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MONOMORPHISMS OF SEMIGROUPS OF LOCAL 
DENDRITES 

K. D. MAGILL, JR. 

1. Introduction. When we speak of the semigroup of a topological space 
X, we mean S(X) the semigroup of all continuous self map s of X. Let h be 
a homeomorphism from a topological space X onto a topological space 7 
It is immediate that the mapping which sends / e S(X) into hofoh~ is 
an isomorphism from the semigroup of X onto the semigroup of 7. More 
generally, let h be a continuous function from X into Y and k a continuous 
function from Y into X such that k o his the identity map on X. One easily 
verifies that the mapping which sends/into h o / o k is a monomorphism 
from £(X) into S(7) . Now for "most" spaces X and 7, every isomorph­
ism from S(X) onto 5 ( 7 ) is induced by a homeomorphism from Xonto 7 
Indeed, a number of the early papers dealing with S(X) were devoted to 
establishing this fact. See [4], Chapter 1, Section 2 for a discussion and 
references. This is in considerable contrast, however, to the situation 
for monomorphisms from S(X) into S(Y). There are many instances of 
monomorphisms which are not of the type described previously. For 
example, let X be any space with more than one point and f o r / e S(X) 
define <p(/) e S(X2) by 

(*</))(*, JO = (/(*),/O0)-

One easily checks that <p is a monomorphism from S(X) into S(X ) but it 
can be shown (we discuss this further in Section 3), that it is not induced 
by two functions in the manner described above. On the other hand, the 
mapping xp defined by 

Wf))(x,y) = (f(x)J(x)) 

is a monomorphism from S(X) into S(X2) which is induced by two 
continuous functions. Specifically, */>(/) = h o f o k where h and k are 
given by h(x) = (xy x) and k(x, y) = x. 

Our purpose here is to present a class of spaces and then find conditions 
on pairs X and 7 from the class so that every monomorphism from S(X) 
into S(Y) is induced by two continuous functions. The spaces are the local 
dendrites with finite branch numbers. These spaces arose naturally in the 
solution of a seemingly unrelated problem [7]. The precise formulation of 
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the Monomorphism Theorem is the main result of this paper. It is formally 
stated in Section 2 which is devoted almost entirely to its proof. It can be 
regarded, in some sense as being the dual of one of the main results in [9]. 
This and some other observations are discussed further in Section 3. 

2. The monomorphism theorem. 

Definition (2.1). A monomorphism <p from S(X) into S(Y) is said to be 
natural if there exist continuous functions h from X into Y and k from Y 
into X such that k o h is the identity on X and <p(/) = hofok for each 
/ e S(X). 

We need to review some terminology. We recall that a dendrite is any 
Peano continuum which contains no simple closed curves and a local 
dendrite is a Peano continuum with the property that each point is 
contained in a neighborhood which is a dendrite. For general information 
on dendrites, we suggest that either [3] or [12] be consulted. A discussion 
of local dendrites can be found in [3]. Let X be any local dendrite and let 
x e X. Choose any neighborhood D of X which is a dendrite. We showed 
in [7] that the number of components of D — {x} does not depend on D 
and we define the rank of x in X (denoted Rank (x, X) ) to be this number. 
We note that what we call rank here was called local rank in [7]. It is 
known that for any local dendrite X and any point x e X, Rank (x, X) ^ 
S0. A point x is an endpoint if Rank (x, X) = 1, a local cutpoint if 
Rank (x, X) > 1 and a branch point if Rank (x, X) > 2. The branch 
number of a local dendrite Xis denoted by Brn(X) and is the sum of all the 
ranks of the branch points of X. Evidently, Brn(X) is finite, if and only if 
X has only finitely many branch points and each branch point has finite 
rank. In any event, Brn(X) ^ S 0 for any local dendrite X. We are now in a 
position to state the 

MONOMORPHISM THEOREM. Let X and Y be local dendrites with finite 
branch numbers and suppose that for each copy Z of X contained in Y, 
Rank(x, Z) = Rank(x, Y) for each branch point x of Z. Then every 
monomorphism from S(X) into S(Y) is natural. 

