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COUPLINGS FOR LOCALLY BRANCHING EPIDEMIC PROCESSES

BY A. D. BARBOUR

Abstract

The asymptotic behaviour of many locally branching epidemic models can, at least to
first order, be deduced from the limit theory of two branching processes. The first is
Whittle’s (1955) branching approximation to the early stages of the epidemic, the phase
in which approximately exponential growth takes place. The second is the susceptibility
approximation; the backward branching process that approximates the history of the
contacts that would lead to an individual becoming infected. The simplest coupling
arguments for demonstrating the closeness of these branching process approximations
do not keep the processes identical for quite long enough. Thus, arguments showing that
the differences are unimportant are also needed. In this paper we show that, for some
models, couplings can be constructed that are sufficiently accurate for this extra step to
be dispensed with.

Keywords: Coupling; epidemic process; branching process approximation; deterministic
approximation

2010 Mathematics Subject Classification: Primary 92H30; 60K35; 60J85

1. Introduction

Stochastic epidemic modelling is one of the classical fields of applied probability. Originally,
papers on the subject appeared in a wide variety of journals. McKendrick’s 1926 paper in the
Proceedings of the Edinburgh Mathematical Society and Greenwood’s 1931 paper in the Journal
of Hygiene were early instances, and the seminal papers of Bartlett (1949) and Bailey (1953)
appeared in the Journal of the Royal Statistical Society Series B and Biometrika, respectively.
However, since the Journal of Applied Probability was founded in 1964, such articles have had
a natural home. Two notable examples are Sellke’s (1983) paper, in which an ingenious new
construction of the Markovian SIR epidemic model was introduced, and Ball’s (1983) coupling,
in which a sequence of epidemic processes and a branching process are constructed together
on the same probability space, in such a way that their paths are all identical during their early
development.

The topic of this paper is directly concerned with two classical results that have strongly
influenced the development of epidemic modelling. One is Whittle’s (1955) birth-and-death
approximation to the early stages of the Markovian SIR epidemic model, the precursor to Ball’s
coupling idea, and the second is Kendall’s (1956) recognition of the solution to Kermack and
McKendrick’s (1927) differential equations as an approximation to the paths of the Markovian
SIR epidemic, once the initial phase has come to an end. In a recent paper, Chatterjee
and Durrett (2011) studied the Aldous (2013) gossip process, which can be interpreted as
a Markovian SI epidemic that spreads deterministically locally in space, but also allows for
occasional random long-range contacts. They showed that the development of the proportion
of space infected can be described in an entirely similar way, with an initial branching phase
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followed by an almost deterministic progression. Barbour and Reinert (2013a) used an approach
that they had developed for the analysis of certain small-world stochastic networks to extend this
result to much more general gossip processes. Their method involves only branching process
approximations and asymptotics, and they were able to identify the (otherwise mysterious)
expression for the deterministic curve in terms of the Laplace transform of the distribution of the
limiting random variableW for a branching process backwards in time—in this case, having the
same distribution as that used for approximating the initial stages of the process. In a subsequent
paper, Barbour and Reinert (2013b), they extended their approach to quite general SIR models,
with no Markovian assumption; here, the backward and forward branching processes may have
different distributions, but the mean measures of the offspring point processes are the same for
both. Analogous results for the mean path have recently been independently obtained for the
somewhat simpler first passage percolation model by Bhamidi et al. (2012).

Suppose that an epidemic spreads from an initial infective in a population of large size N .
The idea of the method is roughly as follows. A given individual K has been infected by
time 2t + s only if it was infected within time t + s by some individual that was infected by the
initial infective within time t . The number of individuals that are infected by the initial infective
within time t = tN can be well approximated using a branching process, if tN is not too large,
and the same is true of the number of individuals who would infectK within time tN +s, for the
same choice of tN , though the branching processes may be different. The probability that these
two sets of individuals share a common member is then given by a hypergeometric probability,
if all individuals are equivalent with respect to the contact probability (homogeneous mixing),
and, if tN is correctly specified, this probability is asymptotically nontrivial. As it happens,
tN should be chosen in such a way that the mean number of individuals in (either) branching
process at time tN is about

