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Fate of bubble clusters rising in a quiescent liquid
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We use experiments to study the evolution of bubble clusters in a swarm of freely rising,
deformable bubbles. A new machine learning-aided algorithm allows us to identify and
track bubbles in clusters and measure the cluster lifetimes. The results indicate that
contamination in the carrier liquid can enhance the formation of bubble clusters and
prolong the cluster lifetimes. The mean bubble rise velocities conditioned on the bubble
cluster size are also explored, and we find a positive correlation between the cluster size
and the rise speed of the bubbles in the cluster, with clustered bubbles rising up to 20 %
faster than unclustered bubbles.
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1. Introduction

Bubbles rising though a liquid is a frequently occurring situation in nature (e.g. bubble
plumes rising from the bottom of a lake), daily life (e.g. bubble chains rising in
carbonated drinks) and technology (e.g. waste water treatment). For the case of bubble
swarms rising freely in a quiescent fluid, the bubbles tend to distribute inhomogeneously,
spontaneously forming clusters. When the bubbles are large enough, the rising bubbles
generate turbulence in the liquid, a phenomenon referred to as bubble-induced turbulence
(BIT). This BIT in turn influences the clusters and understanding this is important both
for its own sake, and also due to its impact on many aspects of bubble motion, including
their rise velocities, collisions, dispersion and the intensity of the BIT generated (Takagi,
Ogasawara & Matsumoto 2008; Tagawa et al. 2013; Lohse 2018; Liao et al. 2019; Ma,
Lucas & Bragg 2020a; Ma et al. 2021).

Early numerical investigations (e.g. Smereka 1993) on bubble clustering in the presence
of BIT assumed spherical bubbles and considered potential flow, and found that the
bubbles form large horizontal clusters as they rise. However, subsequent experiments
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and more realistic numerical simulations did not clearly observe such clusters, but
2-bubble clusters with a wide range of orientations were identified as the most commonly
occurring clusters (Zenit, Koch & Sangani 2001; Bunner & Tryggvason 2003; Esmaeeli &
Tryggvason 2005). The prevalence of 2-bubble clusters has motivated the community to
explore the dynamics of bubble pairs with varying separations and orientations, usually for
the case of clean bubbles (Hallez & Legendre 2011). The two extreme cases are bubbles
aligned side by side (Legendre, Magnaudet & Mougin 2003) and in line (Zhang, Ni &
Magnaudet 2021). The results indicate that the side-by-side configuration is more stable
than the in-line case, and this is because for the in-line configuration a slight transverse
movement of the trailing bubble relative to the leading bubble makes it ‘feel’ a shear
flow, that can drive the trailing bubble out of the leading bubble’s wake. Nevertheless,
stable in-line bubble chains are often observed in carbonated drinks. This contradiction
was recently explained by Atasi et al. (2023) as being due to the combined effects of
bubble deformation and contamination in such liquids that can result in a reversal of
the lift force and stable chain. In addition to exploring the stability of nearby bubble
pairs, the impact of neighbouring bubbles on their rise velocity has been investigated and
compared with the case of isolated bubbles. Hallez & Legendre (2011) showed that the
side-by-side configuration maximizes the drag force acting on a pair of bubbles, while the
in-line bubble configuration minimizes the drag due to wake entrainment for the trailing
bubble.

These studies on bubble pair dynamics have provided much insight, however, there are
many open questions concerning the behaviour of bubble swarms where two or more
bubbles may be clustered together, whose motion may also be affected by the wakes of
other bubbles and bubble clusters in the flow. Indeed, while the rise velocity of bubble
pairs in a quiescent liquid is well understood, their behaviour in the context of bubble
swarms is debated. For example, the experiments of Stewart (1995) and Briicker (1999) for
large deformable bubbles in a swarm found that the mean rise velocity was considerably
larger than that for a single bubble. However, this contradicts other experimental (Ishii &
Zuber 1979) and numerical (Roghair et al. 2011) studies for large bubbles, which argue
that the mean bubble rise velocity decreases monotonically as the gas void fraction is
increased.

Several fundamental questions remain mostly unexplored: What is the probability of
forming clusters involving N number of bubbles? What is the lifetime of these clusters?
How does the rise velocity of bubbles in a cluster depend on Np? How do the answers
to these questions depend on contaminants in the liquid? In this paper we explore
these questions experimentally by tracking thousands of deformable bubbles in a vertical
column, using a recently developed machine-learning algorithm to detect and follow the
evolution of bubble clusters, and explore how the bubble rise velocities depend on N,
We also consider the effect of surfactants to provide a more complete picture for real
systems where contaminants may cause behaviour that differs substantially from that of
an idealized clean system.

