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Abstract

In an earlier paper, we investigated for finite lattices a concept introduced by A. Slavik: Let A, B,
and 5 be sublattices of the lattice L, AnB = S, AUB = L. Then L pastes A and B together over
S, if every amalgamation of A and B over S contains L as a sublattice. In this paper we extend
this investigation to infinite lattices. We give several characterizations of pasting; one of them
directly generalizes to the infinite case the characterization theorem of A. Day and J. Jezek. Our
main result is that the variety of all modular lattices and the variety of all distributive lattices
are closed under pasting.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 06 B 05, 06 B 20.

1. Introduction

In [4], we investigate for finite lattices a concept introduced by A. Slavik [12]
(see also G. Gratzer [6], Exercise 12 of Section V.4). Let L be a lattice. Let
A, B, and 5" be sublattices of L, A n B = S, A U B = L. Then L pastes A and
B together over S, if every amalagamation of A and B over S contains L as
a sublattice (A. Slavik used the term "^-decomposable".) Pasting generalizes
the classical concept of gluing: see R. P. Dilworth and M. Hall [2].

A. Day and J. Jezek [1] proved the following theorem: let V be a nonmod-
ular variety of lattices; if V is closed under the pasting of finite lattices, then
L = V.

The research of both authors has been supported by the NSERC of Canada.
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In [4], we answered a question raised in [1]: Ns (the five-element nonmod-
ular lattice) cannot be obtained from M$ (the five-element modular nondis-
tributive lattice) by pasting. In fact, the variety M of all modular lattices is
closed under the pasting of finite lattices.

In this paper we extend the investigations of [4] to infinite lattices. In
Section 2, we give several characterizations of pasting. One of them directly
generalizes the characterization theorem of A. Day and J. Jezek [1] to the
infinite case.

In Section 3, we investigate convex sublattices and ideal lattices of pasted
lattices.

Section 4 contains the generalization of the main result from [4]: the
variety M of all modular lattices is closed under pasting.

In Section 5 we prove that two distributive lattices pasted together yield a
distributive lattice.

Section 6 contains some concluding comments.
The authors would like to express their appreciation to Ralph N. McKen-

zie, who patiently listened to a crude first draft of this paper, and to the
members of the Lattice Theory and Universal Algebra Seminar in Winnipeg,
who listened to the second draft of the paper. Their incisive comments and
suggestions were much appreciated.

2. Characterizations

We start with a precise definition of pasting:

DEFINITION 1. Let L be a lattice. Let A, B, S be sublattices of L, AnB = S,
A U B = L. Let fA and fs be the embeddings of A and B, respectively, into
L. Then L pastes A and B together over S, in notation, L = Paste(^,5,5),
if whenever gA and gs are embeddings of A and B into a lattice K satisfying
xgA = xgB for all x € S, then there is a homomorphism h of L into K
satisfying fAh = gA and fBh = gB (see Figure 1).

Note that the homomorphism h is always an embedding; this follows from
the proofs of Theorems 5 and 6: we prove that h is one-to-one.

To characterize pasting, we start with a simple lemma from B. Jonsson
[11]:

LEMMA 2. Let A,B, andS be lattices, AnB = S. OnP = AuB,we define
a binary relation < as follows:

(i) for x,y e A (and for x,y e B), x < y in P if and only if x < y in A
(respectively, x <y in B);
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g

Figure 1

(ii) for x € A and for y € B, x <y in P if and only if there exists an s € 5
with x <s in A and s <y in B; and dually, fory <x.
Then P is a poset P(A,B,S). We shall use the notations P and P(A,B,S)
interchangeably. The poset P contains A and B as subposets.

If L pastes A and B together over S, then L as a poset is isomorphic to
P(A,B,S); the converse, however, is false in general. The poset P(A,B,S)
may be a lattice, but it may not be a pasting. There are many lattice con-
structions in the literature that put together lattices to obtain a new lattice.
Two examples should suffice: the S-verklebte Summen of Ch. Hermann [9]
and the hinged-product of E. Fried and G. Gratzer [3]. Most of these con-
structions put lattices together to form a poset; it is then proved that this
poset is a lattice. It is important to remember that pasting is a lot more than
P(A,B,S) being a lattice.

Based on Lemma 2, we define A and V as partial operations on P:

DEFINITION 3. Let A, B, and 5 be lattices, AnB = S. On the set P = AuB,
the partial algebra Part(^4, B, S) with the partial binary operations A and V is
defined as follows:

(i) if x < y in P, then x Ay = x and x Vy = y in Pait(A,B,S);
(ii) if x,y, z e A and x A y = z in A, then x A y = z in Part(j4, B, S); and

similarly for x V y = z in A;
(iii) same as (ii), for x,y,z e B.

Observe that, in general, Part(A,B,S) is not a partial lattice (or even a
weak partial lattice) as defined in [6].

