serpifski subset of R" is not an SRU for C(R").
PROCF. Sierpifiski sets are meager. ]

REMARK 5.12. Theorems 5.10 and 5.6(5) show that an SRU for C(R) cannot be
meager, but also cannot be too big. However, little can be said about the measure of an
SRU for C(R). Under CH, thereisastrong SRU for C(R) whichisaLusin set and hence
has strong measure zero and there is another one of full outer measure. (For the full outer
measure example, apply Theorem 4.9 to (R, Bor,N;), i = 1,2, where N; and N, are
the meager and null ideals.)

REMARK 5.13. It is not difficult to see that one can prove Theorems 5.10 for any
Baire spacewithout isolated pointsin which any dense G; set contains a countable dense
subset. The proof requires only minor changes. This could be used for example to show
that any SRU for [0, 1] must be nowhere meager, a fact which aso follows from the
next proposition.

ProOPOSITION 5.14. Let X be a ccc topological space such that X“ is Baire. If every
RU for C(X¥) is nowhere meager then so is every SRU for C(X*) for every infinite
cardinal k.

PrOOF. By way of contradiction assume that for some infinite cardinal number x
thereisM C X" which is an SRU for C(X") and such that U N M is meager for some
nonvoid open set U C X". Decreasing U, if necessary, we can assumethat U is abasic
open set supported by a finite set T of coordinates. Since X* is ccc we can find an
F, meager set F supported by a countable infinite set S of coordinates and such that
UNM C F. Wecan aso assumethat T C S Let 7 be the projection map of X* onto
XS. Thus, 7[M N'U] C #[F] is meager in 7[U]. So, by our assumption, 7[M] is not an
SRU for XS, i.e., there are two different nowhere constant functionsf,g € C(X5) with
f[7[M]] = g[#[M]]. But f o m, go € C(X") are different and nowhere constant too,
contradicting the assumption that M was an SRU for X*. ]

COROLLARY 5.15. For any cardinal « every SRU for [0, 1]" is nowhere meager in
[0, 1]". n

REMARK 5.16. Aswe pointed out in Section 2, if X is a Baire topological space, the
usua notion of “nowhere constant” for a function f € C(X) (i.e., “not constant on any
nonvoid open set”) coincides with the meaning “not constant on any honmeager Baire
set” we gave in Section 2. Most of the results in Section 5 go through even for spaces
that are not Baire, if the usua notion of “nowhere constant” is used in the definitions
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of SRU and of locally flexible. Lemma 5.3 for the case where g is countable-to-one
holds by a different argument: the level sets of g are scattered and it is easy to verify
by induction on the Cantor-Bendixson height of a scattered set that its preimage under
a nowhere constant function is nowhere dense. The proof of Lemma 5.1 goes through
with no changes, as does the proof of Theorem 5.6. As for Theorem 5.10, note that if
X is any nonvoid separable metric space with no isolated points and for some open set
U C X, MNU is meager, then by Theorem 5.10 applied to the completion Y of X, there
aretwo distinct nowhere constant functionsf, g € C(Y) suchthat f[M] = g[M]. But then
therestrictions of f and g to X witnessthat M is not an SRU. In particular, if X itself has
anonvoid meager open set (i.e., is not Baire), then there is no SRU for C(X).

The next example shows that the assumption of CH cannot be removed from [BD,
Theorem 8.5].

ExXAMPLE 5.17. Suppose that
(i) thereisanonmeager subset of R of cardinality X1; and,
(i) any two nowhere meager subsets of R of cardinality X, are order isomorphic.
(See[Sh] for a proof that thisis consistent.) If X C R is a nowhere meager subset of R
of cardinality &, then there is no SRU for C(X).

PROOF. Suppose M C X were an SRU for C(X). By Theorem 5.10 M is nowhere
meager. But then, using (ii), it is easy to construct many distinct order isomorphisms of
M with itself. Each of these will extend to a homeomorphism of R, and hence M is not
an SRU. [

The modelswe are aware of for assumptions (i) and (ii) of Example5.17 are obtained
by r-stage finite support iterations of ccc forcing notions, where s isregular. Asaresult,
Cohen reals are added cofinally in the construction and the covering assumption of
Theorem 4.3 is satisfied for X = R, = = the Borel o-algebra, and N = the meager ideal.
Thus, there is astrong SRU for C(R) in these models.

The following remains an intriguing problem.

PROBLEM 5.18. Isthe existence of an SRU for C(R) provablein ZFC?

[Note added April 13, 1997. The answer isno: see[CS]. See also [BC] whereit is shown
in ZFC that there is a meager SRU for the differentiable functions.]

