CRITERIA FOR EXTREME FORMS

E. S. BARNES

(rec. 8 Aug. 1958)

1. A positive quadratic form f(x) = 37, a;%,%; (a;=a;;), of deter-
minant ||a;|| = D and minimum M for integral  # 0, is said to be extreme
if the ratio M/DV™ is a (local) maximum for small variations in the coef-
ficients a,;.

Minkowski [3] has given a criterion for extreme forms in terms of a
fundamental region (polyhedral cone) in the coefficient space. This criterion,
however, involves a complete knowledge of the edges of the region and is
therefore of only theoretical value.

Voronoi [4] has given the only practical criterion in:

THEOREM 1. A positive quadratic form is extreme if and only if it is perfect

and eutactic.
I have recently established, in [1], a criterion in terms of linear inequalities

and shown how Theorem 1 may be simply deduced from it:

THEOREM 2. If f has minimal vectors 4 my, - - -, 4+ m,, then it z’s extreme

of and only if there exists no non-trivial quadratic form g(x) =7, b,
satisfying
(1) gmy) =20 (k=1,--5), ZAw =0,

where F(x) = XA, x,x; is the adjoint of f(x).

I give here two further criteria, in Theorems 3 and 4. Theorem 3 amounts
to a refinement of Theorem 1 in terms of a subset of the minimal vectors.
It has the important practical consequences that, in general, (i) only a
suitable subset of the minimal vectors need be specified or even known;
and (ii) the calculations required to check that a form is eutactic are con-
siderably simplified.

Theorem 4 shows further that the eutactic condition may sometimes
be replaced by a simple condition on the group of automorphs of the form.

2. The minimal vectors of f are defined to be the integral solutions
=4 my, -, + m; of f(x) = M. Let H be any subset of the minimal
vectors, say 4 my, -+, 4 m, (! = s). We shall say that f is H-perfect if
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f is uniquely determined by H and its minimum M; i.e. if there exists no
non-trivial quadratic form g(z) satisfying

(2) glm) =0 (R=1,--1).

If F(x) = XA4,;x,%, is the adjoint of f(x), we shall say that f is H-eutactic
if F(x) is expressible as

t
(3) F(z) =3 pi(m,2)? with p, >0 (k=1,---1).

k=1
These definitions reduce to the accepted definitions of the terms perfect
and eutactic if H is the set of all minimal vectors.

THEOREM 3. [ is extreme if and only if there exists a subset H of its minimal
vectors such that f is H-perfect and H-eutactic.

Proof. (i) The necessity of the condition is contained in Voronoi’s Theorem
1, with H the set of all minimal vectors.

(ii) Suppose that f is H-perfect and H-eutactic, where H = {my, * - -, m,}.
It then follows that a quadratic form g(x) = 2b,,,; satisfying

(4) gmy) =0 (k=1,-+-1), ZA,b,<0

(Y]

is necessarily trivial. For, choosing p, > 0 to satisfy (3), we have

¢
4, = Z PPy, (1, 7 =1, n),
k=1

t
24,0, :k% prg (M),

since p, > 0, the relations (4) show at once that
g(mk):() (k:]-:”':t);

whence g(x) = 0, since f is H-perfect.
It follows that, a fortiori, the inequalities (1) have no non-trivial solution.
Hence, by Theorem 2, f is extreme.

3. Let G be the group of automorphs of f, i.e. the set of integral uni-
modular transformations 7" satisfying f(Tx) = f(z). If m is a minimal
vector of /, then so also is Tm; thus @ may be regarded as a permutation
group on the minimal vectors.

THEOREM 4. Suppose that there exists a subset H of the minimal vectors
of | such that f is H-perfect and G is transitive on H. Then [ is extreme.