We now have everything we need to characterize pasting. However, for
easier applicability in the proof in Section 4, we introduce an additional
concept:
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DEFINITION 4. Let A, B, and S be lattices, AnB = S. Let a e A and 6 e B .
An {a, b}-sequence in Part(^, B, S) is a sequence of elements of S: x\,..., xn

satisfying

(iia) x\<a (starts below a), x2 < b Vx(, x^ < a V x2,...,x2k < bv x2k_x,
X2k+i < a V X2k, •••', the target t of this sequence is a V xn, if n is even (target
above a), b V *„, if « is odd (target above b); or

("b) x\ < b (starts below b), x2 < a Vxi, x3 < b v x 2 xlk <aVx2k-u
*2ic+i < b V x2k,...; the target t of this sequence is av xn, if n is odd (target
above a), b V xn, if n is even (target above b).

For example, if a € S1, the singelton a is an {a, 6}-sequence (starts below
a) with target element a V b (above a). The sequence x\,x2 (x\,x2 e S and
*i < *2) with X\ < a and x2 < bvX\ is an {a,£}-sequence (starts below a)
with target a V *2 (above a).

The elements in (iia) form an increasing sequence i n ^ : a < a V J C 2 < - - - <
a V x 2 k < • • • a n d in B : b < bv x { < ••• < bv x 2 k + i <.... T h e t a rge t is t h e
last element of the first or the second sequence.

We describe pasting in terms of an order condition (Ord) and a sequence
condition (Seq).

THEOREM 5. Let L be a lattice. Let A, B, and S be sublattices ofL, AnB
= S, A U B = L. Then L = Pasted, B, S) if and only if the following two
conditions hold.

(Ord) For aeA and beB, ifa<b, then there exists anseS with a<s
in A and s < b in B, and dually for b <a.

(Seq) Let a G A- B and b e B - A, and let c = ay b in L. Then there
exists an {a, b}-sequence with target c, and dually.

Another characterization of pasting is in terms of ideals:

THEOREM 6. Let L be a lattice. Let A,B, and S be sublattices ofL, AnB
= S, A U B = L. Then L = Paste(A,B,S) if and only if the following two
conditions hold.

(Ord) For aeA and beB, if a < b, then there exists an s eS with a<s
in A and s < b in B, and dually for b <a.

(Id) IfX and Y are ideals ofL satisfying X-Y c A-B andY-X QB-A,
then XCY orY C X; and dually, for dual ideals.

For finite lattices, in the presence of (Ord), (Id) takes on a simpler form:

if x, y € L satisfy (x A y, x] c A - B and (x A y, y] c B - A, then
x < y or y < x; and dually.
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Indeed, since (x Ay,x] c (x] - (y], (Idfin) obviously implies (Id) for finite
lattices. Conversely, if L is finite and (Id) holds, then take x,y € L satisfying
(x A y,x] c A - B and (x A y,y] c B - A. We claim that (x] -(y]CA-B.
Indeed, if xAy e A-B, then by (Ord), there exists a s e 5 with xAy < s and
s < y, contradicting that (x Ay,y]Q B - A. We get a similar contradiction
if x A y e B - A. Finally, let x A y e S, and let u e (x] - (y]\ if u e B,
then M V s G B, contradicting that « V J € (x Ay,x] C A - B. Similarly,
(y] -(x]CB -A. Thus (Id) applies, and we obtain (x] c (y] or (y] c (*],
that is, x < y or y < x, completing the proof of (Idfin).

Some of the steps in the proofs of Theorems 5 and 6 are implicit in A. Day
and J. Jeiek [1]. We give here complete proofs.

Crucial to the proofs is the definition of ideals in Part (A,B,S):

DEFINITION 7. Let A,B, and 5 be lattices, AnB = S, and P = AuB. An
ideal I of the partial algebra Part(^, B, S) is a subset of P with the following
two conditions:

(i) if x e / , y e P, and y < x, then y e / ;
(ii) if x, y, and z € / and x V y = z in Part(^, 5 ,5) , then z e / .

For a subset X of P, (X] will denote the smallest ideal containing X; if
X = {x}, we write (x] for (*]. An J4-/</«I/ (B-ideal) I is of the form / = (X],
for some X in A (respectively, in B). The lattice of ideals will be denoted by
Id(Part(^,5,5)). Dual ideals can be defined dually.

First, we need to know how to manipulate sequences and how sequences
relate to ideals of Part(^, B, S).

LEMMA 8. Let A, B and S be lattices, AnB = S, and P = AuB. LetaeA
and beB. Then the following statements hold in Part(^f, B, S).

(I) Let xx,...,xn be an {a,b}-sequence with target t. Then xu...,xn,xn,
xn,... is again an {a, b}-sequence; if we add an even number of xn-s, the target
of the new sequence is t.

(II) If there exists an {a, b}-sequence that starts below a, then for every
{a, b}-sequence with target t there exists another {a, b}-sequence that starts
below a and has target t.

(III) Let xi,...,xn andy\,... ,yn be {a, b}-sequences that start below a with
targets t and u, respectively. Then x\ Vy\ , . . . ,xn v yn is an {a,b}-sequence
that starts below a with target tv u.

