THE IMPLICIT FUNCTION THEOREM IN THE SCALAR CASE%*
H.I. Freedman

(received February 17, 1969)

1. Introduction. The implicit function theorem has applications
at all levels of mathematics from elementary calculus (implicit different-
iation) to finding periodic solutions of systems of differential equations
([1, Chapter 14] and [4], for example).

In 1961 W.S. Loud [3] studied the case of two equations in three
unknowns. He considered only cases where up to third order derivatives
were involved and only those cases where the derivative of the solutions
at the critical point existed. Coddington and Levinson [1] consider a
specific singular case involving n equations in n + m unknowns. In
general the number of distinct critical cases involving up to third
derivatives for such a general system is not known.

In the present paper we are interested in the scalar case, i.e. one
equation involving two unknowns. We wish to discuss as completely as
possible when such an equation can be solved for one unknown in terms
of the other in some interval, considering all possibilities where the
equations start out with first or second order terms. To this end, we
will always assume that our function is as differentiable as we need in
order to resolve a particular case. However, we will not assume that
the solution we are seeking need have a derivative at the critical point
in question, nor will we restrict ourselves to derivatives of any order.

Suppose that

(1) F(x,y) = 0

is the equation in question. Without loss of generality, we may assume
that F(0,0) = 0. The problem is then to discover when equation (1)
can be solved for y as a function of x, y = ¢(x), such that

®(0) = 0, F(x,d(x)) = 0 for sufficiently small x.
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We divide the possibilities we wish to consider into seven major
cases.

2. The Non-critical Case.

Case I. This case involves the classical implicit function theorem
which we state below.

THEOREM 1. Let F(x,y) = 0, F(0,0) =0, F (0,0)X0.
Then there is a unique ¢(x), ¢(0) = 0, such that F(x,$(x)) = 0 for

sufficiently small x. Furthermore o¢(x) = - FX(O, 0) F (0,0 'x + o(x) .
Yy

For an early proof of this theorem see [2]. For a proof of the more
general vector theorem see [2] or [5].

3. The First Critical Cases.

Case II. This case is the scalar equivalent of that discussed by
Coddington and Levinson. Let F(0,0) = FX(O ,0) = Fy(O ,0) = 0.

Set y = ax and define

G(x,a = x ’F(x,ax).
By twice applying L 'Hospital's rule, we easily get that
G(0,0) = 3F_(0,0)d® + F_ (0,0)a + 2F__(0,0)
yy Xy XX
and
G (0,0 =F (0,0)a+F_ (0,0).
a Yy xy

Let a be a real root of G(0,a) = 0 if such exists. Then the basic
assumption of this case is that G (O,ao) X 0. Then, by Theorem 1, we
[°3

can solve for a as a function of x,

_ _ -1
a = a Gx(O,ao)Ga(O,ao) x + ox)

for sufficiently small x. This then gives
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y = o(x) = ax - GX(O,on)Ga(O,aO)_lxz + o(x?) .

We remark that if Fyy(o’ 0) X 0 and no real a exists, then
we cannot solve for y = ¢(x), ¢(0) = 0. If F Y(0,0) = 0, but
Yy
F_(0,0) X 0, thenreal o« always exist. F (0,0) = F (0,0) = 0
Xy o Yy Xy

is discussed in other cases.

Case III. We use the results of Case II to resolve the following
situation. Let F(0,0) = F (0,0) =0, F (0,0) X0, F (0,0) 50,
y X Yy

F (0,0)F (0,0)< 0. Let x = t* and define
x vy
)
E(Z (t,y) = F(tz,y) .

Then since Et(Z}(t,y) = 2F (¢, y)t, E%0,0) = E#(0,0) = E;Z)(O,O) =0.

Hence let y = 6t and define
D@, g = 2% (¢, 6t) .

