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ON EARLE'S mod n RELATIVE 
TEICHMÛLLER SPACES 

BY 

ROBERT ZARROW 

§1. In this paper we answer an open question of C. J. Earle ([2] §3.3 
remarks (a) and (b)) in several cases. We first give some definitions and state 
some results which are given in greater detail in [2]. 

We let X be a smooth surface of genus g > 2 and let M (X) be the space of 
smooth complex structures with the C°° topology. If JLL e M(X) let X^ denote the 
Riemann surface determined by /x. The group (Diff+(X)) Diff(X) is the group 
of (orientation preserving) difïeomorphisms of X. Also Diff^X) = {fe Diff+(X): 
/ induces the identity on H^X,Z/nZ)}. 

The group Diff(X) acts on M(X) by pullback: If jx eM(X) , /eDifï(X) then 
JLL • feM(X) has the property that / : X^.f-^X^ is conformai. With this action 
Difit(X) acts freely on M(X) ([3], [4] or [6]). If H is a finite subgroup of 
Diff(X) then let M(X)H

 = { ^ E M ( X ) : pt -/=/ut}. We let Nn(H) be the nor-
malizer of H in Difi^(X) and let N+(H) be the normalizer of H in DifT(X). 
Then we define Tn(X) = M(X)/Diff^(X), Tn(X,H) = M(X)H/Nn(H), R(X) = 
M (X)/DifT(X), and R(X, H) = M(X)H/N+(H). These spaces we call the mod n 
Teichmuller space, the mod n relative Teichmuller space, the Riemann space 
and the relative Riemann space. The space Tn(X) and Tn(X,H) are finite 
branched coverings of R(X) and R(X,H) respectively. We define 
^n:Diff(X)-»Diff(X)/Diff:(X) = r n (X) . The group 0n(H) acts on Tn(X) and 
the set of fixed points is denoted by T„(X)e"(H). We let Tn(H) be the normalizer 
of 0n(H) in 0n(Diff+(X)) = H ( X ) . Then Earle [2] process the following. 

THEOREM A. If n>2, then 
(a) Tn(H) is a group of automorphisms of Tn(X)e*(H) 

(b) The quotient space Tn(X)e»iH)/rn(H) is the disjoint union of Riemann 
spaces R(X,H'). The union is over the Diff+(X) conjugacy classes of finite 
groups H' such that 6n(H') = 0n(H). 

In the present paper we determine the number of components in (b) in 
several cases when H has order two. We thus denote by ^(n , H) the number of 
components of Tn(H)en(m/rn(H). Our results are the following. 

THEOREM 1. If H is of order two and generated by an orientation reversing 
map then 

(a) W(n, H) = 2, if H = (a1) or H = (ar2) and n is even, where Xl(ax) is a 
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sphere with g + 1 cross caps and no boundary components and X/(cr2) is a surface 
with g - 2 [ g / 2 ] + l boundary components and [g/2] handles. 

(b) V(n,H) = l, ifHïiaJ or Hï(a2) and n>2 is even. 
(c) >P(n,H) = 2[g/2] + [(g + l)/2] + 2, if n is odd. 

THEOREM 2. If H = (or) has order two, a is orientation preserving, and n>2 is 

even, then 
(a) ^ (n , H) = 2, if a has zero or one fixed point. 
(b) V(n, H) = 1, if a has more than one fixed point. 

REMARK. Theorem A and Theorem 1(b) together imply that R(X,H) is a 
real algebraic variety if H satisfies the hypotheses of Theorem 1(b). 

§2. In this section we prove Theorems 1 and 2. We first need a lemma. 

LEMMA. There are 2[g/2] + [(g + l)/2] + 2 Diff+(X) conjugacy classes of cyclic 
subgroups H of order two if the generator of X is orientation reversing. 

Proof. The conjugacy class of H is determined by the topological type of 
X/H ([1], pp. 57-58). It now follows from Theorem 3.6 of [7] that the number 
of conjugacy classes of H is x + 1 , where x is the number of triples (r, s, t) with 
r — 0 ,1 ,2 , r < s , s + 2t=g. The lemma now follows by a simple counting 
argument. 