2. Experimental method
2.1. Experimental set-up

The experimental apparatus is identical to that in Ma et al. (2022), and we therefore refer
the reader to that paper for additional details; here, we summarize. The experiments were
conducted in a rectangular bubble column (depth 50 mm and width 112.5 mm), with a
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Figure 1. Sketch of the bubble column used in the experiments (note that, in the actual experiment, the number
of bubbles in the column is O(103)). The sketch is not to scale. The insets show the cylindrical cluster search
region: view from (a) the top, (b) the side and (¢) the front. Note that (a,b) are only schematic representations,
showing possible bubble arrangements, while (¢) shows a cut from a recorded snapshot. The green outline
refers to bubbles that are considered inside the sharp centre region.

water fill height of 1000 mm (figure 1). Air bubbles are injected through 11 spargers which
are homogeneously distributed at the bottom of the column.

We use tap water in the present work as the base liquid and consider two different
bubble sizes by using spargers with different inner diameters. Note that the tap water will
already be slightly contaminated prior to adding the surfactants or salts, and the bubbles
can behave differently in this tap water compared with that in a pure water system (Craig,
Ninham & Pashley 1993; Takagi & Matsumoto 2011). For the bubble sizes considered
in the present study (with d > 2 mm), however, the slight contamination in the tap water
does not have a significant effect on the bubble shape/motion, as confirmed by our previous
studies (Hessenkemper et al. 2021; Ma et al. 2023). For each bubble size, we manipulate
the gas flow rate and ensure that all cases are not in the heterogeneous regime of dispersed
bubbly flows. In total, we have six mono-dispersed cases (see supplementary movies
1-6 available at https://doi.org/10.1017/jfm.2023.807) labelled as SmTapLess, SmTap,
SmPen+, LaTapLess, LaTap and LaPen+ in table 1, including some basic characteristic
dimensionless numbers for the bubbles. Here, ‘Sm/La’ stand for smaller/larger bubbles,
‘Pen+’ stands for corresponding cases added by 1000 ppm 1-Pentanol and ‘Less’ stands for
lower gas void fraction than **Tap/**Pen+ cases for smaller/larger bubbles, respectively.
It should be noted that the three cases with larger bubble sizes have higher gas void
fractions than the three cases with smaller bubbles. This is because in our set-up it is
not possible to have the same flow rate for two different spargers while also maintaining a
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Parameter SmTapLess SmTap SmPen+ LaTapLess LaTap LaPen+

a 0.51 % 079%  0.71% 12% 198%  191%
dp (mm) 3 3.1 2.7 4 4.3 3.8

X 1.9 1.9 1.2 1.9 2.0 1.3

L), (mm) 14.1 12.7 11.4 14.1 13.0 1.2
Ga 512 538 437 788 879 730
Eo 1.29 1.38 1.05 2.30 2.66 2.08
Rey, 755 739 493 912 1022 782
Cp 0.61 0.70 1.04 0.98 0.97 1.14

Table 1. Selected characteristics of the six bubble swarm cases. Here, « is the averaged gas void fraction,
dp the equivalent bubble diameter, x the aspect ratio, L, the inter-bubble distance, Ga = /|7, — 1| gdi/ v the

Galileo number and Eo = Ap gdg /o the Eotvos number. The bubble Reynolds number Rej, and drag coefficient
Cp are based on dj and the bubble to fluid relative velocity.

homogeneous gas distribution for mono-dispersed bubbles. Furthermore, the bubble size
is slightly reduced when adding 1-Pentanol for both types of sparger. This is due to the
influence of the surfactants that reduce the surface tension and hence affect the bubble
formation at the rigid orifice.

To identify and track bubble clusters, we use planar shadow images obtained by
recording the flow with a high-speed camera and illuminating the set-up with a LED. The

measurement resolution in time and space are 250 f.p.s. and 59.9 um Px ™!, respectively,
with a field of view (FOV) of 90 mm x 76 mm. For each case, we record 1000 sequences
with each having 70-75 frames — approximately the time in which a bubble passes through
the complete image height.

2.2. Bubble identification and tracking

In our study one camera is used and as such the bubbles can be identified and tracked
only in two dimensions. However, as will be shown in § 2.3, we are nevertheless able to
identify bubble clusters in quasi-three dimensions. Independent of the number of cameras
used, the task to track bubbles in image sequences can be done in a detect-to-track or in a
track-to-detect fashion. While the former links previously detected bubbles in each frame
to form suitable tracks, the latter uses extrapolations of already established tracks to detect
bubbles in follow-up images. We use the former detect-to-track strategy, which allows us
to incorporate detections among multiple frames to establish tracks with, however, relying
more strongly on an accurate detector that finds bubbles in individual frames.

Even for low gas volume fractions, detecting bubbles in individual images is a
challenging task since bubbles can overlap in the images. Fully overlapping bubbles cannot
be detected, but partially overlapping bubbles can be dealt with and deep-learning-based
strategies for this have recently shown very promising results (e.g. Kim & Park 2021).
In our previous work (Hessenkemper et al. 2022), we developed such an approach that
used a trained convolutional neural network (CNN) to segment overlapping bubbles.
Furthermore, the contour of each detected bubble is reconstructed using 64 radial vectors
pointing from the segmentation centre to the boundary (figure 2a), and the radial vectors of
partly occluded bubbles are corrected using an additional multi-layer perceptron (MLP).

