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Let V be a nonsingular cubic surface defined over the finite field Fq . It is well known that
the number of points on V satisfies #V (Fq) = q2 + nq + 1 where −2 � n � 7 and that
n = 6 is impossible; see for example [1], Table 1. Serre has asked if these bounds are best
possible for each q. In this paper I shall show that this is so, with three exceptions:

THEOREM. The bounds above are best possible, except that when q = 2, 3 or 5 the upper
bound can be improved to n � 5.

To prove this, we need to construct V which attain each of these bounds and to show that
n = 7 is impossible if q = 2, 3 or 5. We start with the lower bound, for which we need two
lemmas.

LEMMA 1. Suppose that W is an absolutely irreducible cubic surface, defined over Fq

and not a cone, and that W has either a singular point defined over Fq or two singular
points whose union is defined over Fq . (It may have other singular points as well.) Then
#W (Fq) � q2 − q + 1.

Proof. Suppose first that W has a singular point defined over Fq ; then we can take this point
to be (1, 0, 0, 0), so that W has the form

X0 Q + C = 0 where Q is quadratic and C cubic in X1, X2, X3.

Since W is not a cone, Q does not vanish identically; so there are at least q2 − q essentially
different triples X1, X2, X3 in Fq at which Q does not vanish. Each of these gives a point of
V , and we must also count the singular point.

A similar argument works in the other case. We can now take the line joining the two
singularities to be X2 = X3 = 0, so that W has the form

X0 X1L + X0 Q0 + X1 Q1 + C = 0

https://doi.org/10.1017/S0305004110000320 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004110000320


386 SIR PETER SWINNERTON–DYER

with L linear, Q0, Q1 quadratic and C cubic in X2, X3. Since W is not a cone, there are at
least q − 1 distinct pairs X2, X3 at which L , Q0, Q1 do not all vanish, and each of them
gives at least q − 1 points of W . There are also q + 1 points on X2 = X3 = 0.

LEMMA 2. Suppose that W is an absolutely irreducible cubic surface with at least three
singularities. If they are collinear then #W (Fq) � q2 − q + 1. Otherwise even over an
algebraically closed extension K of Fq all but three of the lines on W pass through at least
one of these singularities.

Proof. Suppose first that these three singular points are collinear. Working over K we can
take them to be (1, 0, 0, 0), (0, 1, 0, 0) and (1, 1, 0, 0). Then W has the form

X0 Q0 + X1 Q1 + C = 0 with Q0, Q1 quadratic and C cubic in X2, X3.

Thus every point of X2 = X3 = 0 is singular. If W had another singularity, then W would
contain a plane because the join of any two singularities lies entirely in W . Hence the line
containing the singularities was originally defined over Fq ; thus W contains a singularity
defined over Fq and the result follows from Lemma 1.

Now suppose that there are three singularities which are not collinear. Working over K ,
we take the singular points to be (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0). Thus the equation
of W is linear in each of X0, X1, X2 separately, so that it has the form

X0 X1 X2 + X3 Q = 0

where Q is quadratic in X0, . . . , X3 and does not include any terms in X 2
0, X 2

1 or X 2
2. By

adding multiples of X3 to each of the other three variables, we can reduce this equation to
the form

X0 X1 X2 + X 2
3 L + cX 3

3 = 0 where L is linear in X0, X1, X2.

There are three obvious lines on W � {X3 = 0}. Any other line can be parametrized by
writing X0, X1, X2 as linear forms in X3 and a further variable Y . If we substitute this para-
metrization into the equation of W , the only possible multiples of Y 2 come from X0 X1 X2;
so on this line

either two of X0, X1, X2 are simply multiples of X3,
or one of X0, X1, X2 vanishes.

In the latter case, the line must also lie on L + cX3 = 0, so there are at most three lines of
this kind.

We can now prove the existence of a surface V with #V (Fq) = q2 − 2q + 1 as follows.
Choose three planes �1, �2, �3 each defined over Fq and having only one point in common.
Choose a point P12 on the intersection of �1 and �2 and defined over Fq3 but not over
Fq . Choose P13 similarly, but with the additional condition that the line P12 P13 contains no
point defined over Fq . (This is possible, being easier to satisfy than the condition below on
P23.) Now choose P23 similarly, with neither P12 P23 nor P13 P23 containing a point defined
over Fq ; this is possible because there are q3 − q candidates for P23 and for example only
q2 − q of them for which P12 P23 passes through a point defined over Fq .

Now consider the pencil of cubic surfaces generated by the following two degenerate
surfaces:

the union of the three �i ,
the union of P12 P13 P23 and its two conjugates over Fq .
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Each of these is defined over Fq ; the first of them contains 3q2 + 1 points defined over Fq

and the second contains at least one. The base of the pencil consists of the three lines like
P12 P13 and their six conjugates, so the pencil contains no other degenerate surface. Suppose
first that it contains a surface with at least three singularities. If they are not collinear then
at least six of the nine base lines must pass through one of these three singularities; and this
can only happen if one of the singularities is a Pi j or one of its conjugates. But in this case
its conjugates are also singularities, so (by Lemma 2 again) this surface contains at least
q2 − q + 1 points defined over Fq .