(IV) Let a < a! and b < V, and let X\,...,xn be an {a, b}-sequence with
target t above a. Then X\,...,xn is an {a1,b'}-sequence with target t Va'.

(V) We are given an {a, b}-sequence with target t above b. Let a' < t,
a' e A. Then there exists an {a, b}-sequence with target t' above a such that
a1 < t'.
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(VI) Let U be a subset of P. We define the set U^ as follows: z e
if and only if there exist, a,b e P such that a is a join of elements in U n A
and b is a join of elements in UnB, and there exists an {a, b}-sequence with
target t satisfying z<t. Then U^ is an ideal ofPart{A,B,S).

(VII) If in (VI), U is contained in C/Seq, then U^ is the ideal generated by
U inPart(A,B,S).

(VIII) Let us assume that any two elements ofP have a lower bound in P.
Let U be a subset of L of the form UA U UB, where UA is a nonempty subset
of A - B and UB is a nonempty subset of B - A. Then (7Seq is the ideal of
Yart(A,B,S) generated by U.

PROOF. Ad (I). This is trivial
Ad (II). Let the {a, £}-sequence xx,..., xn with target t be given; if it starts

below a we have nothing to prove. So let it start under b (condition 4(iib)
applies): Xi < b, x2 < a V x\, Since there is an {a,2>}-sequence starting
below a, there is an element s e S with s < a. Define XQ — x\ A s. For the
sequence XQ,x\,...,xn 4(i) is obvious: XQ < Xi < •••. Moreover, XQ < a,
x\ < b V Xo (= b), X2 < a V Xi (by assumption), and so on, verifying 4(iia).
Obviously, the target of the new sequence is unchanged.

Ad (III) and (IV). These are obvious.
Ad (V). Let X\,...,xn be an {a,6}-sequence with target t above b. Since

a' e A and t e B, the assumption a' < t implies that there exists an s e S
with a' <s <t = bvxn. Define xn+l = xn V s. Obviously, xn < xn+\ and
xn+i <b\/xn. Thusxi,...,xn,xn+\ is an {a,6}-sequence with target aVxn+i
above a, and a' <aw xn+\, as claimed.

Ad (VI). Obviously, if z € USe<i, w eP, and w < z, then w e U^. Now
let x,y e U^, x Vy = z in Part(A, B,S); we want to show that z e L ^ . If
x V y = z by virtue of 3(i), z e USeq is trivial.

Let x V y = z by virtue of 3(ii), that is, x,y,z G A and x V y = z in A.
Since x,y e C/^ , we can choose 01,02 that are joins of elements in U D A,
and b\, bi that are joins of elements in U n B, an {a\, b\ }-sequence x\,...,xn

with target t\, an {a2,62}-sequencey\,...,ym with target ti, satisfyingx<t\
and y < ti. With a = a\ V «2 and b = b\ v bi, a is a join of elements in
U n A and b is a join of elements in UnB; by (IV), both sequences are
{a, £}-sequences with targets t\ > t\ and t'2 > h, establishing x,y G USeq. So
we can assume that a\ = a2 = a and b\=bi = b.

If t\ is the target of x\,...,xn above b, then by (V) (with a' = x) we
can change x\,...,xn to a sequence with target t\ over a, x < t\. Applying
(V) again, if necessary, to the sequence y\,...,ym, we conclude that we can
assume that both sequences have targets over a.
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By (II), we can further assume that both sequences start below a or both
sequences start below b. By (I), therefore, we can assume that the two se-
quences have the same number of elements. Finally, by (III), we obtain an
{a, £}-sequence with target t\ v ti, establishing that z = x V y < 11 V tj is in

If x V y = z by virtue of 3(iii), we proceed by symmetry. Thus USeq is an
ideal.

Ad (VII). Let W be an ideal containing U. An easy induction on n shows
that if we choose a,b e P such that a is a join of elements in U n A and b is
a join of elements in UnB, and an {a, 6}-sequence xx,...,xn with target t,
then t e W, proving that USeq = ((/].

Ad (VIII). By (VII), it is enough to prove that for a e UA, we have a € C/^i
(and symmetricaly for b € UB). Choose an element b € Us- Let c be a
common lower bound of a and b. There are two cases to consider.

FIRST CASE: C € A. By Definition 3(i), there exists an s e S with c < 5 < b.
The sequence 5 can be regarded as an {a, &}-sequence that starts below b; its
target is a V s = a which majorizes a; thus a e U^.

SECOND CASE: C e B. By Definition 3(i), there exists an s e S with
c < s < a. The sequence s, s can be regarded as an {a, 6}-sequence that
starts below a; its target is a V s = a which majorizes a; thus a e USeq. This
concludes the proof of (VIII), and therefore that of Lemma 8.

Now we prove Theorems 5 and 6. Let L — Paste(^,5,5). We shall prove
conditions (Ord), (Id), and (Seq) for L.

