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1. A positive quadratic form f(x) = ^Jltj=-Laijxixj (% = % ) , of deter-
minant \\ai}\\ = D and minimum M for integral x ^ 0, is said to be extreme
if the ratio M/D1/11 is a (local) maximum for small variations in the coef-
ficients atj.

Minkowski [3] has given a criterion for extreme forms in terms of a
fundamental region (polyhedral cone) in the coefficient space. This criterion,
however, involves a complete knowledge of the edges of the region and is
therefore of only theoretical value.

Voronoi [4] has given the only practical criterion in:

THEOREM 1. A positive quadratic form is extreme if and only if it is perfect
and eutactic.

I have recently established, in [1], a criterion in terms of linear inequalities
and shown how Theorem 1 may be simply deduced from it:

THEOREM 2. If f has minima.1 vectors ± w i . ' ' '» dz ws, then it is extreme
if and only if there exists no non-trivial quadratic form g(x) = ^l)j=ibijxizi

satisfying

(1) g(tnk) ^ 0 (k = 1, • • -, s), £ AiSbit ^ 0,

where F(x) — EAiixixi is the adjoint of f(x).
I give here two further criteria, in Theorems 3 and 4. Theorem 3 amounts

to a refinement of Theorem 1 in terms of a subset of the minimal vectors.
It has the important practical consequences that, in general, (i) only a
suitable subset of the minimal vectors need be specified or even known;
and (ii) the calculations required to check that a form is eutactic are con-
siderably simplified.

Theorem 4 shows further that the eutactic condition may sometimes
be replaced by a simple condition on the group of automorphs of the form.

2. The minimal vectors of / are defined to be the integral solutions
x = ± mx, - - -, i ws of f(x) = M. Let H be any subset of the minimal
vectors, say ± mv • • -, ± mt (t ^ s). We shall say that / is i^-perfect if
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18 E. S. Barnes [2]

/ is uniquely determined by H and its minimum M; i.e. if there exists no
non-trivial quadratic form g(x) satisfying

(2) g(mk) = 0 (k = 1, • • -, t).

If F(x) = EA^XiXj is the adjoint of f{x), we shall say that / is //-eutactic
if F(x) is expressible as

(3) F(x) ~ 2 /..(»;*)» with Plc > 0 (& = 1, • • -, *).

These definitions reduce to the accepted definitions of the terms perfect
and eutactic if H is the set of all minimal vectors.

THEOREM 3. f is extreme if and only if there exists a subset H of its minimal
vectors such that f is H-perfect and H-eutactic.

Proof, (i) The necessity of the condition is contained in Voronoi's Theorem
1, with H the set of all minimal vectors.

(ii) Suppose that / is //"-perfect and if-eutactic, where H = {mlt • • -, mt}.
It then follows that a quadratic form g(x) = Zb^x^j satisfying

(4) g («* )^0 {k=l,-',t), LAtibu^0

is necessarily trivial. For, choosing pk > 0 to satisfy (3), we have
t

Au = 2 Pkmkimkj (i, j = 1, • • •, n),
£=1

since pk > 0, the relations (4) show at once that

g(mk) = 0 (k = 1, • • •, t),

whence g(x) = 0, since / is if-perfect.
It follows that, a fortiori, the inequalities (1) have no non-trivial solution.

Hence, by Theorem 2, / is extreme.

3. Let Q be the group of automorphs of /, i.e. the set of integral uni-
modular transformations T satisfying f(Tx) = f(x). If m is a minimal
vector of /, then so also is Tm; thus Q may be regarded as a permutation
group on the minimal vectors.

THEOREM 4. Suppose that there exists a subset H of the minimal vectors
of f such that f is H-perfect and G is transitive on H. Then f is extreme.

Proof. Since O is transitive on H, H is contained in a unique system of
transitivity of O, say K = {%, • • •, mt}. Since / is //-perfect, it is im-
perfect, and so the equations

n
= bH)
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no have the unique solution b{j — 0. The t X \n{n + 1) matrix (mkimki) there-
j fore has rank \n{n + 1), so that the equations

t

hm1eim1ei = Aii (i, j = 1, • • •, n)
tlC

certainly possess a solution av • • •, at. For any such solution, we have
t

i (5) F (x) = 2L4 w a:, a;, = 2 er* (w^ a;)2.

'Ct
I Let now G' be the group of automorphs of F(x), so that T e G' if and

only if T'"1 e G. G' may be interpreted as a permutation group on the
linear forms w'̂ x, wherein the set {trixx, ••• •, w â;} now forms a system of
transitivity. Hence, if G' has order g, there are precisely gjt elements of
Q' transforming any one form of this set into any other. Applying all
the transformations of G' to (5), and adding, we therefore obtain

a t

)

Thus
* 1

fc=i

; where clearly p > 0 since i7 is positive definite.
/ is therefore if-eutactic, and Theorem 3 shows now that / is extreme.

4. It is perhaps worth noting that Theorem 3 would become false if
stated in the stronger form: 'If H is a subset of the minimal vectors of /

\ such that / is //-perfect, then / is extreme if and only if it is //-eutactic.'
A simple counter-example is the extreme form Bn (in the notation of [2])

! defined by

f (*) = !**
u- i

al with the lattice of integral x satisfying
m

2><s= 0 (mod 2).
I

YS

Here D = 4, M = 2, and the n(n — 1) pairs of minimal vectors are given
by m = et ± ^ (i < /) (where et is the z'-th unit vector).

There are clearly proper subsets H for which / is //-perfect (and also
proper subsets H for which / is H-eutactic). However, suppose that / is
both //-perfect and //-eutactic, and consider any fixed pair of suffixes
i, j (i < /). H must contain at least one of ef ± et, else (2) could be satisfied
by an arbitrary choice of b^. Also, in any relation of the type
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n
r~1 I Qf* 1 — • y Of* "" ~ 2-i d (2T " I • 3 * 1 —1 , y ,CX I I1" 3 * I

1

we have po- — atj = 0; hence, since / is //-eutactic, ^ must contain neither
or both of the vectors e{ i 3̂- It follows that H contains both ei ^ eit

for all i < /, so that H is the complete set of minimal vectors.
It is not difficult to show also that the converse of Theorem 4 is false.

The form defined by

with the lattice of integral x satisfying
9

xx ~ x2 = • • • = x8 (mod 2), ^ xi = 0 (mod 4),
I

has in fact no set H of minimal vectors satisfying the conditions of Theorem
4. However, it is easily seen to be extreme (with M = 8) by applying
Theorem 3 to the subset H of minimal vectors 2et i 2e;. (1 5̂  i < / ^ 9).

5. I should like to take this opportunity of correcting an error of detail
in [1] which was pointed out to me by Mr. A. L. Duquette of Illinois. The
equation (7) of [1] implies that A~1B is symmetric, and this is not neces-
sarily true. The proof as given becomes correct if we define C = T'BT,
where T is chosen so that T'A T = I.
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