We now give the example promised in Section 2 to show that the converseto thefirst
statement of Proposition 2.2 is false. First we prove the following lemma.

LEMMA 5.19. Let X be the space of irrational numbers (with the usual topology).
Thereis a countable dense set A C X and a homeomorphismh: X\ A— X\ A suchthat
for any m € Z \ {0} and any nowhere constant function g € C(X), go h™ X\ A— R
does not extend to a continuous function on any nonempty open subset of X.

PROOF. Fix any countable dense set A C R. We define open subintervals s = (as, bs)
of R for s € Z<¥ as follows. Let |; = R and given I, define open subintervals Is-p,
neZ, of lssothat Is\ Unez Is-n € A and bs—n = as-(ne1y. (Forse€ Z<“ and n € Z the
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symbol s~ n denotesthe extension of shy n,i.e., s~n=sU{(k.n)}, wherek = dom(s).)
Also ensurethat if welet U, = J{ls: s € Z"}, then N, Un = R\ A. Identify Z with
R\ A viathe map which sendsu € Z“ to the unique member of N{Iy/, : n € w}. Let
h: R\ A— R Abe the homeomorphism which correspondsviathisidentification to the
homeomorphism of Z« such that for u € Z¥ and k € Z we have h(u)(k) = u(k) if u(k) is
odd, and h(u)(k) = u(k) — 2if u(k) iseven. Let B C R \ A be acountable dense set such
that h[B] = B. We may assume X = R \ B since this set is homeomorphic to the set of
irrational numbers. Note that A C X and that h induces a homeomorphism of X\ A. We
will show that X, h and A satisfy the conclusion of the lemma.

Letg € C(X) andm € Z \ {0} besuchthat go h™ extendsto a continuousfunction on
anonvoid open subset | C X. By shrinking |, we may assumethat | = Is, N X for some
S0 € Z<¥. Lettyg € Z<* besuch that h™[lg,] = Iy,. We will show that g is constant on Iy,.
First, we claim that for every t € Z<“ suchthat ty C t,

gisconstantontheset § = {a-(omy) : ( € Z}.

So, let £ € Z, X = a-(omey and 'y = 8- (am(e+1))- We will show that g(x) = g(y). Let
s € Z<¥ be such that h™[Is] = I;. Note that s C s, S0 g o h™ extends to a continuous
function on Is C lg. For z € ls-@me+r) N (X \ A), 88 2 — as-(om+1)), M2 —
a-(zmr) and hence g(h"(2)) — 9(@-@my) = 9. For z € Is-@mesn-1 N (X \ A),
asz — as@m+1) = Psemre+n-1, ™2 — br-@me+1-1) = a&-@me+1) and hence
9(h"@) — 9@ @ne+1)) = 9(y). Thus, we must have g(x) = g(y), as desired.

Note that for eacht D tg and eachn € Z, the constant values of g on §-, and S~ (n+1)
must be the same since these two sets share a cluster point. Let ¢ be the constant value
taken by g on T; where for eachm € (dom(t),w) welet Ty = U{S : t D to.t € Z™}.
By similar considerations to the case m = 1, it follows by induction on m, using the
fact that Ty has cluster pointsin Ty, that g has the constant value ¢ on each Ty, Since
U{Tm: me (dom(t).w) } isdensein Iy,, g is constant on I,. .

ExAMPLE 5.20. If R cannot be covered by lessthan ¢ meager sets, theninany nonvoid
perfect Polish space X, thereisaset M C X and a Borel isomorphism h: X — X such
that h[M] = M, {x € R:h(x) = x} is meager, and if f,g € C(X) are nowhere constant
and E C X is a nonvoid open set such that fTE # glE, then f[M N E] \ g[M] has
cardinality ¢. In particular, there is a strong SRU for C(X) which is not an SRU for the
Borel isomorphisms.

PrROOF. Since every nonvoid perfect Polish space contains a residual copy of the
irrationals, we may assumethat X is the space of irrational numbers. Let <( fos Qs Eo) :
a < c> bealist of al triples(f. g, E) wheref, g € C(X) are nowhere constant maps, E is
anonempty open set, and f[E] N g[E] = (); let each such triple appear ¢ timesin the list.
Let Aand hbegiven by Lemma5.19. Inductively choosepoints x,, € E, \ A suchthat x,,
does not belong to any set of the form f- 1(ga(hm(xﬁ))) (me Z,3 < a)orf(fs(xs))

(8 < @) orh™([g7(fs(x:)) | \ A) (e Z, 5 < e) or {x € X\ Az fol) = 9u(N"()

https://doi.org/10.4153/CJM-1997-054-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-054-8

SETS OF RANGE UNIQUENESS 1111

(me Z \ {0}). Note that sets of the |atter form are nowhere dense by Lemma 5.19, and
the remaining sets are nowhere dense becausef, and gz (8 < «) are nowhere constant.
LeeM={h"(x,) :meZ,a <c}.