Proof. Since @ is transitive on H, H is contained in a unique system of
transitivity of @, say K = {m,, - - -, m,}. Since f is H-perfect, it is K-
perfect, and so the equations

2 bympmy; =0 (k=1,--+1), (b

t, ]=1

= ba‘z‘)

i
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have the unique solution b,;,=0. The ¢ X 3n(n + 1) matrix (m,,m,;) there-
fore has rank 3n(n 4 1), so that the equations

t
Zakmkimk:’-:Aii (i, 7 — 1,"', ’)’l)
k=1
certainly possess a solution oy, - - -, g,. For any such solution, we have
t

(5) F(z) = ZAyz,2; = 3 0 (m;, %)%
k=1

Let now G’ be the group of automorphs of F(x), so that T ¢ G’ if and
only if 71 e G. G’ may be interpreted as a permutation group on the
linear forms m,x, wherein the set {mz, - - -, m;x} now forms a system of
transitivity. Hence, if G’ has order g, there are precisely g/t elements of
G’ transforming any one form of this set into any other. Applying all
the transformations of G’ to (5), and adding, we therefore obtain

t

gF @) =53 (0,4 0y + - - - + o)) (myx)

! =1

Thus

14 , 1
F(z) = szl (mex)?  p = 7 (0r + -+ o)),
where clearly p > 0 since F is positive definite.
f is therefore K-eutactic, and Theorem 3 shows now that f is extreme.

4. It is perhaps worth noting that Theorem 3 would become false if
stated in the stronger form: ‘If H is a subset of the minimal vectors of f
such that f is H-perfect, then f is extreme if and only if it is H-eutactic.’
A simple counter-example is the extreme form B, (in the notation of [2])
defined by

o) = 34
with the lattice of integral x satisfying
dz;=0 (mod 2).
1

Here D = 4, M = 2, and the n(n — 1) pairs of minimal vectors are given
by m = e, + e; (¢ <j) (where e, is the i-th unit vector).

There are clearly proper subsets H for which f is H-perfect (and also
proper subsets H for which f is H-eutactic). However, suppose that f is
both H-perfect and H-eutactic, and consider any fixed pair of suffixes
2,7 (¢ < 7). H must contain at least one of ¢; 4+ ¢,, else (2) could be satisfied
by an arbitrary choice of b,;. Also, in any relation of the type
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— 3ot = Zp(z, + 2,)2 + Zo,(z, — )
1

we have p,; — o,; = 0; hence, since f is H-eutactic, H must contain neither
or both of the vectors e; + ¢,. It follows that H contains both e, 4 e,
for all 7 < 4, so that H is the complete set of minimal vectors.

It is not difficult to show also that the converse of Theorem 4 is false.

The form defined by
9
) = 2

with the lattice of integral x satisfying
9
Ty=x,=---=x3 (mod 2), dz,=0 (mod 4),
1
has in fact no set H of minimal vectors satisfying the conditions of Theorem
4. However, it is easily seen to be extreme (with M = 8) by applying
Theorem 3 to the subset H of minimal vectors 2¢; 4- 2¢, (1 =<7 < g < 9).

5. I should like to take this opportunity of correcting an error of detail
in [1] which was pointed out to me by Mr. A. L. Duquette of Illinois. The
equation (7) of [1] implies that 4~1B is symmetric, and this is not neces-
sarily true. The proof as given becomes correct if we define C = T'BT,
where 7" is chosen so that 7'AT = I.

References

1] Barnes, E. S., ““On a theorem of Voronoi”, Proc. Camb. Phil. Soc. 53 (1957), 537-539.

[2] Coxeter, H. S. M., “Extreme forms’, Canad. J. Math. 3 (1951), 391-441.

[3] Minkowski, H., ‘“Diskontinuititsbereich fiir arithmetische Aquivalenz”, J. reine angew.
Math. 129 (1905), 220-274.

[4] Voronoi, G., “Sur quelques propriétés des formes quadratiques positive parfaites”, J.
reine angew. Math. 133 (1907), 97-178.

University of Adelaide

https://doi.org/10.1017/51446788700025027 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700025027

