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High-frequency photons travelling in plasma exhibit a linear polarizability that can
influence the dispersion of linear plasma waves. We present a detailed calculation
of this effect for Langmuir waves as a characteristic example. Two alternative
formulations are given. In the first formulation, we calculate the modified dispersion
of Langmuir waves by solving the governing equations for the electron fluid, where
the photon contribution enters as a ponderomotive force. In the second formulation,
we provide a derivation based on the photon polarizability. Then, the calculation of
ponderomotive forces is not needed, and the result is more general.
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1. Introduction

As we showed recently (Ruiz & Dodin 2016), high-frequency photons travelling
in plasma exhibit a well-defined linear polarizability. Hence, they contribute to the
linear dielectric tensor just like any other plasma particles, such as electrons and ions.
This implies that high-frequency photons can influence the dispersion of linear plasma
waves. Here, we present a detailed calculation of this effect for Langmuir waves (LW).

Specifically, we develop a theory linear with respect to the LW amplitude ε. The
photon density is assumed O(ε0), and perturbations to the photon density are assumed
O(ε1). Hence, the LW can be understood as the linear modulational dynamics of the
electromagnetic (EM) radiation. Two alternative formulations of this dynamics are
given. In the first formulation (§ 2), we calculate the LW dispersion by solving the
governing equations for the electron fluid, where the photon contribution enters as a
ponderomotive force. A related calculation was also reported previously (Bingham,
Mendonça & Dawson 1997; Mendonça 2000), but it contains omissions that warrant
a reconsideration. In the second formulation (§ 3), we invoke the photon-polarizability
concept. Then, the theory becomes linear, ponderomotive forces do not need to be
considered, and, consequently, more general results are obtained.

Although we focus on LW, the calculation presented here is only a characteristic
example. The concept of the photon (plasmon, phonon, etc.) polarizability can be
useful also in more general settings. For example, effects related to those considered
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here also apply to waves in solid-state media (Dylov & Fleischer 2008). We leave the
consideration of such specific examples (other than LW) to future publications. The
present paper aims only to illustrate the basic idea.

2. Approach based on partial-differential equations

In this section, we present a formulation that is based on the partial-differential
equations (PDE) governing the plasma motion. We assume that, to the zeroth order
in ε, the plasma (including the photon content) is stationary and homogeneous. We
also assume that the ions are motionless, that the electrons can be modelled as a
fluid, and that the O(ε0) velocity of the electron fluid is zero. We also assume that the
electrons are collisionless and non-magnetized. Hence, the wave dynamics is described
as follows.

Consider the electron continuity equation

∂tn+∇ · (nv)= 0, (2.1)

where n is the electron density, and v is the electron flow velocity. After the
linearization, equation (2.1) becomes

∂tñ+ n0∇ · ṽ = 0. (2.2)

(We use subscript 0 to denote O(ε0) quantities and tilde to denote O(ε1) quantities.)
The velocity ṽ is found from the electron momentum equation

mn(∂t + v · ∇)v = neE−∇P+ η, (2.3)

where m and e< 0 are the electron mass and charge, P is the pressure, and η is the
ponderomotive force density (averaged over the EM-field oscillations yet not over the
LW oscillations). After the linearization, equation (2.3) becomes

∂tṽ =
e
m

Ẽ−
∇P̃
mn0
+

η̃

mn0
. (2.4)

The electron gas is considered adiabatic, so P̃= 3mv2
T ñ, where the constant vT is the

unperturbed thermal speed of electrons. (See, e.g. appendix B.2 in Dodin, Geyko &
Fisch (2009), particularly (B21) and the references cited therein.) Hence, we obtain

∂tṽ =
e
m

Ẽ− 3v2
T
∇ñ
n0
+

η̃

mn0
. (2.5)

Substituting this into (2.2) gives ∂2
t ñ=−n0∇ · ∂tṽ, or

∂2
t ñ=−

en0

m
∇ · Ẽ+ 3v2

T∇
2ñ−
∇ · η̃

m
. (2.6)

Using Gauss’s law, ∇ · Ẽ= 4πeñ, we then obtain

∂2
t ñ+ω2

p,0ñ− 3v2
T∇

2ñ=−
∇ · η̃

m
, (2.7)
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where ω2
p
.
= (4πne2/m)1/2. (We use the symbol .