To seethat thisworks, let f, g € C(X) be nowhere constantandlet E C X beanonvoid
open set such that f 'E # gl'E. By shrinking E we may assume that f[E] N g[E] = 0. For
each « suchthat ( f,. ga. Ex) = (T, 9, E), wechosex, € E. Wehavethat f,(X,) & g.[M],
i.e., for each 3 < ¢ andeachm € Z, fa(Xa) # 9o (h™(X5)). (This is clear from the choice
of X,. Consider separately the cases 3 < «, 8 = «, 3 > «.) Therest of the properties of
the example now follow easily. ]

6. Variationsonthetheme. Asmentionedintheintroduction, propertiessimilar to
the SRU property have been considered by various authors. We examine some of them
in this section.

Let us begin with the results from [DM] and [BU] mentioned in the introduction.
Dushnik and Miller [DM] showed that, under CH, there is an uncountable set M C R
such that for any monotone (nonincreasing or nondecreasing) function f:R — R, if
{x € R : f(x) = x} is nowhere dense, then f[M] N M is countable. In a model of set
theory where ¢ = R, R is covered by X; meager sets and sets of cardinality X; are
meager (e.g., in the random real model), there is no such set. To see this, note that in
any such model, for every uncountable set M C R, thereisaset M’ C M of the same
cardinality as M such that M’ is nowhere densein R. Then there is a monotone function
f:R — Rsuchthat {x € R : f(X) = x} isequal to the closure of M’, and hencef[M] "M
has the same cardinality as M since it contains M.

Consider now the result from [BU] that, under CH, there is a totally heterogeneous
set. (Seetheintroduction for the definition.) A classical diagonalization argument shows
that there is (in ZFC) aset M C R of cardinality ¢ such that for any Borel function
f:M — M, f[{x € M : f(x) # x}] is countable. It is not possible, however, to produce
a totally heterogeneous set in ZFC. To see this, consider a model in which every set
M C R of cardinality ¢ can be mapped continuously onto [0, 1] (e.g., the iterated perfect
set model [Mi2]). Itiseasily seenthat atotally heterogeneousset of reals cannot contain
a Cantor set, and hence its complement must have cardinality ¢. In the model under
consideration, if M C [0, 1] isany set such that both M and [0, 1] \ M have cardinality ¢,
then let f: M — [0, 1] be a continuous surjection. Choose M’ C M such that f[M’] = M.
Thenf[{x € M’ : f(X) # x}] contains M \ M’ and hence has cardinality ¢. In particular,
M is not totally heterogeneous.

For the remainder of this section we will examine two generalizations of the notion
of an SRU for C(R) for pairsof familiesF .G C C(R). We are interested particularly in
the following subfamilies of C(R) which we will abbreviate as follows:

e C=C(R);

e Const, the class of all constant functionsf € C(R);

e C,, the class of al nowhere constant functionsf € C(R);
e Cg, theclass of all countable-to-onefunctionsf € C(R).
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DerFINITION 6.1. A function g € Cissaid to be atruncation of f € Cif gis constant
on every connected component of {x € R : f(X) Z g(x)}.

The following proposition is [BD, Theorem 8.1].

PROPOSITION 6.2. Thereexistsaset M C R such that for everyf € C; andg € Cif
g[M] C f[M] then g isatruncation of f. ]

Notice that a strong SRU M for (R,Bor.N ), N = the meager ideal, has a similar
property. If f € Cand g € C and g[M] C f[M], then by Lemma 4.12 (with x = ¥;),
the open intervals in {x € R : f(x) # g(X)} on which g is constant are dense in
{x € R:f(X) # g(x)}. We do not need to assume that f € C., however we cannot
conclude that g is a truncation of f, even if f € C.. (For example, we could have
f(x) = xfor all x, and g(x) = x for x ¢ [0, 1], g[0, 1] = the Cantor ternary function.)
Proposition 6.2 aso has the advantage of being a ZFC theorem.

DEFINITION 6.3. For the families F,G C C we say that M C R isan (F,G)-
truncation SRU if for every f € F and g € G, if g[M] C f[M] then g is a truncation of
f.AsetM CRisan (F.G)-SRU if forevery f € F andg € G, if g[M] C f[M] then
g=f.