We accomplish the proof through a sequence of lemmas the first of 
which is 

LEMMA (2.3). Let Y be any topological space whatsoever and let L(Y) be a 
left zero subsemigroup of S(Y). Then the ranges of all functions in L(Y) are 
mutually homeomorphic. 

Proof. Let v and w be any two elements of L(Y). Since v o w o v = v and 
w o v o w = w, it readily follows that vow restricted to Ran v (the range of 
v) is the identity and similarly, w o v restricted to Ran w is the identity. 
From this, it follows that v maps Ran w homeomorphically onto Ran v 
and, of course, w maps Ran v homeomorphically onto Ran w. 
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LEMMA (2.4). Let / , v e S (Y) with v idempotent and suppose that 
R a n / c Ran v and v of = v. Thenf = v. 

Proof. Since v is idempotent, it is the identity on its range and thus 

f(x) = V(/(JC) ) = V(JC) for all x e Y. 

LEMMA (2.5). Let Y be a local dendrite with finite branch number and let 
Sf be an uncountable collection of mutually homeomorphic nondegenerate 
subcontinua of Y such that E <£. F for each pair E, F e Sf. Then 
bd V n int W ¥* 0 for some pair V, W e Sf where bd and int denote 
respectively boundary and interior (with respect to Y). 

Proof We first dispose of the case where ̂ consists of arcs. Let E denote 
the collection of endpoints of the arcs in £f Then E is uncountable 
and, since Y is separable, E has uncountably many condensation points 
[2, p. 251]. Choose such a point e which is not a branch point of Y. Then 
every neighborhood of e contains uncountably many points of E and it 
follows from this that there exist arcs A, B e ^ s u c h that 

bd A n int B ^ 0. 

Now we go to the case where no subspace in ^ is an arc. Since Y is a 
local dendrite, it contains at most finitely many simple closed curves 
[3, p. 304] and since Y has finite branch number, it also contains only 
finitely many branch points. The same is true for any subcontinuum. Since 
no A G y is an arc, it follows from Lemma (2.10) of [11] that each such A 
must contain at least one simple closed curve or one branch point. It 
readily follows (since the subcontinua in £/* are mutually homeomorphic) 
that there is an uncountable subcollection ^ of y such that all the 
subcontinua of ^ j contain precisely the same simple closed curves and 
the same branch points. Let 

9>x = {Da.a G A}, 

choose any D, £ ^ and consider the subspaces Dx — Da, a G A. Let A be 
a component of Dx — Da. Since Dx and Da contain precisely the same 
branch points and simple closed curves, it follows that cl A is an arc with 
endpoints a and b where {b} = clA —A. Since a is an endpoint of D]9 it 
follows from Lemma (3.6) of [7] that Dx — Da consists of only finitely 
many components. Denote them by {^4a.}?=i. Then each cl Aa is an arc 
and in keeping with our previous notation, we let aa and ba denote 
the endpoints of cl Aa where 

If some ba is not a branch point of Y then the conclusion follows 
immediately for in this case 

ba G bd Da n int Dx. 

https://doi.org/10.4153/CJM-1986-040-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-040-2


772 K. D. MAGILL, JR. 

We assume, therefore, that 

(2.5.1) each ba is a branch point of Y. 

Denote by B the collection of branch points of Y which are not branch 
points of any of the Da. The set B is, of course, finite and we let 
{^•}fLi denote the collection of all nonempty subsets of B. Our 
assumption (2.5.1) means simply that for each a, 

cl(A - Da) - (Dx - Da) 

is one of the sets Bt. Consequently, there is an uncountable subset Aj of A 
such that for all a e Al5 the sets 

cl(Z>, - DJ - (A - Da) 

consist of precisely the same points. We want to show next that 

(2.5.2) Dx - Da = Dx - Dp for all a J e A j . 

It is immediate that Dx — Da and Dx — Dp must have the same 
number of components. Let {At}fLx be the components of the former and 
[Ei}i==x the components of the latter. Consider Ax and let 

c\Ax - Ax = {b}. 

Then 

cl Et — Et = {b} for some /. 