The subsequent tracking of multiple detected bubbles in close proximity poses further
challenges, as the tracker not only has to be robust against inaccuracies of the detector,
i.e. missing or false detections, but also has to be able to track bubbles that are fully
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Figure 2. Initialization of the tracking algorithm. (a) Cut out snapshots of three different time steps, with three
detected bubbles and their reconstructed radial vectors highlighted in colour. The dashed lines indicate possible
connections of the right most bubble at #; to the successive time steps #> and 3. (b) Illustrates a constructed
graph with all possible connections of these three bubbles.

occluded even for multiple times steps, while at the same time having numerous possible
associations in the near vicinity. To solve these issues, a graph-based tracking formalism
is used. Specifically, we follow the framework of Brasé & Leal-Taixé (2020), utilizing
multiple MLPs to predict valid connections of detections on graph structured data. The
four main aspects of this tracking framework are described as follows. Details on the
network architectures and the training dataset are provided in Appendix A.

Graph construction: to track the bubbles, each sequence is modelled as a graph, with
detections (bubbles) being the nodes of the graph and possible connections in time being
the edges of the graph, i.e. a pair of detections forward or backward in time that are
possibly from the same bubble (figure 2b). The task is then to classify the edges into active
and non-active edges, which at the end form a set of valid tracks that fulfil the so-called
‘flow conservation constraints’ — each node having an active edge to at most one node
forward in time and at most one node backward in time.

Feature encoding: for both the nodes and the edges of the graph, features are encoded
with two separate MLPs (figure 3a). The node embeddings represent the appearance
features of the detections, which are usually encoded with a CNN (Bras6é & Leal-Taixé
2020). However, monochromatic bubble images show few distinct features, with the size
and the shape of the bubble image being the most relevant ones. Thus, we have chosen
the 64 radial vectors from the bubble detector as input for the node feature encoder,
providing not only a more accurate description of the features bubble size/shape, but
also a better two-dimensional (2-D) bubble contour in the case of overlapping bubbles
due to the additional correction of the radial locations. The edge embeddings represent
tracking-related features. For each detected pair of frames, the time increment, relative
coordinate and size are fed into the edge feature encoding MLP to generate edge
embeddings.

Message passing network: the core of the tracking algorithm is the message passing
network (MPN) whose main purpose is to update node and edge embeddings with
respect to their surrounding nodes and edges in the graph, and this is done iteratively
using message passing steps. First, the edge embeddings are updated by combining their
embeddings with the embeddings of the adjacent pair of nodes and feeding them into

973 A15-5


https://doi.org/10.1017/jfm.2023.807

https://doi.org/10.1017/jfm.2023.807 Published online by Cambridge University Press

T. Ma, H. Hessenkemper, D. Lucas and A.D. Bragg
(@) (b)

Figure 3. Steps of the tracking algorithm: (a) feature encoding with node encoder MLP (NE) and edge encoder
MLP (EE) together with edge update MLP (EU); (b) time-aware node update MLP (NU) with past node update
MLP (PNU) and future node update MLP (FNU); (c) predicted active edges.

an edge-update MLP (figure 3a). Then, a time-aware node update step is applied by
aggregating edge embeddings of adjacent edges, which already contain information of
connected nodes due to the previous edge update step. The time awareness is introduced
by first aggregating and updating separately incoming edges, i.e. connections backward
in time, and outgoing edges, i.e. connections forward in time, with individual MLPs and
then concatenating the outcome to finally update the node embeddings with a node update
MLP (figure 3b). For each iteration, information of nodes one step further in time is passed
through the network to the node/edge to be updated. Thus, the number of iterations defines
the time increment of the information of other nodes that are supplied to the current node.

Edge classification and post-processing: after updating all node and edge embeddings
with the MPN, the edges are classified with a classifier MLP (figure 3¢). The predictions
are post-processed and remaining violations of the flow conservation constraints are
treated with an exact rounding scheme (Bras6 & Leal-Taixé 2020). Lastly, missing links
in the trajectories are interpolated using bilinear interpolation and each trajectory is
smoothed with a uniform filter. In supplementary movie 8 we provide qualitative results
of the tracking algorithm applied on a sequence of case LaTapLess, while in Appendix B
quantitative results are provided with the use of common multi-object tracking metrics.
The results demonstrate that the algorithm can track the majority of the detected bubbles,
with a slight performance decrease with increasing bubble size and increasing number of
bubbles.