(2) - 1 (2) 2 (2) 1
Then D{#)(0, 0) FE]S (0,0)6% + (0,000 + 1E,(0,0)
=1iF (0,0)6> + F _(0,0), whereas D!?)(0,0) = F_ (0,0). Hence
vy X 6 yy

if 00 is a real solution of D(Z)(O, 0) = 0, we can take for 60 either

2F (0,0)
X

1/2
of + W) which is real, and for either choice

De(z) (0, 90) X 0. Hence by Theorem 1 we can solve De(z)(t, 0) =0

for 6 as a function of t,

- _ pta) (2) -1
0=0 - D™(0,8)D0,0)"t + o),

and get two solutions
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—

- - z () (2) -1
y = o(x) = eox Dt (0, eO)De (o, eo) x + o(x)

valid for sufficiently small positive x.

We remark that if FX(O, O)Fyy(O, 0) > 0, then letting x = -t

will give similar results valid for sufficiently small negative x.

4. Critical Cases where F(x,y) begins with a Linear Term.

Throughout the rest of this paper we will denote by F b q the
Xy

partial derivative 8p+q F/ 0% Byq .

Case IV. In order to discuss fully the situation when F(x,y) = Ax +
higher order terms, we must first discuss the equivalent of Case II when
th
F(x,y) begins with n = order terms.

Let F(0,0) = F (0,0) =0, ptq =1,2,...,n-1. Further
xyq
let not all of F (0,0) be zero when p+q = n, n > 3. Let
Xy
y = ax and define

H(x,a) = x-nF(x,o:x) .

Then by repeated application of L'Hospital's rule, we get that

' n
H(0,a) = %,('i—)‘ - o+ 8_) F(x,vy)

oy ox x=0
y=o
H(0,q) = dH(0, ) .
a da
Let a be a real root of H(0,a) = 0 if such exists and assume that

Ha(O , ao) 4 0. Then under the above hypotheses we can solve

H(x,a) = 0 for o as a function of x (with as many solutions as there
are distinct Go which satisfy the above),
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- _ -1
@ = a Hx(O’ao)Ha(O ,ao) x + o(x)

and hence get

2

y = o(x) = ax - Hx(O,ao)Ha(O,ao)_lx + o(x%) .

Case V. In this case we establish criteria under which
y = ¢(x), ¢(0) = 0, can and cannot be found.

(i) Let F(0,0) = F (0,0) = ... =F  (0,0) =0, F (0,0) %0,
y n-1 b4
F n(0,0) ¥ 0. Further, let either n be odd or if n is even, then
Yy
F (0,0) F (0,0)< 0. Let x = t" and define

y

™, y) = R, y)

Then E™(0,0) = ™ (0,0) = 0 if p+q=1,2,...,n-1. Further,
ty

E(n) (0,0) =0 if p+gq=n and p X n or q ¥ n, but

tpyq
E(E)(0,0) =n!F_(0,0) X 0 and E(::)(0,0) =F (0,0) x 0. Since

t y y
E(n)(t,y) satisfies the first hypotheses of Case IV, we let y = 6t and
define

D(n)(t, 8) = t_nE(n)(t, ot) .
(n) 1 n . .
Then D7'(0,6) = = F (0,0)6 + F _(0,0). Henceif 6 1is a real
n! n x o
(n) Y

root of D" °(0,6) = 0, then
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-n!F (0, 0) n
o = | —x "
o F (0,0)
n
y

if n is odd and plus or minus this value if n is even. Further,
= 0 for 6 as a function

Dgl)(O , 60) ¥ 0. Hence we can solve D(n)(t, 0) =
of t (one solution if n is odd and two if n is even),

o, - Din)(o,eo)D(n)(o, 90)_11: + o(t)

0 =
0

and get that

< Din)(O,GO)D(n)(O, (90)'1><2/n + o(xz/n)

for sufficiently small (positive only if n is even) x.

We note that if FX(O, 0)F 1’1(0, 0) > 0, setting x = - " gives
y
analogous results for sufficiently small negative x only.

(ii) We now state and prove a theorem which takes care of the
other possibility under this case.
THEOREM 2. Let F(0,0) = 0, FX(O,O) X0, F n(0,0) =0,
y

n =1,2,... . Then there does not exista &(x), #(0) = 0, such that
F(x,$(x)) = 0 for sufficiently small x, provided that F(x,y) is
holomorphic in a neighbourhood of the origin.