Let a denote the remaining endpoint of cl Ax and d the remaining 
endpoint of cl Et. The assumption a ¥= d implies that cl Ax contains a 
branch point of Dx. But this point would then have to be a branch point of 
Da (and Dp as well) and this is a contradiction since no point of cl A x can 
be a branch point of Da. Thus b = d and we conclude that a and b are the 
endpoints of both A x and Et. The further assumption that the arcs cl A x 

and cl Ej do not coincide leads quickly to the contradiction that Dx 

contains a simple closed curve which does not belong to either Da or Dp. 
Thus, we must have c\ Ax = cl Et and hence Ax = Et. We have now 
shown that every component of Dx — Da is also a component of 
Dx — Dp. Similarly, each component of Dx — Dp is also a component 
of Dx — Da and (2.5.2) has been verified. 

The next step is to consider all subspaces of the form Da — Dx where 
a ^ Ax. Just as in our previous considerations, the components of each 
Da — Dx are finite in number and we denote them by {Ha}^jx. Each 
cl Ha is an arc and we let 

cl Ha> - Ha_ = {pa). 

Again, if any/?ft is not a branch point of 7, we are finished so we assume, 
as before, that 
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(2.5.3) each/?a is a branch point of Y. 

The arguments used previously carry over intact to show that (2.5.3) 
implies that there exists an uncountable subset A2 of A} such that 

(2.5.4) Da- Dx= Dp- Dx for all a, 0 G A2. 

We are just about finished for all we need to do is choose two distinct a 
and ft in A2 and (2.5.2) and (2.5.4) assure us that 

Da~ A = Dp- D{ 

and at the same time 

A - D« = A ~ Da-
This implies Da = Do which is a contradiction since the subspaces 
[Da:a G A2} are all distinct. Consequently, either (2.5.1) is false or (2.5.3) 
is false. In either case we have the desired conclusion and the lemma has 
been proved. 

Now we are ready to prove a lemma which is particularly crucial to our 
considerations here. 

LEMMA (2.6.) Let Y be a local dendrite with finite branch number and let 
L(Y) be an uncountable left zero subsemigroup of S(Y). Then each function 
in L(Y) is a constant function. 

Proof Suppose some function in L(Y) is not constant. Then according 
to Lemma (2.3), no function in L(Y) is constant and Lemmas (2.3), (2.4) 
and (2.5) together imply that there exist distinct functions v and w in L(Y) 
such that 

bd V n int W ± 0 

where V = Ran v and W = Ran w. Choose any point 

p G bd V n int W. 

Since v is idempotent, we have v(/?) = p which implies 

(2.6.1) p G int W n v -1(nit W) n cl(Y - V). 

This, in turn, implies that 

(2.6.2) int W n v_1(int W) n ( 7 - V) ¥> 0, 

and we choose any point q in the latter set. We then have 

(2.6.3) q^W - V 

and 

(2.6.4) v(q) G W. 
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Now (2.6.3) implies that v(q) ^ q = w(q) while (2.6.4), together with the 
fact that w is idempotent, implies that w(v(q) ) = v(q). This contradicts 
the fact that w o v = w and we conclude that L(Y) does, indeed, consist of 
constant functions. 

We are now ready to complete the 

Proof of the monomorphism theorem. Let <p be a monomorphism from 
S(X) into S(Y). Let L(X) denote the collection of constant functions of X. 
Then L(X) is a left zero subsemigroup of S(X) and thus <p[L(X) ] is an 
uncountable left zero subsemigroup of S(Y). It follows from Lemma (2.6) 
that for each x e X, there exists a unique y in Y such that <p(x) = (y) 
where (x) and (j;) denote the constant functions which map everything 
into the points JC and y respectively. We define a function h from X into Y 
by h(x) = y. We note that 

(MT 1) <p(x) = (h(x) > for each x e X 

and also that h is injective since <p is. Now take any x ^ X a n d / G S(X) 
and use (MT 1) to get 

< « / ) ) ( * ( * ) ) > = *( / ) o <A(x) > 
= <P(/) o <p(x) = <p(/o <x> ) = <p(f(x) > 

= (h(f(x) ) >. 