We have the following general fact.

PROPOSITION 6.4. For everyF.G C C
(1) IfM C Risan(F,G)-SRU thenitis (F, G)-truncation SRU;
(2) 1f G C Cthenevery (F . G)-truncation SRU isan (F, G)-SRU.

ProOF. Thisis obvious since every function isits own truncation and thisis the only
truncation that could be nowhere constant. ]

Proposition 6.4 shows in particular that for G C C,, M C Risan (F,G)-SRU if
and only if it is an (F, G)-truncation SRU. Thus, for G C C, we will examine only
(F,G)-SRU's.

In the next theorem we seek, for various choices of G, the largest family F for
which there exists an (F ., G)-SRU ((F, G)-truncation SRU). The examples in (A’) -
(C) indicate that the families found in (A) - (C) are to some extent the best possible.

THEOREM 6.5.

(A) M =Risa(Const, C)-SRU.

(A) Thereisno ({f},G)-SRUiff € C\ Constand Const C G.

(B) Thereexistsa (Cc, C)-truncation SRU.

(B") Thereisno (C,, C)-truncation SRU. Moreprecisely, thereisno ({ f }, C)-truncation
SRU for every f € C, with the property that f ~1(y) is perfect for everyy € R.

(C) If R is not the union less than ¢ many meager sets then there exists a (C, G)-
truncation SRU for any G C C of cardinality lessthan c.

(C') Thereexistf.g,h € Csuchthat thereisno ({h}, {f.g})-SRU.

(D) Any strong SRU for C(R) isa (C, C,)-SRU.

(E) Thereexistsan ({f}, Cn)-SRU for everyf € C.
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PROOF OF (A). Obvious.

PROOF OF (A’). Letf € C\ Constand M C R. If M = () take an arbitrary g €
Const C G.If M #ZPandxy € M let g € G be aconstant function equal to f (xo). Then
g # f but g[M] C f[M].

PrOOF OF (B). Thisis Proposition 6.2.

PrROOF OF (B'). Letf € C, be such that f=1(y) is perfect for every y € R. For
example, if F = (fo. f1):[0,1] — [0, 1]? is a classical Peano curve (see e.g., [CLO,
Example 4.3.8]) then we can define f by f(n+r) = n+ fo(r) for every integer n and
r € [0,1).

LetM C R. To seethat it isnot an ({ f }, C)-truncation SRU we will find g € C with
g[M] C f[M] which is not atruncation of f. We have two casesto consider.

Case l. f[M] isnotdenseinR.

Take ¢ < d such that (c,d) N f[M] = 0. Since f[R] = R there exist a < b such that
(a.b) € f~*((c.d)). So, (a.b) MM = (). Choose:ap < bg suchthat a < ag < bp < band
define g on [ag, bp] to be nonconstant and such that g(x) # f(x) for every x € [ag, bo].
Put g(x) = f(x) for every x € R\ (a, b) and extend it to acontinuousfunction on R. Then
g isnot atruncation of f, while g[M] = f[M].

Case 2. f[M] isdensein R.

If f[M] = R it is enough to take as g an arbitrary continuous function which is not a
truncation of f. So, without loss of generality we can assumethat f[M] # R.

Choose yp € R\ f[M] and let P = f~1(yp). So, P is perfect, nowhere dense and
PN M = (. Choose a countable dense subset D of f[M] and notice the following fact.
For every dp.d; € D, dy < dj, there exists a continuous function g

(*) from R onto [do,d;] such that g[R \ P] C D C f[M] and g is not

constant on any open interval intersecting P.

To seeit, let h:[0,1] — [0, 1] be a classical Cantor function, i.e., h is nondecreasing,
constant on any component of [0, 1] \ C and suchthat h[C] = [0, 1], where Cisaclassical
Cantor ternary set. (See [Ro, p. 50].) Extend h to R by putting h(x) = 0 for x < 0 and
h(x) = 1 for x > 1 and notice that h[R \ C] C Q. Let hy: R — R be a homeomorphism
such that ho[P] = C and h;:R — R be an order isomorphism such that h;[Q] = D,
h1(0) = dg and hy(1) = d;. Theng = h; o ho hg satisfies (x).

To finish the proof notice that for any function g satisfying (%) we have g[M] C
g[R\ P] € D C f[M]. Now, if g:R — [do.d1] and g":R — [d{.d}] areasin (x) and
such that [do. di] N [dj. d;] = 0 then for every x € P we have g(x) # g'(X). In particular,
either g or g’ isnot atruncation of f.