Proof. Define U(x,y) = x 'F(x,y). Expanding F(x,y) ina

Taylor series in y we get

k
w F o (x0)y
F(x,y) = Z __Y_k'____
k=0 :
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Then since F k(0,0) = 0 for all k, F(0,y) = 0. Hence

Yy
U(0,y) = lim x 'F(x,y) = lm F (x,y) = F (0,y), and so
X =0 x>0 = x

U(0,0) = FX(O,O) X 0. But F(x,y) = 0 can be solved for y = ¢(x),

6(0) = 0 only if U(x,y) = 0 can be solved for x, y = {(x), with
$(0) = 0, which clearly cannot happen since U(0,0) ¥ 0.

5. Critical Cases where F(x,y) begins with Quadratic Terms.
We have already looked at such a situation in Case II. The situation
we now wish to look at can be broken up into two cases, one occurring

when the only quadratic term is xz, and the other when G (0 ,ao) = 0.
a

Case VI. This case can be split into three parts, which together

exhaust all possibilities of the type considered when F(x,y) = Ax® +
higher order terms.

(i) Let F(0,0) = F (0,0) = F (0,0) = F (0,0) =F (0,0) =0,
X y Xy yy

FXX(O, 0) ¥ 0. Further, let there exist n > 3 such that

F (0,00 =0, q=1,2,...,n- 1,

F n(0,0) X0, F q(0,0) = 0 for every q < in.

y Xy
in
Let x = t*7 and define
in

Alt,y) = F(t2,y) .

Let y = ot and define
-n
M(t,a) =t "A(t, at) .

Consider each term in F(x,y) of the form xpyq, ptq >2,
and if p+q =2, then p =2, y = 0, and there are no terms such
that p =1 if g < #n. The corresponding term of A(t,y) has the

’

1 -
form ol t(zpn)+q n

1
form t2P" yq and hence the corresponding term of M(t,a) has the

If p+q =2, then the exponentof t is 0.
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Now let p +q > 3. There are no exponents of t less than zero
since %pn+q—n:%(p-2)n+q< 0, p+q>3, onlyif p =20,1.

Butfor p = 0, Yp-2)n+q< 0, onlyif q<n, andif p =1,

3(p-2n+q< 0 onlyif q < #n, and there are no such terms by
hypothesis.

We now look for those terms for which the exponent of t is zero.

The term with p = 2, y = 0 is such a term. In general X(p-2)n + q =0

if and only if p =0, q=mn; p=1, q=3%n; p=2, q=0. Theterm

with p =1, q = in is allowed only when n is even. For all other non-

zero terms the exponent of t is positive.

We now consider separately the cases that n is odd and n is
even.

(a) n odd. It is easy to see that M(0,a)= 1 F (O,O)ozrl +LiF (0,0).
—_— n! n 27 xx
Yy
Hence M(0,a) has the real root

1
-n'F (0,0) /2
_ XX
% 2F (0,0) ’
n
y
. _ n-1
and since Ma(O,aO) = _—(n-1)'. F n(0,0)(1/O X 0, we can solve
M(t,a) = 0 for « as a function of t,

- _ -1
a=a Mt(O,ao)Ma(O,ao) t + oft)

and get for sufficiently small x that

2/n /n /n

y = é(x) = a x - Mt((),ozo)Ma/(O,ozo)x4 + o(x4 ).

(b) n _even. Here we get
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MO, = 2 F (0,00 + —— F , (0,00 + 1F_(0,0)
Y] nto (3n)! in' o 2hxx' T
y xy
1 n-1 L(n-2)
- 0,0 S 0,0)? )
Ma(O,ar) a Fyn( o + (%(n- )t nyén( )

N[

Viewing M(0,a) = 0 as a quadratic equation in « ? we can state that if

there are no real roots to this quadratic equation, ¢(x), ¢(0) = 0 does

not exist. Suppose now that ﬁo is such a root. Then if M (O,ﬁi/n) =0,
a

and if either %n is odd, or %n is even and [30 > 0, letting

= [3§/n, we see that we can solve M(t,a) = 0 for o as a function
of t and hence for y = ¢ (x) as when n is odd. If in is even and
< 0 (for all choices of ﬁo) then no such solution exists. If

2/n
o
then for M(t,a) any of Cases I to VII can occur (where Case VI, (ii) and
(iii), and Case VII are discussed below), and this analysis must be
carried out before we know whether the required solution exists or not.