2.3. Identification and tracking of bubble clusters

The detection of bubble clusters at each time step follows a distance criterion between
neighbouring bubbles whose centres in the 2-D image domain are below a predefined
threshold 2d}, from each individual case (figure 1¢). This value is mainly based on the work
of Legendre er al. (2003) that a considerable drag enhancement is observed for a bubble
pair rising side by side within this distance. Tests for different thresholds (2d;, & 0.5d})
were conducted and the trends of the results in § 3 were found to be insensitive to the choice
of this parameter. Furthermore, since we attempt to detect the bubble cluster in a quasi-3-D
manner, we keep the in-focus region in the depth direction to also be 2d, (figure 1a.b). To
estimate this depth distance to the centre plane we use the grey value gradient of the
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Figure 4. Method of tracking clusters: (a) illustrates an example of two clusters merging into one cluster;
(b) illustrates an example of one cluster separating into two clusters.

detected bubbles and consider only sharp bubbles in the shallow depth of field (DoF)
region (see Appendix C for more detail). In summary, we utilize a cylindrical search

volume, 7t(2d))? x 2dp, for the cluster identification, radial in the 2-D image domain and
linear in the depth direction. For all the cases, the mean inter-bubble distance L; based on
the global void fraction (table 1) is much larger than the search radius 2d, indicating that
the bubble clusters to be discussed are dynamically significant.

The cluster tracking strategy is inspired by the work of Liu et al. (2020)
for characterizing the temporal evolution of inertial particle clusters in turbulence.
Considering two clusters identified in two consecutive time steps (At = 1/250 s), we take
both to be successive realizations of the same cluster if the number of bubbles they share
is above a given threshold. The shared bubbles across clusters in successive time steps are
termed connections. We consider forward-in-time and backward-in-time connections, and
apply thresholds on the fraction of connected bubbles over the total number of bubbles in
each cluster. We illustrate in figure 4(a) an example: cluster A (identified in time step 1)
shares all its bubbles with cluster C (identified in time step 2), while C shares 2/3 of its
bubbles with A. Therefore, the fractions of forward and backward connections between
A and C are 1 and 2/3, respectively. On the other hand, B shares 1/3 of its bubbles with
C, and C shares 1/3 of its bubbles with B. Thus, the forward and backward connections
between B and C are 1/3 and 1/3, respectively. Following Liu et al. (2020), two clusters
in consecutive time steps are identified as the same cluster when the fractions of their
backward and forward connections are both > 1/2. In the example of figure 4(a), A and
C are recognized as belonging to the same cluster. The cluster lifetime is defined as the
time elapsed between birth (the first instance a cluster is identified) and death (the last
time it is recognized). Here, we explicitly include the lower threshold of 1/2, since many
2-bubble clusters appear and require an additional criterion for tracking. In figure 4(b) we
give an example where cluster A at time step 2 splits into B and C. To decide whether
B or C should be regarded as the continuation of cluster A for the purposes of tracking,
we consider whether cluster B or C persists longer into the future. In this example, while
cluster C survives until time n, B does not. Therefore, we regard C, D and A as belonging
to the same cluster, while cluster B is considered to be a newborn cluster at time step 2.
This approach eliminates ambiguities since it ensures that a cluster at any instant can only
be associated with at most one cluster either in the past or future.

3. Results
3.1. Probability of being clustered

We first consider the percentage of bubbles in the flow that are clustered based on the data
points listed in table 2. The results in figure 5(a) show that this percentage increases in
the order of SmTapLess, SmTap to SmPen+ for the smaller bubbles. While the increase
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SmTapLess  Smlap  SmPen+ LalapLess  Lalap  LaPen+

Total tracked bubbles 159454 433551 671141 467592 945815 1442017
Total tracked clusters 74763 192799 289874 199 144 365072 520560

Table 2. Number of bubbles tracked and number of clusters in the FOV used for computing the statistics.
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Figure 5. Percentage of bubbles in cluster for the cases with smaller (a) and larger (b) bubbles. Probability of
number of bubbles within a cluster for the different cases using linear (¢) and log (d) plot, respectively.

from SmTapLess to SmTap is quite understandable due to the increase of the gas void
fraction, the result from SmPen+ (whose « is sightly less than that of SmTap) shows that
the surfactant promotes the formation of clusters. We obtained similar results for the three
cases with larger bubbles (figure 5b).

In figure 5(c,d) we consider the probability of finding a given number of bubbles within
a cluster for all cases, plotting the results using both linear and logarithmic vertical axes in
order to highlight regions of both high and low probability, respectively. The results show
that the probability decreases with increasing N, and, consistent with previous studies,
Np = 2 is the most common cluster size for all 6 cases (Zenit et al. 2001; Bunner &
Tryggvason 2003). However, the results also show that N, = 3,4 clusters occur with
non-negligible probability, and there are even rare events with NV, = 8 clusters. The results
also show that adding contaminants decreases the probability of forming N, = 2 clusters,
and increases the probability of forming larger clusters, although the dependence is not
too strong. For a fixed contaminant level, increasing « has the same effect.