The MacNeille completion Pc of P = P(A,B,S) is a lattice containing P
as a subposet with the property that all joins and meets that exist in P are
preserved in Pc (see, for example, [6]). By Definition 1, P is a sublattice
of Pc, in fact, the sublattice P = L. Thus the partial ordering on L is as
described in Lemma 2, verifying condition (Ord) of Theorems 5 and 6.

Now let us take the lattice, Id(Part(/i, B, S)), of all ideals of Part(^, B, S).
The maps agx = (a] for a e A, and bgs = (b] forbeB embed A and B,
respectively, into Id(Part(^,J?,5)), and they agree on S. By Definition 1,
there exists a homomorphism h of L into ld(Part(A, B,S)) extending gA and
SB-

Next we verify condition (Seq) of Theorem 5. Let a e A-B and b e B-A,
and let c = a V b in L. Without loss of generality, we can assume that e e l
Then ch = ahv bh in ld(F&n{A,B,S)), that is, (c] = (a] V (*]. By (VIII) of
Lemma 8 (UA = {a} and UB = {b}), there exists an {a, i}-sequence X\,...,xn

with target / satisfying c < t. Since t <c obviously holds, we conclude that
/ = c, as claimed.

In the next step, we assume conditions (Ord) and (Seq) and we prove
condition (Id) of Theorem 6. Let X and Y be ideals of L satisfying X-Y Q
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A - B and Y - X C B - A, and let X C Y and Y c X both fail. Let
U = (X-Y)l)(Y-X); then (VIII) of Lemma 8 applies with UA = X - Y
and UB = Y-X; note that both UA and C/B are closed under joins. Now take
the ideal IF** as denned in Lemma 8. Choose any ae X -Y, b &Y -X,
and an {a,6}-sequencex\,...,xn with target /. An easy induction on i shows
that aVXjEX or bVXjEY holds for all /, hence t e X U Y. Thus by (VI)
of Lemma 8, U»* = X U Y is an ideal of Part(y4, B, S).

By (Seq), for any a e X-Y and £ € Y-X, there exists an {a, &}-sequence
with target aV b. Thus av b e Xl)Y, for example a V b e X; but then
b <a\/b€X which contradicts that i e K - J f . This proves (Id).

Now let L be a lattice, let A, B, and 5 be sublattices of L, AnB = 5, y4uB =
L. We have just proved that in the presence of condition (Ord), condition
(Seq) implies condition (Id). We are now going to prove the converse.

So let us assume that conditions (Ord) and (Id) hold and let a e A - B
and b € B - A. Form the following ideals in L:

Xo = (a], Yo = (b],

Note that the ideal joins can be taken in Id(JL) or Id(Part(^,5,5')); in-
deed, Xi and (Y> n A] are both ,4-ideals, hence their join in Id(L) and in
ld(Part(A, B,S)) is the same; similarly for y, and (X, n B].

Let X be the union of the X,, / = 1,..., and let Y be the union of the Yt,
i= 1,.... It is clear that X U Y is the Part(^, B, S) ideal generated by a and
b.

Observe that X - Y C A - B. Indeed, ifxeX-Y and x € B, then x e Xt

for some /, and hence x € Yi+i, contradicting that x e Y fails. Similarly,
Y-XCB-A. Thus by (Id), X c Y or Y c X, for example X c Y. Then
a G Y, and so a V b e y, that is, a V 6 belongs to the Part(A, B,S) ideal
generated by a and £. It follows form Lemma 8(VIII) that a vb is the target
of some {a, 6}-sequence, verifying (Seq).

To complete the proofs of Theorems 5 and 6, it remains to show that
(Ord) and (Seq) imply that L = Paste(A,B,S). To prove this, by Definition
1, we have to take a lattice K, and embeddings gA and gs of A and B into
K satisfying xgA = xgB for all x e S.

We define a map h of L into AT by x/t = xgA for x G A and JtA = xgfl for
x e B. We have to show that h is an embedding.

h is isotone. Indeed, if x < y and x,y G A or B, then xA < yh since A is
isotone on A and 5. If, say, x G A- B and y € 5 - 4̂, then by (Ord), there
is an 5 e S with x < s < y, and then xh < sh and sh < yh by the previous
case, hence h < yh.
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A is a homomorphism. Again, we can assume that x e A- B, y G B - A,
and x Vy € A. By (Seq), there exists an {x, y}-sequence xi,..., xn with target
x Vy; without loss of generality we can assume that the sequence starts below
y-

We proceed by induction on n. If n = 1, then xVy = x\Zx\, where X\ <y
and X\ € 5. Then

(x V y)h = (x

= xhv x\h (since h is an embedding of A)

<xh\/yh (since X\ h < yh).