= to denote definitions.) Assume
ñ = Re (nce−iΩt+iK·x). A similar notation will also be assumed for other ‘tilded’
quantities; e.g. η̃ is real and η̃c is complex. Then,

[Ω2
−Ω2

0 (K)]ñc = iK · η̃c/m, (2.8)

where Ω0(K) = (ω2
p,0 + 3K2v2

T)
1/2 is the LW frequency absent photons. Note that

KvT�Ω is implied because otherwise electrons cannot be considered adiabatic but
rather must be described kinetically (Stix 1992); hence,

Ω0(K)≈ωp,0(1+ 3K2v2
T/2ω

2
p,0). (2.9)

In the case of broad-band EM radiation, the average η equals the sum of the
ponderomotive forces produced by its individual quasimonochromatic constituents,
i.e. travelling geometrical-optics (GO) waves with well-defined wave vectors k and
the corresponding frequencies

ω= (ω2
p + c2k2)1/2. (2.10)

(In order to distinguish frequencies and wave vectors of EM waves from those of LW,
we denote the former as ω and k. As a reminder, the frequency and wave vector of the
LW are denoted as Ω and K.) Each such EM wave produces a per-electron average
force −∇Φk, where Φk= e2

|Ec|
2/(4mω2) is the ponderomotive potential, and Ec is the

complex amplitude of the EM-wave electric field E, which may have any polarization
(Gaponov & Miller 1958). (More specifically, we adopt E = Re (Eceiθ), where θ is
the wave rapid phase. Accordingly, ω .

=−∂tθ and k .
=∇θ .) Hence, the average force

density is ηk =−n∇Φk. Let us also express this in terms of the wave action density
I = E/ω (i.e. the photon density times h̄), where (Dodin & Fisch 2012)

E =
1

16πω
E∗c · ∂ω[ω

2ε(ω, k)] ·Ec (2.11)

is the wave energy density, and ε is the dielectric tensor. Using ε(ω, k)= 1−ω2
p/ω

2,
we obtain E = |Ec|

2/(8π). Then, irrespective of polarization, the average force density
is given by the following expression:

ηk =−
ω2

p

2
∇

(
I
ω

)
. (2.12)

As a side remark, note that the force ηk induced by a modulation of an EM
wave on a plasma is qualitatively different from the force induced by a modulation
of a matter wave on a plasma. In the electrostatic limit considered here, a matter
wave causes an electrostatic force that is entirely determined by the electron density
modulation through Gauss’s law. In contrast, ηk is determined by the modulation of
both the photon density (I/h̄) and photon energy (h̄ω), so it can be non-zero even
when the photon density is homogeneous. Considering that the photon Hamiltonian,
or frequency (2.10), is very similar to the Hamiltonian of a relativistic electron,
this difference may seem surprising; one could expect a one-to-one correspondence
between electrostatic and ponderomotive forces. However, the correspondence is
limited to free particles only. An electron has a constant rest mass and is coupled
to the environment through the electrostatic potential. In contrast, a photon has a
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variable rest mass determined by ωp and is coupled to the environment through
modulations of this mass. Even in the limit ωp� kc, the interaction Hamiltonian of
a photon remains k-dependent, so it cannot be represented as a potential energy in
principle. This explains the difference between the corresponding forces. (As another
side remark, this also explains the non-zero term (A 3) in the photon ponderomotive
potential (A 2), which has no analogue in the electron ponderomotive potential, at
least in the electrostatic gauge.)

The force density η produced by broad-band radiation can be written as η=
∫

ηk d3k,
where I is replaced with the phase-space action density F summed over all
polarization states. (Accordingly, the result holds for polarized and depolarized
radiation equally. Also note that F/h̄ can be understood as the phase-space photon
probability distribution (Dodin 2014a).) This gives

η(t, x)=−
ω2

p

2
∇

∫
F(t, x, k)
ω(t, x, k)

d3k. (2.13)

Equation (2.13) is in agreement with the formula reported previously (Bingham et al.
1997; Mendonça 2000), at least up to a factor of two. However, in this work, we
report a different linearization, which is as follows:

η̃c =−
i
2

Kω2
p,0

∫ (
F̃c

ω0
−
ω̃cF0

ω2
0

)
d3k. (2.14)

Here, ω0
.
= (ω2

p,0 + c2k2)1/2 is the unperturbed frequency of the EM wave, and

ω̃c =
ω2

p,0

2ω0

ñc

n0
(2.15)

is the perturbation on the EM-wave frequency due to the plasma density variations
caused by the LW. The second term under the integral in (2.14) is specific to
the photon–plasma interaction and has no direct analogue in the electron–plasma
interaction for reasons discussed in the previous paragraph.