3.2. Lifetime

We now turn to consider the mean lifetime of the clusters, (#;%), as a function of N
(only the results for N, <5 are shown as the statistics for N, > 5 are not converged).
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Figure 6. Mean lifetime of 2-, 3-, 4- and 5-bubble clusters (a,b) and PDF of the bubble cluster lifetime
(c,d) for smaller bubble cases (a,c) and larger bubble cases (b,d).

Figure 6(a,b) shows (f) normalized by a characteristic time scale of BIT (Ma et al.
2017, 20200), tgr = dp/Up, where U, is the mean vertical slip velocity between the
bubble and liquid at the column centre. The values of (#.) /tg;r are order unity, suggesting
that tp;7 1s indeed a dynamically relevant time scale for the cluster lifetimes. The results
also reveal a systematic dependence on N, and the liquid contamination. First, (#;f)
decreases monotonically with increasing Nj, such that larger bubble clusters are not only
rarer (see § 3.1), but also more unstable. While this may not seem surprising, it is in fact
the opposite to what has been observed for inertial particles where the cluster size and
its lifetime are positively correlated (Liu et al. 2020). The difference could be simply
due to the fact that the most common values of Nj, for our clusters are much smaller
than those for the inertial particles in Liu ef al. (2020), and as a result relatively small
changes in the bubble configurations can result in the formation or destruction of a given
cluster. The other significant difference is that our bubbles hydrodynamically interact,
unlike the numerically simulated inertial particles in Liu ez al. (2020), where a one-way
coupling assumption is used. Second, increasing « not only leads to the formation of larger
clusters, but also slightly longer mean lifetimes for the clusters, although the lifetimes for
Np = 2 are the least sensitive to «. Third, the mean lifetimes of the bubble clusters notably
increase with increasing contamination levels. In a recent paper we showed that increased
contamination leads to a reduction of Re, and an increase in BIT (Ma er al. 2023). The
reduction in Re;, causes the bubble trajectories to be less chaotic, and this may explain why
the cluster lifetimes increase with increasing contamination.

Figure 6(c,d) shows the probability density functions (PDFs) for the cluster lifetimes,
which have been computed using clusters of all sizes. The general dependence on the
flow variables is similar to that observed for the mean cluster lifetime, with the PDF tails
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Figure 7. Mean bubble rise velocity as a function of the number of bubbles N, in the cluster: () smaller
bubbles and (b) larger bubbles. Here, N, = 1 denotes unclustered bubbles.

becoming increasingly heavy in the order TapLess, Tap and Pen+ for both the small and
large bubbles. The majority of the bubble clusters survive for # /tg;7 = O(1), however,
there are extreme cases where clusters survive for up to #/tgr ~ 15 for the Pen+
cases. Such extreme cases reflect the strongly nonlinear and non-equilibrium nature of the
flow, with large fluctuations about the mean-field behaviour being an essential feature of
turbulent flows. The central regions of the PDFs are approximately described by stretched
exponential functions, however, the range of 7 over which this applies is quite small.

3.3. Mean Np-bubble cluster rise velocity

We finally consider the role that clustering plays in the mean bubble rise velocity. Figure 7
shows the mean rise velocity of bubbles in clusters Uj, conditioned on Nj, and the results
for unclustered bubbles N, = 1 are also shown for reference. Consistent with our previous
results based on averaging over all bubbles (Ma et al. 2023), the results show that, for
almost all Nj, increasing the liquid contamination leads to a reduction in Uj,, due to the
modification of the bubble boundary conditions. For the larger bubbles we also observe
a clear increase in Uj, with increasing N, with an increase of up to 20 % when going
from unclustered bubbles (N, = 1) to bubble pairs (N, = 2), while the increase is more
moderate when N}, is increased beyond 2. The enhancement of Uj, when going from N, =
1 to Np = 2 is also observed in the SmPen+ case, with only slight enhancements when
Ny is increased beyond 2. However, for the SmTapLess and SmTap cases, U, varies only
weakly with Np, even in going from N = 1 to N, = 2.

What is the physical explanation for why the clustered bubbles rise faster than
unclustered bubbles? We begin by considering the case of bubble pairs N, =2 and
plot in figure 8 the mean inclination angle 6 of the bubble pair centreline with respect
to the vertical direction (see sketch in the figure). (It should be noted that, since our
measurements are only quasi-three-dimensional, & = 0 does not necessarily mean that
the bubbles are in line because they may nevertheless be separated in the depth direction
by up to a distance 2dp.) For all cases an almost uniform distribution of 6 is observed,
i.e. there is no preferential alignment for a bubble pair. This is consistent with visual
inspection of the experimental images (see supplementary movies) which show that the
bubble pair orientations are not persistent, but instead the bubbles continually trade places
in a ‘leapfrog’ fashion. This observation was also found in many 3-D experiments (Stewart
1995; Riboux, Risso & Legendre 2010) and direct numerical simulation for bubble
swarms (Bunner & Tryggvason 2003; Esmaeeli & Tryggvason 2005). It is, however,
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Figure 8. Orientation of bubble pair for the different cases (e.g. in-line bubble pair for & = 0° and side by
side for 6 = 90°).