Since h is isotone, the reverse inequality is trivial, (x V y)h = xhv yh.
Let n > 1, and set x' = x v xx. ifx'eB, then

{xvy)h = (x'vy)h

= x'h V yh (since h is an embedding of B)

= xhv x\hv yh (since h is an embedding of A)

= xhvyh,

as required. If x' e A - B, then xi,..., xn is an {x1, }>}-sequence which starts
below x' with target x' V y. Therefore,

(x V y)h = {x' V y)h

= x'h v yh (by induction)

= xhVXih\/yh (since h is an embedding of A)

= xhvyh,

completing the induction.
Using the dual argument, we establish that (x A y)h = xh A yh.
Finally, h is one-to-one. In case x < y, we can use (Ord) to verify this. So

we can assume that xeA-B,yeB-A, and, say, xVy eA. If xh = yA,
then using that h is a homomorphism we obtain that

xh = xhvyh = (xvy)h.

Since x < xVy,xh = (xVy)h contradicts that h is one-to-one. This completes
the proofs of Theorems 5 and 6.

In the finite case, in the presence of (Ord), condition (Id) is equivalent to
the following condition:

(Cov) For s G S, all the covers of s in L are in A or all are in B; and
dually.
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To verify this, we shall use the form (Idfin) of (Id). Let (Cov) fail; then
there is an s e 5 covered by a in A - B and b in B - A. The elements a and
b violate (Idfin) since

(a Ab,a] = (s,a] = {a} c A - B

and similarly for (a A b, b]. Conversely, let (Idfin) fail with a and b; then
a A b e S (if not, then say, a A b € A - B; by (Ord), there is an s e S with
a Ab < s < a, contradicting that (a A b, b] c B - A) and the covers of s are
neither all in A nor are all in B.

Thus we obtain a result of A. Day and J. Jezek [1]:

COROLLARY 9. Let L be a finite lattice. Let A, B, and S be sublattices of
L, AnB = S, Al)B = L. Then L pastes A and B together over S if and only
if the conditions (Ord) and (Cov) hold.

3. Some applications

From the result of Day and Jezek (Corollary 9 above), in [4], we derived
the result that if a finite lattice is pasted together, then the same holds for its
intervals. Now that we have characterizations of pasting in the infinite case,
it is natural to ask whether this result can be extended.

COROLLARY 10. Let the lattice L paste the lattices A and B over S. Let C
be a convexsublattice ofL for which CnS is not empty. Define A\ = AnC,
B{ = B n C, Si = S n C. Then C pastes Ax and Bx over S\.

Rather than proving this directly, we now introduce the concept of the
rank; with it, we can quantify how the pasting of A\ and B\ is related to the
pasting of A and B.

DEFINITION 11. Let A, B and S be lattices, A n B = S, P = A u B. For
x,yeP, we define the rank, rank(x,}>), ofx andy in Part(A, B,S) as follows:

(i) if x,y € A or x,y e B, then rank(jc,y) is 0;
(ii) if there exists an {x,y}-sequence x\,...,xn with target t satisfying

x,y < t, then the smallest such n is rank(x,>');
(iii) otherwise, rank(x,y) is undefined.

The following observation is useful:
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COROLLARY 12. Under the conditions of Definition 11, for x,y e P and
s GS, ifrank(x,y) is defined, then so is rank(x V s,y\/ s) and

rank(x Vs,yvs)< rank(jc,y).

PROOF. If the {x,.y}-sequence X\,...,xn establishes that rank(x,y) = n,
then the {xV s,yV $}-sequence X\ V s,..., xn V s establishes that

T&Dk(xWs,y Vi) < n.

COROLLARY 13. In Theorem 5, condition (Seq) can be replaced by the fol-
lowing condition:

(R) for every x,y e L, rank(x, y) is defined, and dually.

Now we can state Corollary 10 in a stronger form:

COROLLARY 14. Let the lattice L paste the lattices A and B over S. Let
C be a convex sublattice of L for which C C\S is not empty. Define A\ =
AnC, Bi=BnC, Si = S n C. Then for x,yeC,

y) < rzakL{x,y) + 1

where rankc(*,y) and rankL(x,y) is the rank in C and L, respectively. In
particular, rankc(.x,y) is always defined.

PROOF. If x,y 6 A or B, then rankc(.x,)>) = rankL(x,y) = 0. Now let
ranki,(x, y) = n > 0 be established by the {x,y}-sequence x\,... ,xn in L. If
z = x A y € 5, then Corollary 12 (or its proof) shows that

y) < r&nkL{x,y).

Now if z & S, then, say, z e A-B. By (Ord), there is an s e S with z < s < y.
If X\,..., xn is an {x, >>}-sequence starting below y, then x\ V s,..., xn V s is
an {jf,^}-sequence in C establishing that

rankc(x,y) < rank.L(x,y).

Finally, if X\,..., xn is a {JC, y}-sequence starting below x, then s, Xi V s,...
is an {x,y}-sequence in C establishing that

rankcCx,)>) < rankL{x,y) + 1.