That is, the constant functions ( (<p(f) )(h(x) ) ) and (h(f(x) ) ) coincide, 
which means that 

W/))(A(*)) = h(f(x)). 

We have shown that 

(MT 2) (<p(/) ) o h = h of for e a c h / G S ( J ) . 

It follows readily from (MT 2) that 

(MT 3) h(f~\x)) = /i(X) O W / ) ) - 1 ^ ^ ) ) 
for each x ^ X a n d / G ^(X). 

It is an easy matter to verify that 

{f-\z):z G Z , / e .S(Z)} 

is a basis for the closed subsets of Z whenever Z is any completely regular 
Hausdorff space which contains an arc. This fact together with (MT 3) 
implies that h~ is a continuous function from h(X) onto X. To show that 
h is continuous, let {xn }^L x be a sequence of distinct points in X which 
converge top G X where/? is distinct from all the points xn. We will show 
that the sequence {h{xn) }^L\ converges to h(p). Since h is injective, h(X) 
is an uncountable subset of Y which inherits a second countable topology 

https://doi.org/10.4153/CJM-1986-040-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1986-040-2


LOCAL DENDRITES 775 

from Y. Consequently, h(X) has a condensation point q [2, p. 251] so we 
can choose an infinite sequence of points {yn}™=\ all different from each 
other and from q such that lim yn = q. Then 

* = [uO>X-i]u{?} 
is a compact subspace of h(X) and since h~ is continuous on h(X), its 
restriction to Kis a homeomorphism. Thus, h~x[K] is a compact subspace 
of X which contains precisely one limit point h~ (q). Since X is a local 
dendrite, there exists a neighborhood D of h~ (q) which is a dendrite and 
hence there exists a positive integer TV such that 

h~\yn) e D for n è N. 

Define a map/ f rom 

H = [U{h-\y„)}ZN\ U {/T'(<?)} 

onto 

w = [ u K D u {/>} 
by 

/ ( A ' W ) = *„ and f(h-\q)) = p. 
The function/is a continuous map from a closed subspace (namely H) of 
X into the dendrite Z>. Since dendrites are absolute retracts [1, p. 138], 
/ h a s a continuous extension to a function which maps all of Xinto Z). We 
do not expect confusion to result so we use the symbol / to denote the 
extension as well. From (MT 2) we get 

h(xn) = h{f(h~\yn))) = ( « P ( / ) ) ( ^ „ ) 

for n ^ N and similarly, 

h(p) = h{f(h-\q))) = (*(/) )(<?). 

Since l imj^ = q and <p(/) e ^ (7 ) , we have 

l imW/) ) (^„ ) = (*(/))(<?) 

and this establishes the fact that 

(MT 4) h is a homeomorphism from X into y. 

Next, we let <p(z) = v where / is the identity of S(X) and we further let 
V = Ran v. It follows from (MT 2) that v o h = h which, in turn, implies 
that h(X) c V. We will show that, in fact, 

(MT 5) h(X) = V. 

Suppose to the contrary. Since h is a homeomorphism, h(X) is a local 
dendrite properly contained in V which is also a local dendrite. Since V is 
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connected, it follows that there exists a point p such that 

(MT 6) p G h(X) n c\v(V - h(X) ). 

We assert that 

(MT 7) p is not a branch point of h(X). 

Suppose it is. Then 

Rank(;?, h(X)) = Rank(/?, 7). 

This means that there exists an open subset G of Y such that p e G c 
/z(X). But since ^ G c l r ( F — /i(X) ) we also have 

G n ( K - h(X)) * 0 

which is a contradiction so that (MT 7) is valid. Thus, 

Rank(/>, h(X)) ^ 2. 

We remark that while p is not a branch point of /z(X), it may well be a 
branch point of Y. At any rate, there exists a neighborhood Dofpin h(X) 
which is a dendrite such that 

(MT 8) Rank(/?, D) ^ 2. 

Moreover, since F has only finitely many branch points, D can be chosen 
with sufficiently small diameter so that the only branch point of Y is the 
point/? itself. We choose such a D which, by Lemma (2.10) of [11] must 
necessarily be an arc and we denote its endpoints by a and b. It follows 
that 

(MT 9) D — {a, b, p) is an open subset of Y. 