strikingly different from the behaviour observed for isolated bubble pairs where a stable
configuration is observed for two clean spherical bubbles where they rise side by side
(Hallez & Legendre 2011), while for contaminated systems their stable configuration is in
line due to the lift reversal experienced by the trailing bubble (Atasi et al. 2023). From
the standpoint of our experiment, several possible reasons might explain this discrepancy.
First, compared with the case of spherical bubbles, a pair of deformable bubbles that
are hydrodynamically interacting are likely to generate an asymmetric flow which could
destabilize their configuration. Second, in our experiments the bubbles have oscillating
and/or chaotic rising paths, for which the probability that two bubbles will rise in a stable
arrangement is very low. By contrast, in Hallez & Legendre (2011) the bubbles are fixed at
various positions, and in Atasi et al. (2023) Rej, is small enough such that the bubbles have
straight rising paths. Third, the bubble pairs in our experiments are not isolated. Given the
present bubble sizes/void fractions, they can experience fluctuations and turbulence due
to the wakes of other bubbles in the flow, and this will readily suppress any preferential
orientation that might have occurred were the bubble pairs isolated.

Although the bubble pair orientation is almost random, the impact of their interaction
on Uj, will, however, depend on 6, especially in the present bubble regime (deformable
bubbles with Re;, ~ O(100-1000)). For example, in the side-by-side configuration the two
bubbles are outside of each other’s wakes and the modification to the drag force on each
bubble is minimal (Kong et al. 2019). On the other hand, for the in-line configuration
the trailing bubble is sheltered by the leading bubble and the reduced pressure behind
the leading bubble causes the trailing bubble to be sucked towards it, increasing the rise
velocity of the trailing bubble while the leading bubble is almost unaffected (Zhang et al.
2021). Consequently, two mechanisms are in competition: one is vortex interaction (for
relatively large 6) and the second is BIT, i.e. wake entrainment (for smaller 6). These
effects mean that only the rise velocity of trailing bubbles will be significantly affected
by the clustering, and hence, when averaged over all orientations, the increased vertical
velocity of the trailing bubbles leads to an overall increase in Up. This explains the
increased mean rise velocity for N, = 2 compared with the N, = 1 results in figure 7.
The increase is, however, minimal for the cases SmTapLess and SmTap. This is most likely
due to the bubble wakes being weaker for these cases, a result of which is that the bubble
interaction and the associated effect on U, is also weaker.

The results in figure 7 show that U, further increases as N, is increased beyond 2. This
can be understood in terms of the enhanced opportunity for bubbles to be sheltered by
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Figure 9. The PDFs of the fluctuating rise velocity of bubbles in an N,-bubble cluster, normalized by their
standard deviations oy,, with N, = 1,2, 3 for all the six cases: (a) SmTapLess, (b) SmTap, (c) SmPen+,
(d) LaTapLess, (¢) LaTap and (f) LaPen+.

other bubbles as N, increases. However, the increase when going from N, = 2 to Ny =
3 is not as strong as when going from N, = 1 to N = 2 because the greatest effect of
sheltering will occur when all the bubbles in the cluster are in line, and the probability
of the bubbles in an N, = 3 cluster all being in line will be less than that for the bubbles
in an N, = 2 cluster being in line. It is interesting to note that for experiments on heavy
particles settling in a quiescent fluid, similar behaviour was also found, with clustered
particles falling faster (Huisman et al. 2016). In that case, the enhanced settling velocity
was also attributed to a sheltering effect, i.e. reduced drag on particles that are falling
in the wake of other particles. However, in that context, the particle clusters were found
to exhibit strong alignment with the vertical direction, unlike our bubble clusters whose
orientations are almost random (at least for the NV, = 2 case).

3.4. The PDF of Np-bubble cluster rise velocity fluctuations

More detailed information about the bubble rise velocities is provided in figure 9, where
PDFs of the fluctuating rise velocity u; = i1, — Up (Where 1y, is the instantaneous vertical
bubble velocity) of bubbles in an Nj-bubble cluster are shown. Only results up to N = 3
are shown since the results for N > 3 are very noisy.