This completes the proof of Corollary 14.
The lattice of Figure 2 (S is represented by the black-filled, A - S by the

unfilled, and B - S by the dot-filled elements) shows an example where

rankc(x,y) =
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12 E. Fried and G. Gratzer [12]

Figure 2

Figure 3

Thus the result of Corollary 14 is best possible.
In the infinite case we can pass from lattices to ideal lattices and ask

whether from pasted lattices we get again pasted lattices.
Let L = ¥asXfi{A,B,S). Then Id(^), the ideal lattice of A, has a natural

embedding into L: <pA: X —• (X]L.
Viewing ld(A) as a sublattice of Id(L), and similarly, Id(B) as a sublattice

of Id(L), observe that ld(A) n ld(B) = Id(5). Indeed, if / is an ideal of L
and / e Id(^) n ld{B), then for every / e / there is an a e A with ael and
i < a; so for this a e I, there is an element b e b with b &I and a < b. By
(Ord), there is an element s eS with a < s < b. Thus i < s for some s&S,
proving that / e Id(5). The converse is obvious. Finally, every ideal I of L
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is in ld(A) or Id(B). Indeed, if / £ ld(A), then there is an / e / such that for
ail j e I with i < j , we have j e B; similarly, if / £ Id(5), then there is an
k e / such that for all ; e / with k < j we have ; e v4. But then i V A: e / is
in neither /J nor 5 , a contradiction.

Thus Id(L) = Id(^) U Id(5) and Id(i4) n Id(fl) = ld(S). It is logical to ask
whether Id(L) pastes Id(^) and ld(B) together over Id(5).

LEMMA 15. Let L be the lattice of Figure 3. Let S be the sublattice of
elements marked by solid dots; let A be the sublattice of the elements ofS and
the elements to the left; let B be the sublattice of the elements ofS and the
elements to the right. Then L pastes A and B together over S but Id(L) does
not paste ld(A) and ld{B) together over Id(5).

PROOF. Choose X to be the left-axis and Y the right-axis. We claim that
rank(Ar, Y) in Id(L) is not denned. Indeed, let us form the ideals:

Xo = X; Yo = Y;

1 = 1, . . . ; YM = YiV(XinB), j = l , . . . .

It is easy to see that Xt is the ideal generated by X and the (2i - l)st ele-
ment of 5, while Yj is generated by Y and the (i + l)st elements of X. If
rank(X, Y) were defined, rank(A", Y) = n, then either Xn or Yn would equal
L, a contradiction.

4. Pasting modular lattices

In this section we prove the following result, answering Problem 1 of [4]:

THEOREM 16. The variety M of all modular lattices is closed under pasting.

In the proof, we shall use the following notation:

DEFINITION 17. For elements x,y, z of the lattice L, Ns(x, y < z) denotes
that x,y, and z satisfy the relations:

y < z, xv y = xv z, x Ay = x A z.

If, in addition, y < z, then we write Ns(x, y < z). If N$(x, y < 3), then
x,y, z generate a sublattice isomorphic to N5.

In the finite case, in [4], we proved Theorem 16 by way of contradiction:
let L be a finite nonmodular lattice, and let L be the pasting of the modular
sublattices A and B over S. We can choose L as the smallest such lattice.
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14 E. Fried and G. Gratzer [14]

Since L is nonmodular, it contains elements x,y, z satisfying N$(x, y < z).
Clearly, x A z = 0 and x V y = 1; indeed if x A z = u and xv y = v, and
0 < u or v < 1, then applying the Corollary 10 to C = [u, v], we get a smaller
lattice, contradicting the minimality of L. Thus L is almost modular, no
proper interval of L can contain an N5, hence the interval is modular. The
proof heavily uses almost modularity.

In the general case there is no chance of finding a minimal or maximal N5.
Instead, we use the concept of the rank introduced in Section 3.

The proof of Theorem 16 relies heavily on the following two lemmas.

Figure 4

Figure 5

LEMMA 18. Let L be a lattice, and let x,y, z,s e L. IfNs(x, y < z) and
x Ay <s < y, then

(i) N5(x,s < (x V 5) A z) {see Figure 4)
or
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(ii) s = (x V s) A z and Ns(x V s,y < z) {see Figure 5).

15

PROOF. Sinces < (xVs)Az < xvs, it follows that;cV.s = x\/((x\/s)Az);
obviously, x A((xvs) A z) = x As (= x A z). Hence, Nj(x, s < (x Vs) A z).
Now (i) follows; (ii) is even easier.

LEMMA 19. Let L be a lattice, and let x,y, z,s e L. IfN^x, y < z) and
x A y < s < x, then

(i) N$(z, s < x A (s V z)) (see Figure 6)

SvZ

Figure 6

or
(ii) s = x A(sW z) and Ns(x, s\/ y < s\/ z) (see Figure 7)

XA(SVZ) = s

u

Figure 7

or
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(iii) s = x /\(sv z), sVy = sv z, and N5(s, y < z) (see Figure 8).

u

Figure 8

PROOF. We prove (i) as 18(i) was proved; (ii) and (iii) are even easier.

PROOF OF THEOREM 16. Let L = Paste(A,B,S). Let us assume that A
and B are modular lattices, and L is nonmodular. Since L is nonmodular,
it contains three elements x,y, z satisfying N5(x,y < z); let u = x A z and
v = xv y.

We shall consider several cases. As a rule, each case will be reduced to
some previous cases.