ProOOF OF (C). ChooseG C C of cardinality lessthan ¢. Since any constant function
is a truncation of any other function we can assume without loss of generality that
G N Const = ).

For g € Clet Const(g) denotesthe set of these pointsat which gislocally constant, i.e.,

Const(g) = {x €R:(Fa.beR)[a<x<b& gisconstanton (a. b)”.
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Then for every g € G the set Py = R \ Const(g) is nonempty and perfect. In particular,
it isnot aunion of less than continuum many its nowhere dense subsets.

Let {(f4. Qo) 1 o < ¢} = {(f.g) € C x G : gisnotatruncation of f}. We will
construct, by inductionon o < ¢, asetM = {m, : o < ¢} suchthat g,(m,) ¢ f,[M] for
every a < ¢. Thiswill finish the proof.

To have g,(m,) £ fo[M] wewill choose m, such that the following inductive condi-
tions are satisfied.

go(my) £ {fs(my)}, i.e, such that

(lo) My € Uy, whereU, ={x € R : fo(X) # 9. (X}

Ou(My) & {fa(my) : ¥ <}, i€, suchthat

(1a) My # Uy 952 (o).

Oa(my) € {fa(my) : ¥ > a}, i.e, such that f,(my) # g.(m,) for every o < 7. By
interchanging « and v in the last condition we obtain f,(m,) # g,(my) for every v < a.
So, it isenough to choose

(1) My £ Uyeo 5 (00 (M)
To make such a choice possible, we will also require that

(*¢) f+(9u(m,)) is nowhere densein Py for every g € G.
We will achieve this by making surethat g,(m,) ¢ S for every g € G, where

S = {y € R: () NPy is not nowhere densein Py}

Notice that each S is at most countable. So, we will guarantee (x,) by choosing
(Vo) m, £ UgeG g;l(ﬁ)-

Clearly it is enough to show that the choice of such m, is possible. So, assume that
for some o < ¢ the construction is donetill step o. We will choose m,,.

Let

Vo= U [ga(fa(m) UE (g m) U U U a2'()
V<a 9eG yes

and put T, = Uy \ V. It isenough to show that T, N Pg, # (). But g, isnot atruncation
of f4. S0, |ga[U4]| = ¢ and the set U, N Py, is nonempty and openin Py, . Since V, isa
union of less than continuum many sets, it is enough to argue that each of these setsis
nowhere densein Py, .

But sets f{l(gy(my)) arenowheredensein Pg, by (%), i.e., theinductive assumption
(IV). To finish the proof it is enough to notice that g, *(y) is nowhere densein Py, for
every y € R, which follows immediately from the definition of Py, .

PROOF OF (C'). Let h(x) = min{0,x? — 1}, g(X) = 0, and f(x) = max{h(x),x — 2}
for every x € R. Clearly f # h # g. It is enough to show that for every M C R either
f[M] C h[M] or g[M] C h[M]. But if M \ (=1,1) # () then g[M] = {0} C h[M].
OtherwiseM C (—1, 1) and f[M] = h[M].

ProoF oF (D). Apply Lemma4.12withx =R;, g e Candf € C,.
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ProoF OF (E). Letf € C. If there are a < b such that f is constant on [a, b] it is
enoughto take M = [a, b].
So, assumethat f € C, andlet {g, : @ < ¢} = Cc. Asin the proof of (C) it is enough
tofindM = {m, : a < ¢} suchthat
(le) My €Uy ={xeR:f(X) #9u(X};
(o) Mo & Unco 952 (FOMY));
(1) My # Uy<o F2 (g (my)).
But [f[U,]| = ¢, since U, # 0 and f € Cp. AlsO Uy, 05 2(F(My))| < ¢ since
|95 (f(my))] < No. Thus,

|f ’gaggl(f(rm))H <.
Moreover,

(U @m)] = U f[em)] < {om) -7 < a

<o

has cardinality < ¢. So, the set

Ua\ [ U [g2(Fmy) Ut (g (my) ]

<o
is nonempty. This finishes the proof of Theorem 6.5. ]

REMARK 6.6. ThereisnosetM C R suchthat for every f. g € C(R) (not necessarily
nowhere constant), if f[M] = g[M] thenf = g.

PROOF. Such a set M would be an SRU for C(R), so, by Theorem 5.6, M is dense and
is digoint from a Cantor set K. But then we can build distinct Cantor-like functions f
and gwith f[R \ K] = g[R \ K] (a countable set). "
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