Proof of Theorem 1. We first consider (a) and (b). We let H1 = (cr^ and 
H2 = (o-2). Then it follows by Theorem 3.6 of [7] that a conjugate of a± induces 
the same action on HX{X, 1) as cr2. Thus by Theorem A ^(n, Hx)>2 and 
V(n,H2)>2, for all M > 3 . 

Now suppose a and r are two orientation reversing maps which induce Mx 

and M2 on Ht(X, Z), respectively, and suppose {a, T}^{<TX, a2}. We investigate 
whether there is a symplectic matrix A such that AMXA~X = M2 mod n. By pp. 
221-222 [7] we may assume that 
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where Ik denotes the k x k identity and 
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We first consider the case in which n is even. If AMXA~X = M2 mod n then 
we must also have AM1A~1 = M2 mod 2. However by results in [7] pp. 
221-222 this is impossible if M19^M2. This proves (a) and (b). 

We now consider the case in which n is odd. We claim that we may always 
find a symplectric matrix A such that AMX - M2A mod n. We let 

-ft 3 
so that equation AMX = M2A reduces to 

IB 
F J 

mod n. 

It is easy to check that this equation will always have a solution in some 
symmetric matrix B. This implies (c). 

Proof of Theorem 2. We first define some matrices. Let 
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where Ft is defined in the proof of Theorem 1. Let 
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where 

« ; = 

- i 

2fx2f 

and 

Gt = 

0 1 
- 1 0 

Let 
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We remark that there is a canonical homology basis of X such that with 
respect to this basis a induces the matrix M(r, s, t), where r = 0 and s > 1 or 
r = l and s = 0. By multiplying we see that MM(r, s, r)M_ 1 = L(r, s, t). This 
implies that with respect to a suitable canonical homology basis a induces 
L(r, s, t). 
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To prove Theorem 2 we first show that if f # w then there is no matrix K in 
Sp(g, Z) such that KL(r, s, i) = L(u, v, w)K mod 2. We assume that there is 
such a matrix K and obtain a contradiction. Thus we must have 

K \h 
[o 

0 " 

'* 

= Is 

0 

0 1 

J« J 
K mod 2. 

We write 

*-[c 3 
where A, B, C and D are g*g. Upon multiplying and equating terms mod 2, 
we see that 

(i) 

(2) 

and 

lo F,J Lo FW\ 

ro on 
Lo FJ C = 0mod2 

(3) c[° ° ] = 0mod2. 

Equations (2) and (3) imply that 

c-[o' oH2' 
where Q. is n—2wxn — 2t. Equation (1) implies that 

LA3 A4J mod 2 

and 

where A4 is 2u> x2f, D4 is 2f x2w, etc. Denote the transpose of a matrix L by 
*L. Then the symplectic condition that AtD-BtC = I2g implies that A4'D4 = 
I2w. If w > t then AA

lDA can have rank at most 2f, a contradiction. Thus w < f. 
Similarly r < w so that t = w. 

To finish the proof we remark that if KL(r, s, t) = L(u, v, w)K mod n, where 
n is even, then KL(r, s, t) = L(u, v, w)K mod 2. Also the condition f = w im­
plies r + s = u + t;. If a is fixed point free then r = 1 and s = 0. This implies that 
w +1; = 1 so that either u = 0, u = 1 or u = 1, i; = 0. Thus ^(n, ff) = 2. If a has 
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one fixed point then r = 0 and 5 = 1. Again u + v = 1 and as before ^ (n , H) = 2. 
If a has more than one fixed point, then r = 0 and 5 > 1. If u = 1 then u = 0 and 
it is impossible that u + v = r + s. If w = 0 then v>l and w + v = r + S implies 
v = 5 thus ^ (n , H) = 1. This completes the proof. 

REMARK 1. I do not know what \P(rc, JFf) is if n is odd and H is generated by 
an orientation preserving map of order two. 

REMARK 2. If H-(a) and a has fixed points and prime order p > 2, then by 
looking at the formula in [5] and the matrices in [4], it is easy to see that there 
are non-conjugate groups H' which induces the same or conjugate matrices on 
H^X,!). Thus ¥ ( n , H ) > l . 
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