Case 1. x, y, z €A or x,y,zeB. Then the N5 is in A or B, contrary to
the assumption that A and B are modular. So Case 1 cannot happen.

Case 2. xeS. If y, z e A or y, z e B, then Case 1 holds, a contradiction.
By duality, we can assume that y e A - B and z e B - A. By (Ord), there
exists aweS with y < w < z. Then, Ns(x,y < w), contradicting Case 1.
Thus Case 2 cannot occur.

From now one, we can assume that xeA-Boi that x GB-A. Without
loss of generality, we shall assume that x e A - B.

Now there are only three possibilities: y € B - A and z G A; y € A and
zsB-A; yeB-A and z e B - A. We shall further classify by specifying
where u is: A - B, B - A, or S.

Case 3. xeA-B,y&B-A,zeA.
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Case 3A. u e S. We show that this case cannot occur by induction on
rank(x,.v) = n. Let the {x,y}-sequence/>i,...,/>„ ( e S ) establish the rank.

Firstly, let the sequence start below y. Set s = p\V u. Since u < s < y,
by Lemma 18, either N5(x, s < (x Vs) A z) which would contradict Case 1
since x,s, (x Vs) A z e A, or s = (x V s) A z and N5(xvs, y < z) (see Figure
5). In the latter case, either x V s e S, a contradiction by Case 2, or x Vs £ 5
and s o x V 5 € > 4 - 5 (since x V 5 e /4). Obviously, the sequence pi,... ,pn

establishes that rank(jc V s,y) < n - 1, completing the discussion of the case.
Secondly, let the sequence start below x. Again, set s = p\ V u. Since

u < s < x, by Lemma 19, either
(i) N5(z, s < x A (s V z)) (see Figure 6), which would contradict Case 1

(z,S,X A ( 5 V z ) 6 4
or

(ii) s = XA(SVZ) and N5(x, sVy < sVz) (see Figure 7); now if sVy e B-A,
then A (̂jf, sVy < sV z) satisfies the conditions of this case (s V z e A is
obvious) and rank(x,5 V >>) < n (established by pi,... ,pn), and hence this is
impossible by induction,
or

(iii) s = x A (s V z), s V y = s V z, and N5(s, y < z) (see Figure 8), a
contradiction with Case 2.

Case 3B. u e A - B. By (Ord), there exists an s € S with w < s < y. By
Lemma 18, N5(x, s < (sVs)Az) (see Figure 4), which would contradict Case
1 since x,s,(xVs)Az e A, or 5 = (x\/s) Az and A^JCVS, y < z) (see Figure
5), contradicting Case 3A.

CASE 3C. ue B-A. this is impossible since x,z e A, hence x/\z = we A.

Case 3D. The dual of Case 3. This case cannot hold by duality.

Case 4. xeA-B, y e B - A, z e B - A.

Case 4A. u e S. We show that this case cannot occur by induction on
rank^y) = n. Let the {x,y}-sequencepi,...,pn{eS) establish the rank.

Firstly, let the sequence start below y. Set s = p\ V u. Since u < s < y, by
Lemma 18, either

(i) N5{x, s < {xw s) A z); now if (JC V s) A z e v4, then this contradicts
Case 1 (JC,5, ( x V j ) A : e A); otherwise, (xVs)hzcB-A contradicting
Case 3D, or
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(ii) s = (xVs)Az and N5(x\/s, y < z) (see Figure 5). Now if x\/s e B, then
this contradicts Case 1 {xVs,y,z eB). Otherwise, obviously, x V s e A - B,
so N$(x\/s, y < z) satisfies the conditions of Case 4A, and/>2,... ,Pn establish
that rank(x V s,y) < n - 1, completing the discussion of the case.

Secondly, let the sequence start below x. Again, set s = p\ V u. By Lemma
19, either

(i) Ns(z, s < XA{SVZ)) (see Figure 6); now if X A ( J V Z ) e B, then we get a
contradiction with Case 1 (z, s, x A (s V z) € B); otherwise, x A {s V z) € A - B,
and Ni{z, s < xA(sVz)) is covered by Case 3 using the symmetry of A and5;
or

(ii) s = x A (s V z) and Nj(x, sVy < sV z) (see Figure 7); now if 5 Vy or
s V z e A, then A^Jt, s\/y < sv z) is covered by a previous case; otherwise,
sW y, s V z e 5 - A, and so ^V5(x, 5 V y < s V z) satisfies the conditions of
this case and rank(x,5 Vy) < n (established by pi,... ,/>„), and hence this is
impossible by induction;
or

(iii) s = x A {s V z), s V y = s v z, and A^s.^ < z) (see Figure 8), a
contradiction with Case 2.

4B. u e A- B. By (Ord), choose an s e S with u < s < y. By
Lemma 18, N$(x, s < {x V s) A z) (see Figure 4). Now if (x Vs) A z e A, then
this contradicts Case 1 (x,^(x V s) A z G A); otherwise, (x V s) A z € B - A,
covered by Case 3D. Or s = (x Vs) Az and N$(x\/s,y < z) (see Figure 5). If
xvs € S, then we get to Case 2; otherwise, xVs e A -B, and (xVs) Az e S,
contradicting Case 4A.