Any other singular surface in the pencil must satisfy Lemma 1. Hence if the pencil does
not contain a nonsingular surface V with #V (Fq) = q2 − 2q + 1 then each of the q − 1
nondegenerate surfaces in the pencil must contain at least q2 −q + 1 points defined over Fq .
But our nine base lines contain no such point, so each point defined over Fq in the ambient
space lies on just one surface of the pencil. This contradicts

(3q2 + 1) + 1 + (q − 1)(q2 − q + 1) > q3 + q2 + q + 1;
thus the lower bound in the Theorem is best possible.

By [1], Table 1, constructing a V with #V (Fq) = q2 +7q +1 is equivalent to constructing
a V each of whose 27 lines is defined over Fq . Since each line meets ten others, this requires
each line to contain at least five points defined over Fq even if all these are Eckhardt points;
so it is certainly impossible when q = 2 or 3. For q > 3 we consider a configuration consist-
ing of two mutually skew lines �′ and �′′ and five mutually skew transversals to them, each
of these seven lines being defined over Fq . For this pupose we choose five points P ′

1, . . . , P ′
5

of �′(Fq) and denote the points of �′′(Fq) by P ′′
0 , . . . , P ′′

q ; we now join each P ′
i to a P ′′

ν(i)

to form five transversals. Here the ν(i) are to be all different, so that the five transversals
are mutually skew. This configuration of seven lines will define a pencil of cubic surfaces,
for a cubic surface will contain them if it contains P ′

1, . . . , P ′
4, P ′′

ν(1), . . . , P ′′
ν(4) (and therefore

necessarily P ′
5 and P ′′

ν(5)) and two other chosen points on each of the five transversals. We
shall say that a configuration is of the first kind if there is a quadric which contains at least
four of its five transversals (and therefore also �′ and �′′) and of the second kind other-
wise. Note that a configuration of the first kind can only be associated with one quadric;
for if it were associated with two they would have three transversals in common, and the
intersection of two quadrics cannot contain three mutually skew lines. It can be checked by
enumeration of cases that it is impossible for this configuration of lines to lie on a cubic
surface which is singular but nondegenerate. If the pencil contains a degenerate surface W ,
then W must be the union of a plane and a nondegenerate quadric, and the configuration
must be of the first kind. Now suppose that �′, �′′ and P ′

1, . . . , P ′
5 have been chosen; then

there are

(q + 1)q(q − 1)(q − 2)(q − 3)

possible configurations. There are q3 − q nondegenerate quadrics containing �′ and �′′ and
defined over Fq , and each of them is associated with 5q −19 configurations of the first kind.
Since

(q + 1)q(q − 1)(q − 2)(q − 3) > (q3 − q)(5q − 19)

except when q = 5, there exist configurations of the second kind except when q = 5.
Now let V defined over Fq be a member of the pencil of cubic surfaces associated with a
configuration of the second kind. We have just seen that V is nonsingular, and by forming
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the matrix of intersection numbers we can check that the seven lines of the configuration are
linearly independent as divisors on V . Hence the Néron–Severi group of V has rank 7, and
by [1], Table 1 we have #V (Fq) = q2 + 7q + 1. We observe that a surface with q = 4 and
n = 7 has 45 Eckhardt points, which is the maximum possible number.

To complete the proof of the Theorem it is now enough to exhibit for q = 2, 3 and 5
a surface V with #V (Fq) = q2 + 5q + 1. We shall in fact construct such a V for every
q. For this we use a configuration rather similar to that of the previous paragraph. This
time we take �′ and �′′ to be two skew lines conjugate over Fq and each defined over
Fq2 . The transversals we use will be the join of a point P ′ in �′(Fq2) to its conjugate P ′′

in �′′(Fq2); any such transversal P ′ P ′′ is defined over Fq and there are q2 + 1 of them. A
configuration will consist of �′, �′′ and five such transversals; and we define configurations
of the first and second kinds as before. Once �′ and �′′ have been chosen, the total number
of configurations is

(q2 + 1)q2(q2 − 1)(q2 − 2)(q2 − 3)/120.

There are q3 + q nondegenerate quadrics containing �′ and �′′, and each of them is associ-
ated with

(q + 1)q(q − 1)(q − 2)(5q2 − 5q + 1)/120

configurations of the first kind. Comparing these two counts, we find that there are always
configurations of the second kind. Now let V defined over Fq be a member of the pencil
of cubic surfaces associated with a configuration of the second kind. As in the previous
paragraph, V is nonsingular, and this time the Néron-Severi group of V over Fq has rank 6.
A final appeal to [1], Table 1 shows that V must belong to class 24 in the notation of that
Table, and therefore #V (Fq) = q2 + 5q + 1.
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