The PDFs for all cases are asymmetric, and in particular are negatively skewed,
especially for the three smaller bubble cases. This is consistent with the observations in
Martinez et al. (2010) for a bubble swarm rising in still water, and also with a recent study
for a single bubble rising in a flow with background turbulence (Ruth et al. 2021). The
latter study is relevant to our experiments since any bubble rising in a swarm experiences a
turbulent flow due to the turbulence generated by the surrounding bubbles. Other previous
studies, however, show contrasting results for the PDF shapes. Riboux et al. (2010) used
optical probes to measure the bubble velocity and found its vertical fluctuation was
positively skewed. They argued the vertical bubble velocity fluctuations are controlled
by the vertical liquid velocity fluctuations which have a positive skewness. In our previous
study (Ma et al. 2022) we also found that, for dispersed bubbly flows, the vertical liquid
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velocity fluctuations were positively skewed, but here we find the opposite skewness for
the bubble velocities. Loisy & Naso (2017) simulated a single bubble interacting with
homogeneous isotropic turbulence and found that the PDF of the bubble vertical velocity
fluctuations was approximately Gaussian. They argued that a skewness of either sign in
the PDF of the bubble vertical velocity fluctuations is possible, depending in a complex
manner on the background turbulence and presumably on other factors such as the bubble
size compared with the turbulence length scales. For example, a trailing bubble located
in the wake of a leading bubble would predominantly experience a positive upward liquid
velocity due to the wake entertainment effect. On the other hand, the counterflow generated
between bubbles leads to a downwards liquid motion that balances the flow being entrained
into the bubble wakes. If other bubbles are in these downward regions it could lead to
an enhancement of their negative fluctuating velocity. The skewness of the bubble rise
velocity fluctuations therefore depends in a complex way on how the bubbles interact with
the flow field generated by other bubbles in their vicinity.

4. Conclusions

We conducted experiments on the temporal evolution of bubble clusters with the aid of a
new bubble tracking method for crowded swarms. Our results show that 2-bubble clusters
are the most common, however, 3- and 4-bubble clusters also often occur. The clusters
persist on average for a time of order d,/Uj, although rare clusters persisting for an
order of magnitude longer are also observed. Furthermore, surfactants are observed to
enhance the cluster sizes and their lifetimes. A positive correlation between cluster size
and bubble rise speed is observed, with clustered bubbles rising up to 20 % faster than
unclustered bubbles. We investigated the mean inclination angle 6 of a bubble pair and
found that, for all cases, 6 has an almost uniform distribution. However, the impact of the
inclination on the bubble rise velocities is different for different 6. For instance, the in-line
configuration is expected to have a higher impact on the bubble rise velocity compared
with the side-by-side configuration.

We also investigated the PDFs of the fluctuating rise velocities of bubbles in clusters
of varying sizes. The PDFs for all cases are asymmetric, and in particular are negatively
skewed, especially for the three smaller bubble cases.

Finally, while our cluster tracking method is only quasi-three-dimensional, a fully
3-D method for dense, deformable bubbles can be developed by combining our bubble
identification method with the recent tracking algorithm of Tan, Zhong & Ni (2023) that
currently applies to spherical bubbles.
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Figure 10. The MLP structures and layer sizes of the used network. Here, FC denotes a fully connected layer.

Appendix A. Network and training details

As stated in the main text, the tracking algorithm uses 7 jointly trained MLPs for the
tasks feature encoding, updating edge and node embeddings and edge classification. The
final network architecture of all used MLPs is shown in figure 10. We performed several
hyperparameter variations, like number and sizes of hidden layers, optimizer and learning
rate, with only minor changes to the final result. During the hyperparameter optimization
we found that the graph size is crucial, since a too small graph may not provide the
desired tracking of missed/occluded objects over multiple frames, while too bloated graphs
are too hard to train. To limit the graph size and consequently the number of in-going
and out-going connections, the graph is split into subgraphs of length 10 frames, with
9 overlapping frames between successive subgraphs. In the post-processing step these
subgraphs are combined so that objects are still tracked along the complete sequence
length.

To train the network, we created a new dataset, which consists of semi-artificial image
sequences, in which single bubble tracks are overlaid on top of each other so that the
ground truth is known and no labelling is required. The single bubbles were tracked in
additional measurements and an image cut out along the bubble contour was saved for
each time step. Then the images of several single bubble tracks were placed in an empty
background image with a random starting position either inside or below the image to let
bubbles rise inside the image region. For overlapping bubbles the contour of the bubble
in front is slightly darkened to incorporate the shadow effect of the bubble behind. With
this strategy we created in total 36 sequences of different length, different f.p.s., different
number of bubbles and with different bubble sizes in the range of 2—7 mm. An example of
such a semi-artificial sequence is provided in supplementary movie 7.

One drawback of this strategy is that the bubble tracks do not show any possible effects
of close-by bubbles, bubble-bubble interactions or substantially different background
flows. To still enable an accurate tracking under such conditions, considerable data
augmentation is applied, as introduced by Bras6é & Leal-Taixé (2020), including random
position shifts, randomly dropping detections, i.e. increasing the number of missing
detections, and random f.p.s. changes.