The perturbation of the photon distribution F̃c is obtained from the wave kinetic
equation

∂tF+ ∂kω · ∇F− ∂xω · ∇kF= 0, (2.16)

where ω = ω(t, x, k) and ∂kω is understood as the group velocity. Since the
unperturbed plasma is considered homogeneous, linearizing equation (2.16) gives

F̃c =−
ω̃cK · ∇kF0

Ω −K · v∗
, (2.17)

where v∗
.
= ck/ω0 is the unperturbed group velocity. Inserting equations (2.15)

and (2.17) into (2.14), we obtain

η̃c =
i
4

(
ñc

n0

)
Kω4

p,0Q(Ω,K), (2.18)
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where we introduced the following function:

Q(Ω,K) .=
∫ [

K · ∇kF0(k)
(Ω −K · v∗)ω2

0(k)
+

F0(k)
ω3

0(k)

]
d3k. (2.19)

Note that the second term in the brackets is due to the second term in (2.14).
By substituting (2.18) into (2.8), we obtain

Ω2
−Ω2

0 (K)=−
ω4

p,0K2

4mn0
Q(Ω,K). (2.20)

Assuming that Ω is close to Ω0 ≈ ωp,0, we can also simplify the left-hand side here
as follows:

Ω2
−Ω2

0 (K)≈ 2ωp,0[Ω −Ω0(K)]. (2.21)

Then, the dispersion relation becomes

Ω ≈Ω0(K)−
ω3

p,0K2

8mn0
Q(Ω,K). (2.22)

The second term on the right-hand side is the modification of the LW dispersion
relation caused by the photon gas. Equation (2.22) differs from the corresponding
relation reported previously (Bingham et al. 1997; Mendonça 2000) in the following
aspects: (a) the order-one numerical coefficient in front of the integral is different, and
most importantly, the second term in the integrand in our expression (2.19) for Q is
new. Notably, such terms are missed also in the general method reported by Tsytovich
(1970) for calculating the nonlinear plasma dispersion. The wave-scattering paradigm
that underlies this method assumes that the interaction between each pair of waves
can be modelled as instantaneous, so the effect of the adiabatic frequency shift ω−ω0
cannot be captured.

In order to estimate the photon contribution, suppose for clarity that ω ∼ kc and
k∼K. (Under the assumptions adopted in the present section, this regime is accessible
only marginally, but a more general theory given in § 3 leads to similar estimates.)
Then, the ratio of the two terms in the right-hand side of (2.22) is roughly

ω3
p,0K2

mn0Ω0
Q∼

(
eEc

mcω

)2

≡ a2, (2.23)

where we assumed Q ∼ ω−3
∫

F0 d3k ∼ I/ω3
∼ |Ec|

2/(8πω4). Note that a is the
amplitude of the EM-driven momentum oscillations in units mc. Thus, in the
non-relativistic limit assumed here, one has a � 1, so the photon contribution is
small. Nevertheless, photons can have an important effect on the LW stability. For
example, when resonant photons are present, the integrand in (2.19) has a pole on the
real axis, and the integral must be taken along the Landau contour (Stix 1992). Then,
Ω is complex, which signifies dissipation (positive or negative) of LW on photons.
This effect is known as photon Landau damping (Bingham et al. 1997; Mendonça
2000) and has been demonstrated experimentally, albeit in a solid-state medium rather
than plasma (Dylov & Fleischer 2008). Also note that LW are considered here only
as a simple example, and the effect of photons on the dispersion of other waves can
be more substantial.
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3. Polarizability-based approach
Although the calculations of the ponderomotive forces are relatively straightforward

in the situation considered in this paper, the problem can be much harder when
Φk is velocity-dependent, i.e. when kinetic effects are essential (Dodin & Fisch
2008a,b; Dodin 2014b). Thus, it would be advantageous to develop a formulation
of the modulational dynamics that avoids this step altogether. Below, we propose
such formulation that utilizes the photon-polarizability concept (Ruiz & Dodin 2016).
Within this approach, ponderomotive forces do not need to be considered, and a more
general dispersion relation is obtained.