We have two cases to consider depending upon the rank of p in D. 
Case 1. Rank(/?, D) = 2. 
Then D — {a, b,p) is the disjoint union of two open subsets A and B of 

Y where 

A U B U {/?} = D - {a, b). 

The set 

h-\D) - {h-\a),h-\b)} 

= h~\A) U h~\B) U {h~\p)} 

is an open subset of X and we take / to be any homeomorphism from X 
onto X such that 

(MT10) f(h-\p)) G h-\A). 

For example, one could define f to be the identity on the complement of 
h~\D) - {h~\a\ h~\b) } and then define it on h~x(D) - {h~l(a\ 
k (b) } in such a manner that it "shifts" the point h (p) into h (A) 
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(we could just as well have chosen h (B)). We then use both (MT 2) and 
(MT 10) to get 

<p(/)(/>) = <p(f)(h(h-\p))) 

= h(f(h~\p))) e h(h-\A)) =A 

and since A is open in Y, there exists an open subset G of y containing p 
such that 

<K/)(G) c A. 

Because of (MT 6) there exists a point q such that 

(MT 11) q <= G n (V - h(X)) 

and we have 

(MT 12) *(/)(,?) G ^ c A(A-). 

We use (MT 12) and the fact that q e V to get 

<? = v(<7) = *(/)(<?) = vif'1 of)(q) 

= vCT^W/X?)) G
 « P G T ' X W ) -

Thus, 

# = v ( / _ KM*) ) f° r some x e X 

But it then follows from (MT 2) that 

q = <f(rX)(h(x)) = h{f-\x)) e /*(*) 

which contradicts (MT 11). Hence, in the case Rank(/?, D) = 2 we have 
obtained a contradiction. We will next show that 

Case 2. Rank(/?, Z>) = 1 is contradictory as well. Here,/? is an endpoint 
of D and we denote the remaining endpoint by a. In this case, we t ake / to 
be the identity map on X — h~x(D) and define it on h~ (D) in such a 
manner that it fixes h~ (a) and maps h~ (D) homeomorphically onto 
a proper subarc of h~ (D). In particular, f(h~ (p)) will be a cutpoint of 
h~l(D). We note that, among other things, fis a homeomorphism from X 
onto a proper subspace of X. Now define a function g by 

g(x) =f~\x) for x e R a n / and 

g(x) = h~\p) for x G X - R a n / 

Then g e S(Jf) and gof= i. From this point on, the procedure is similar 
to that used in Case 1. We have 

*(/)(/>) = vU)(h(h~\p))) 

= h(f(h-\p))) e /K/T 1^) - {h-\a),h-\p)} 

= D - {a,p}. 
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Since D — {a, p} is open in Y, there exists an open subset G of F 
containing/? such that 

(MT 13) <P(/ ) (G) C D - {a, b) c h(X). 

Again (MT 6) assures us that there is a point q such that 

(MT 14) q <E G n (V - h(X)\ 

Just as before, we get 

q = v(q) = <p(i)(q) = <p(gof)(q) 

= <f(g)(<p(f)(q)) e <p(g)(h(X)) 

which means 

q = <p(g)(h(x) ) for some x G X. 

But this implies that q = h(g(x) ) G h(X) which contradicts (MT 14). 
We have now shown that in any case, the assumption that h(X) ^ V 

results in a contradiction so we conclude that (MT 5) is valid. This enables 
us to define a continuous function k from Y onto X. Specifically, we take 
k = h~l o v. Since h(X) = V, it is immediate that k o h = i. Finally, we 
take a n y / e S(X) and we use (MT 2) once again to get 

<K/) = «K/o /) = <*</) o <P(/) 

= <p(f) o v = <p(/) o h o h~ o v 

= h o f o h ov = hofok. 

Thus, <p is a natural monomorphism and the proof of the Monomorphism 
Theorem has now been completed. 