Appendix B. Validation

To test the performance of the tracking algorithm, 4 additional semi-artificial image
sequences were generated in the same manner as the training sequences. In the field of
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Case MOTA  MOTP (g) (1p) dp (mm) >, U (ms™h)
Case 1 0.925 0.12 154 142 2.4-47 64 0.0033
Case 2 0.888 0.139 201 179 2.1-6.0 70 0.0047
Case 3 0.960 0.121 108 103 1.9-3.9 32 0.0017
Case 4 0.909 0.152 312 276 1.9-4.0 50 —0.0006

Table 3. Performance evaluation of the tracker. Here, (tp) denotes the average number of true positives per
time step.

multi-object tracking, several metrics exist that can be used to quantify the goodness of
the algorithm, emphasizing different tracking aspects. To evaluate the tracker accuracy we
use multi object tracking accuracy (MOTA), defined as

Z(mt + fpr + mmey)
MOTA =1 — . , (B1)

th
!

with m; being the number of misses, fp; the number of false positives, mme,; the number
of mismatches, i.e. ID switches, and g; the number of ground truth objects at time 7. The
MOTA thus comprises the sum of the three error sources: ratio of misses, ratio of false
positives and ratio of mismatches, and is independent of the precision of the estimated
object position. This latter attribute is captured with the multi object tracking precision
(MOTP), defined as

MOTP = - , (B2)

with d; ;, being the intersection over union distance for the ith match and ¢; the number
of matches (Bernardin, Elbs & Stiefelhagen 2006). Table 3 shows the results for the 4
validation cases together with further tracker metrics and information on the cases. Note
that inaccuracies of the detector are already present in the results. Here, U; = Uf -

UZ‘” denotes the error of the determined average bubble rise velocity as the difference

between ground truth velocity Uf and determined velocity UZE’ of the tracker. The results
demonstrate the capability of the tracker to track multiple bubbles in swarms, with a
slight dependency on the bubble number and size. The bubble number for the real
measurements presented in the main text lies in the range 100-200 bubbles per frame, for
which the tracking algorithm shows a high accuracy and hence ensures a stable tracking
of bubble clusters. A demonstration of tracked bubbles in a real measurement is provided
in supplementary movie 8.

Appendix C. Depth distance estimation

In order to identify bubble clusters in a quasi-3-D manner, we use the grey value gradient
along the bubble contour as a sharpness measure to define whether two bubbles are in
the narrow DoF region and therefore also have a sufficiently small distance in the depth
direction. To accurately determine the depth position of a bubble, we conducted additional
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Figure 11. Depth estimation calibration: grey value gradient relation to depth position (a,d) and predicted
bubbles within search boundary for the threshold method (d,e) and RBF method (c, f) for small bubbles dj, ~
3 mm (a—c) and large bubbles d =~ 4 mm (d—f).

stereoscopic measurements with two cameras of single bubbles rising in the same set-up.
Figure 11(a,d) shows the grey value gradient in dependence on the depth position for
numerous smaller and larger bubbles with similar sizes as the Sm and La cases. The large
variation is mainly due to illumination inhomogeneities and noise, whereby larger bubbles
show more variations due to the narrow DoF. A simple thresholding would lead to large
errors, as indicated in figure 11(b,e). Here, the ground truth shows all bubbles that are
actually within the search boundary of 2dj, while the coloured dots show all bubbles that
would be considered to be within the search boundary. To overcome the inaccuracies of
using a threshold, we use a radial basis function (RBF) to estimate the distance of a bubble
from the focal plane. Specifically, we use the RBFInterpolator of the python package scipy
(Fasshauer 2007; Virtanen et al. 2020) with a thin plate spline RBF. As input for the
RBF, we use the mean of the grey value gradient of all contour points defined by the
end of the radial distances that do not touch neighbouring bubbles, as well as the bubble
size and its 2-D location in the front view image to further account for size effects and
illumination inhomogeneities. Approximately 32 000 bubble images from the stereoscopic
measurements were used for training and 8000 bubble images for testing the accuracy of
the RBF approach. With this RBF method, more bubbles within and less bubbles outside
the search boundaries are predicted in comparison with the threshold method as shown in
figure 11(c,f). Quantitatively, this is captured in table 4, where the precision and recall of
both methods are compared.

To further reduce errors of the depth estimation, we smooth the predicted depth
along the track. This is illustrated in figure 12, where the unsmoothed prediction would
falsely predict three distances out of the search boundary, which is not the case for the
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Method Precision Sm Recall Sm Precision La Recall La
Threshold 0.56 0.59 0.65 0.58
RBF 0.74 0.62 0.73 0.66

Table 4. Performance evaluation of the depth estimation method.
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Figure 12. Depth estimation of a tracked 4 mm bubble oscillating around the centre plane.

smoothed distance. This smoothing is only possible when sharp and unsharp bubbles are
tracked before predicting and filtering based on the centre plane distance.
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