3.1. General theory
The dispersion relation of electrostatic oscillations in plasma with dielectric tensor ε
is given by

eK · ε(Ω,K) · eK = 0, (3.1)

where eK
.
= K/K is the unit vector along the LW wave vector K and Ω is the LW

frequency. Consider a plasma whose dielectric tensor is some ε0 plus the contribution
from the photon gas. The latter contribution is the photon susceptibility, which can be
written as follows:

χph(Ω,K)= 4π

∫
αph(Ω,K, k)fph(k) d3k. (3.2)

Here, fph is the unperturbed photon distribution, and αph is the polarizability of a single
photon. As shown previously (Ruiz & Dodin 2016),

αph =
h̄e2K2Ξ

4m2ω3
0

eKeK, (3.3)

where Ξ is a dimensionless coefficient given by

Ξ
.
=

Ω2
− c2K2

(Ω −K · v∗)2 − (Ω2 − c2K2)2/4ω2
0(k)

, (3.4)

or, equivalently,

Ξ =−
∑
σ=±1

σω0(k)
Rσ (Ω,K, k)

, (3.5)

Rσ (Ω,K, k) .=Ω −K · v∗(k)+ σ
Ω2
− c2K2

2ω0(k)
. (3.6)

Thus, equation (3.1) can be expressed as follows:

ε0(Ω,K)+ χph(Ω,K)= 0. (3.7)

Here, ε0
.
= eK · ε0(Ω,K) · eK and χph(Ω,K) .= eK · χph(Ω,K) · eK or, explicitly,

χph(Ω,K)=−
ω2

p,0K2

4mn0

∑
σ=±1

∫
σF0(k)

ω2
0(k)Rσ (Ω,K, k)

d3k, (3.8)
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where F0
.
= h̄fph is the photon action density, which is a classical quantity. Accordingly,

equation (3.7) becomes

ε0(Ω,K)−
ω2

p,0K2

4mn0

∑
σ=±1

∫
σF0(k)

ω2
0(k)Rσ (Ω,K, k)

d3k= 0. (3.9)

Compared to (2.22) that was obtained within a PDE-based approach, equation (3.9)
is more general. It allows for k ∼ K and does not assume any specific model
of the background plasma; i.e. no assumptions regarding ε0 are made. Moreover,
the derivation applies as is to the case where the background plasma is weakly
non-stationary and (or) weakly inhomogeneous. (For more details, see Ruiz &
Dodin (2016).) Also importantly, the same approach is readily extended to describe
modulational dynamics of other waves too, as will be reported separately.

3.2. Small-K limit
Finally, let us show how (3.9) reduces to (2.22) under the additional assumptions
adopted in § 2. First, assume the GO approximation for photons, namely, K� k. This
implies (Dodin & Fisch 2014; Ruiz & Dodin 2016)

Ξ(Ω,K, k)≈
Ω2
− c2K2

(Ω −K · v∗)2
. (3.10)

Hence, the photon susceptibility becomes

χph(Ω,K)=
ω2

p,0K2

4mn0

∫
Ω2
− c2K2

(Ω −K · v∗)2ω3
0(k)

F0(k) d3k. (3.11)

As can be checked by a direct calculation,

K ·
∂

∂k

[
1

(Ω −K · v∗)ω2
0

]
=

c2K2
−Ω2

(Ω −K · v∗)2ω3
0
+

1
ω3

0
. (3.12)

(This non-intuitive step can be avoided as explained in appendix.) Thus, one can also
express χph equivalently as follows:

χph(Ω,K)=
ω2

p,0K2

4mn0
Q(Ω,K), (3.13)

where Q is given by (2.19). Second, assume that ions are motionless and electrons
have a non-zero yet small enough thermal speed vT�Ω/K; then (Stix 1992),