M (0,p ) = 0, and either in is odd or in is even and B, > 0,
o

(ii) Let F(0,0) = F (0,0) = F (0,0) =F (0,0) =F (0,0) =0,
x y xy Yy
FXX(O,O) ¥ 0. Further, let there exist n > 3 such that F (0,0) =0,

xy
q=1,2,...,n-2, F n_'1(0,0)5&0, F (0,0) =0, g< 2(n-1).
Xy Yq
Let x = t:n-1 and define
n-1
B(t,y) = F(t ,y) .
Let y = at and define

N(t,a) = t'z(n'“B(t,at) .

The corresponding term of xpyq in B(t,y) has the form
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-1
tp(n )yq . The corresponding term in N(t,a) has the form
a/qtp(n—1)+q—2(n—1)

p=0, g>2(n-1).

For the term p = 2, q = 0, the exponentof t is 0.

, where, if p+q =2, then p =2, q =0,

For

and if

p tq > 3 we wish to show that the exponent of t is not less than zero.
=n-1,

(p-2)n-1) +q< 0 onlyif p =0, g< 2(n-1) or p =1,
and by hypothesis there are no such terms of this type.

The exponent of t is zero only when p = 0, q = 2(n- 1);
1, gq=mn-1; p =2, q = 0. By hypothesis the term involving
0, q = 2(n- 1) does not occur (this is taken care of by Case VI

p
p =
(i)). All other terms have involved t to a positive exponent.

From this we get that

N(0,a) =

Henc.. if either n is even or if n is odd and FXX(O,O)F A 1(0, 0) < 0,

xy
we can solve N(t,a) = 0 for « as a function of t,
@=a - N(0,a )N (0,0 )7 + oft)
[¢) t o « o
and get
1 -1 -1 2 -1
y = o(x) = ax /ln-1) N (0,0 )N(0,a ) "x /(n-1) +
t o « o

o]

of

for sufficiently small x (positive x only if n is odd), where a

real root of N(0,a) = 0.

Note that if n is odd, there are two solutions.
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. . _.n
If n is odd and FXX(O,O)F 1’1_1(0,0) > 0, letting x = -t

Xy
will give similar results for sufficiently small negative x.

(iii) THEOREM 3. Let F(0,0) = F (0,0) = F (0,0)
- x y
=F_ (0,0)=F (0,0)=0, F (0,0) %0, F (0,0) =F (0,0) =0,
Xy vy XX n n

y Xy
n=2,3,.... Then there does not exist &(x), $(0) = 0, such that F(x, ¢(x)) = 0
for sufficiently small x, providing that F(x,y) is holomorphic near the origin

Proof. The proof is similar to the proof of Theorem 2, letting

U(x,y) = x ¢F(x, y) .

Case VIL Let F(0,0) = F_(0,0) = Fy(0,0) =0, F (0,0) %0
Yy
(if Fyy(0,0) = 0, then we have Case II if ny(0,0) X 0, Case VI if
F_(0,0) =0 but F__(0,0) X 0, and Case IV if all quadratic terms
xy XX
are zero). Further, let the a of Case II exist and if G(x,a) is as
defined in Case II, let GQ(O,aO) = 0. Thenfor G(x,e) any of Cases I

to VII may occur and this analysis must be carried out before we know
whether the required solution exists or not.

6. Discussion. The preceding analysis takes care of all cases
where F(x,y) can be written as

F(x,y) = Ax + By + Cx% + Dxy + Ey2 + higher order terms.

It is hoped that this will give some hints as to possible critical cases for
the implicit function theorem for more general systems.
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