3. Miscellaneous observations and closing remarks. We first discuss in a 
bit more detail an assertion made in the introduction. We took any space 
X with more than one point and defined a monomorphism y from S(X) 
into S(X2) by 

(3.1.1) (*(/))(*, >0 = (f(x)J(y)). 

We asserted that <p is not a natural monomorphism. Suppose to the 
contrary that it is. In other words suppose there exist continuous functions 
h and k from X into Y and Y into X (Y = X2) respectively such that 

(3.1.2) k o h is the identity on X 

and 

(3.1.3) q{f) = h ofo k for all/ e S(X). 

Let /^ and / y denote the identity maps on X and Y respectively. It follows 
from (3.1.1) that <p(ix) = iY. This, together with (3.1.3) gives 
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(3.1.4) iY = <p(ix) = h o ix o k = h o k. 

(3.1.2) and (3.1.4) together imply that h is a homeomorphism from X onto 
X1. However, from (3.1.1) and (3.1.3) we get 

h(x) = (h(x) )(x, x) = (<p(x) )(x, x) 

= ( (x)(x), (x)(x) ) - (x, x) 

for each x G X This is a contradiction since X has more than one point 
and consequently h cannot possibly map X onto X . 

We also mentioned in the introduction that the Monomorphism 
Theorem is, in some sense, a dual to a result we obtained in [9]. The 
Monomorphism Theorem tells us that for certain semigroups S(X) 
and S(Y), every monomorphism <p from S(X) into S(Y) is given by 
v ( / ) = hofok where 

(3.2.1) h is a homeomorphism from X into 7, 
(3.2.2) /: is a continuous function from Y onto X and 
(3.2.3) k o h is the identity on X. 

In Theorem A of [9], we showed that for certain S(X) and S(Y), every 
epimorphism <p from S(X) onto S(Y) is of the form q>{f) = h o / o A: where, 
in this case, 

(3.2.1)' h is a continuous function from X onto 7, 
(3.2.2)' k is a homeomorphism from Y into X and 
(3.2.3)' ho kis the identity on 7. 

There are a number of contrasts regarding monomorphisms and 
epimorphisms. For one thing, conditions (3.2.1), (3.2.2) and (3.2.3) are 
sufficient to insure that the map <p defined by <p(f) = h o f o k is a. 
monomorphism from S(X) into S(Y) while (3.2.1)', (3.2.2)' and (3.2.3)' are 
not sufficient to insure that the corresponding map <p will be an 
epimorphism. <JP will certainly map S(X) onto S(Y) but it need not be a 
homomorphism. The mapping <p will be a homomorphism if, in addition, h 
is constant on components of X and both x and k(h(x)) lie in the same 
component for each x G X (see Theorem B of [9] ). 

As for other contrasts, monomorphisms are abundant while epi­
morphisms are rare. Moreover, if an epimorphism does exist from S(X) 
onto S(Y) it is generally induced by two continuous functions while there 
are many pairs of semigroups where some monomorphisms are induced by 
continuous functions (i.e., are natural monomorphisms) while others are 
not. 

There are results already in the literature, notably Theorem (3.4) of [10], 
which describe other pairs of spaces X and Y such that every 
monomorphism from S(X) into S(Y) is natural. In that result, one of the 
conditions on X is that it be quasi-homogeneous. This means that for each 
nonempty open subset G of X and each point p G X there exist a 
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pair of continuous self-maps / a n d g of X such that g(p) e G a n d / o g is 
the identity on X. A little reflection will convince one that local dendrites 
fail badly at being quasi-homogeneous. In fact, one can show that the only 
quasi-homogeneous local dendrites are the arc and the simple closed 
curve. 

Finally, a few remarks about local dendrites (particularly those with 
finite branch number) are in order. It turns out that the answers to various 
natural questions about S(X) involve local dendrites. We have already 
seen one such example in this paper. For another example, in [5] and [6] 
we posed the problem of characterizing those Peano continua X such that 
S(X) has only finitely many regular .©-classes. This class of spaces turns 
out to be precisely the local dendrites with finite branch numbers [7]. For 
yet another example, we showed in [8] that if X is any local dendrite with 
finite branch number, then Green's 2 and J relations coincide on the 
regular elements of S(X). 
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