Case 4C. u G B - A. We show that this case cannot occur by induction
on rank(x,y) = n. Let the {x,y}-sequencep\,...,pn(e S) establish the rank.
By Lemma 19, either

(i) N$(z,s < XA{SVZ)) (see Figure 6); if xA{sVz) e B, then we contradict
Case 1 (z, s < xA{sVz) e B); otherwise, x A(sVz) eA-B, and we contradict
Case 3D;
or

(ii) s = XA(SVZ) and Ns(x,sVy < sVz) (see Figure 7); if sVy OTSVZ e A,
then Ns(x,sV y < sv z) was covered in one of the previous cases (Cases 1
to 3 D ) ; otherwise, sVy , s V z €. B - A, and N${x,s V y < s V z) satisfies
the conditions of Case 4C; obviously, the sequence P2,...,pn establishes that
r&rik(x,s V y) < n - 1, completing the discussion of the case;
or
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(iii) s = x A (s V z), 5 V y = sV z, and N5(s,y < z) (see Figure 8), which
contradicts Case 2.

This completes the proof of the theorem.

5. Distributive lattices

In this section we prove

THEOREM 20. The variety D of all distributive lattices is closed under past-
ing.

PROOF. Let L = Pasted, 5 , S), where A and B are distributive lattices.
By Theorem 16, L is modular.

If L is not distributive, then it contains a sublattice Af3 (see Figure 9).
Since A and B are distributive, we cannot have x,y, and z e A or B; without
loss of generality we can assume that x,y e A and z € B - A.

CLAIM A. u e S and there is no s e A with u < s < z.
PROOF. Since u = x Ay € A, if u £ S, then ueA-B. By condition (Ord)

of Theorem 6, there is an s e S with u < s < z. To verify Claim A, it is
sufficient to show that u < s < z and s e A lead to a contradiction. Indeed,
since x,y, and s e A and A is distributive, we obtain that

s = s A (x v y) = (s A x) v {s A y) = u v u = u,

a contradiction.

CLAIM B. (Z] -(y]CB-A.
PROOF. Let p e A satisfy p < z but not p < y. Then u < pvu < z and

PVUGA, contradicting Claim A.
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CLAIM C. {y] - (z] contains an element ofB.
PROOF. If (y] - (z] c A - B, then by Claim B, (y] and (z] violate condition

(Id) of Theorem 6.

CLAIM D. There is an s GS with u <s < y.
PROOF. By Claim C, we can take ap e {y],p & (z], satisfying/? e B. Then

u < u V p < y and u V p e B. By condition (Ord) of Theorem 6, there is an
s e 5 with u V p < s < y.

CLAIM E. L contains an Afj = {u\,x\,yi,zx,V\} with X\eA-B,y\eS,
and z\ e B - A.

PROOF. Let s be chosen as in Claim D. Let us define X\ = (x V z) A x,
y{ = s,z\ = (s V x) A z, «i = xi Ayi and v\ = x\ Vy\. It is well known that
these elements form a sublattice isomorphic to M3.

Since zx e [u, z], zx e B - A by Claim B. Also y\ 6 S by the choice of s.
Finally, XieA-B because otherwise AT, C B, contradicting the distributivity
of B.

Now we have the contradiction that proves the theorem. Indeed, by Claim
B applied to Af,, we have (zi] - [yi] C B - A. By interchanging A and B,
Claim B applied to M^ yields (xi] - (zi] CA-B. Hence the ideals / = (JCI]
and J = [z\] contradict condition (Id) of Theorem 6.

6. Concluding remarks

In the proof of Theorems 5 and 6, we only used that gA and gs were
homomorphisms, except for the last step when we verified that h was an
embedding. This proves that the following is equivalent to Definition 1.

DEFINITION 1'. Let L be a lattice. Let A, B, S be sublattices of L, AnB = S,
A is B = L. Let [A and fs be the embeddings of A and B, respectively, into
L. Then L pastes A and B together over S, in notation, L = Pasted, B, S),
if whenever gA and gs are homomorphisms of A and B into a lattice K
satisfying xgA = xgs for all x € S, then there is a homomorphism h of L
into K satisfying fAh = gA and fBh = gB (see Figure 1).

We can put this in another way: let <p be a homomorphism of L onto L';
let L paste A and B together over 5", and let A',B', and S" be the images of
A,B,S under <p. Then Z/ pastes ^4' and B' together over S'.
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Finally, we would like to mention an open problem:

PROBLEM. Which varieties V of lattices are closed under pasting?

In this paper we have proved that M and D are such varieties. In [5],
we have discussed continuumly many varieties of modular lattices (which
are known to be closed under gluing) that are closed under the pasting of
finite lattices. We do not know whether these same varieties are closed under
pasting in general. More generally, it would be interesting to find out whether
modular varieties of lattices that are closed under gluing are also closed under
pasting.
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