ε0(Ω,K)= 1−
ω2

p,0

Ω2

(
1+

3K2v2
T

ω2
p,0

)
, (3.14)

and Ω is close to the unperturbed linear frequency Ω0 (2.9). This can be simplified
to ε0 ≈ 2[Ω −Ω0(K)]/ωp,0. Hence, equation (3.7) immediately leads to (2.22).
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4. Conclusions
In summary, we calculated the influence of the photon polarizability on the

dispersion of linear Langmuir waves in a collisionless non-magnetized electron
plasma. Two alternative formulations are given here. In the first formulation, we
calculate the Langmuir wave dispersion by solving the equations of motion for the
electron fluid, where the photon contribution enters as a ponderomotive force. A
related calculation was reported previously (Bingham et al. 1997; Mendonça 2000),
but it contains omissions, which are corrected in the present work. In the second
formulation, we explicitly invoke the photon-polarizability concept (Ruiz & Dodin
2016). Then, the theory becomes linear, ponderomotive forces do not need to be
considered, and consequently, more general results are obtained.

Although we focus on LW, the calculation presented here is only a characteristic
example. The concept of the photon (plasmon, phonon, etc.) polarizability is of
broader generality and can help calculate the modification of the dispersion relation
also of other waves, including waves in media other than plasma. We leave the
consideration of specific examples to future publications.
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Appendix. Variational approach
Here, we present an even more straightforward derivation of the GO dispersion

relation (2.22) that does not involve the non-intuitive step of using (3.12). Instead of
invoking the photon-polarizability concept, we start directly with the LW Lagrangian
density (Ruiz & Dodin 2016):

L= ε0(Ω,K)
|Ẽc|

2

16π
−

∫
Φphfph d3k. (A 1)

Here, the first term is the Lagrangian density of LW absent photons (Dodin 2014b),
the second one is the photon contribution, and Φph is the LW-produced ponderomotive
potential of a photon. Let us use the GO approximation of Φph that was derived in
Ruiz & Dodin (2016), Dodin & Fisch (2014):

h̄−1Φph = 〈ω−ω0〉 +
K
4
·
∂

∂k

(
|ω̃c|

2

Ω −K · v∗

)
, (A 2)

where the angular brackets denote averaging over time. As seen from (2.10),

〈ω−ω0〉 =−
ω4

p,0

16ω3
0

|ñc|
2

n2
0
. (A 3)

Also, from Gauss’s law, ñc = iK · Ẽc/(4πe), so

|ñc|
2

n2
0
=

K2
|Ẽc|

2

16π2n2
0e2
=
|Ẽc|

2

16π

4K2

mn0ω
2
p,0
, (A 4)
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where we used that the electrostatic field Ẽc is parallel to K. This gives

h̄−1Φph =
ω2

p,0K2

4mn0

{
−

1
ω3

0
+K ·

∂

∂k

[
1

(Ω −K · v∗)ω2
0

]}
, (A 5)

where we used (2.15). By substituting this result into (A 1) and integrating by parts,
one obtains

L= ε(Ω,K)
|Ẽc|

2

16π
, (A 6)

where ε is given by

ε(Ω,K) .= ε0(Ω,K)+
ω2

p,0K2

4mn0
Q(Ω,K), (A 7)

and Q is given by (2.19). The action integral corresponding to the Lagrangian density
(A 6) can be considered as a functional of A .

= |Ẽc|
2 and the LW phase Θ:

S=
∫

L(A,−∂tΘ︸ ︷︷ ︸
Ω

, ∇Θ︸︷︷︸
K

) dt d3x. (A 8)

The dispersion relation is obtained from δS/δA= 0. This gives ε(Ω, K)= 0, so one
is again led to (2.22). Also notably, if ε depends on (t, x), the amplitude equation
(action conservation theorem) is obtained from δS/δΘ = 0; namely,

∂tI +∇ · (VgI)= 0. (A 9)

Here, I = (∂Ωε)|Ẽc|
2/(16π) is the LW wave action density, Vg

.
=−(∂Kε)/(∂Ωε) is the

LW group velocity, Ω is found from the dispersion relation, and the wave vector is
treated as a field; i.e. K=K(t, x) (Dodin 2014a; Tracy et al. 2014).

Although this variational formalism does not capture dissipation (which is reflected
in the conservative form of (A 9)), it can be extended to dissipative processes as
described in Dodin, Zhmoginov & Ruiz (2016). In particular, the dispersion relation
derived from the above variational formalism is valid for complex frequencies too
provided that the integral in the expression (2.19) for Q is taken using the Landau
rule.
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