√
N ; if λ is the Malthusian parameter (it is the same for both

branching processes), take tN = (1/2λ) logN . For this choice, there are about cfWf
√
N

individuals currently infected at time tN , and the set of individuals who would infect K within
a further time tN + s has size about CbWb

√
Neλs ; here, Wf and Wb are limiting random

variables for the forward and backward branching processes, respectively, and cf and Cb are
the constants appropriate for the asymptotics of the number currently alive in the forward
branching process and the number that have so far been born in the backward branching process,
respectively. Conditional on Wf and Wb, the hypergeometric probability is then close to 1 −
exp(−cfCbWfWbeλs). Hence, the expectation of the proportion�(2tN + s) of individuals that
have not been infected by time 2tN + s, given the initial development up to time tN , which is
the same as the conditional probability that a randomly chosen K is not infected, is close to

E[e−cfCbWfWbeλs | Wf ] = ψB(e
λs+log(cfCb)+logWf ) = sB(s + λ−1[log(cfCb)+ logWf ]),

where ψB(v) := E[e−vWb ] and sB(u) := ψB(eλu). By a similar argument, the expectation
of [�(2tN + s)]2 is the same as the probability that two independently and uniformly chosen
individualsK andK ′ are uninfected at time 2tN +s, and this in turn can be shown to be close to
[sB(s + λ−1[log(cfCb)+ logWf ])]2, because the numbers of individuals who would infect K
andK ′ within time tN + s are close to being independent. But this implies that the conditional
variance of �(2tN + s) is small, and, hence, that �(2tN + s) is asymptotically close to its
conditional expectation, given the development up to time tN . Note that the determination of
the constant cfCb appearing in the approximation actually requires a more careful argument
than has been presented in this sketch.

One of the technical difficulties in carrying through this argument precisely is that the
branching process coupling, using Ball’s (1983) method, may well fail before time tN . Then it
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is necessary to control the effects of ‘ghosts’, individuals that are present in the branching
process, but not in the epidemic. There are not many of them, but showing that their influence
is small typically requires a disproportionate effort. Here, we use the fact that, for some
epidemic models at least, there is a way of coupling the branching and epidemic processes that
has asymptotically small failure probability for times even longer than the choice of tN above.
This greatly reduces the detailed estimates required in the proof. The couplings that we shall
use are those introduced in Barbour and Utev (2004) and Barbour (2010).

2. The Reed–Frost epidemic process

The Reed–Frost epidemic process is a chain binomial model, defined by the following
stochastic recursion. For given S0 and I0, the numbers of susceptibles Sn and infectives In at
time n satisfy

L(In+1 | Sn, In) = bin(Sn, 1 − qIn), Sn+1 = Sn − In+1. (2.1)

Here, q := 1 − p, with p representing the probability that a contact occurs between a given
pair of individuals during a single time unit. If In = 0 for some n then Sn+j = Sn for all j ≥ 0;
the epidemic has terminated. Note also that Sn = S0 − ∑n

l=1 Il , so the path of the process is
determined by the values of {In, n ≥ 0}. We shall be interested in situations in which the total
population N = S0 + I0 is large, and we suppose for definiteness that p = pN = m/(N − 1)
for some fixed m, the mean number of contacts that an individual makes in one time unit.

Our main theorem, stated precisely in Theorem 2.1 below, shows that, with high probability
when N is large, the proportion of susceptibles N−1SR(N)+r for all r ∈ Z stays close to the
points s(uN +VN + r) on a fixed continuous, decreasing curve s. Here, R(N) ∼ logN/ logm,
the valuesuN are uniformly bounded, andVN is a random variable that depends only on the early
evolution of the epidemic process, and converges in distribution as N → ∞ to a nontrivial
limit V . The distribution of V and the function s can both be deduced from the branching
process Z = {Zn, n ≥ 0} with offspring distribution Poi(m). Thus, the ‘epidemic curve’
described by the proportion of susceptibles is fixed, but it is traversed in discrete time steps,
and with a random time shift.

Our proof of the theorem makes use of the following coupling inequality that is central to
the argument. We show that the Reed–Frost epidemic process can be coupled to Z, if we take
Z0 = I0, in such a way that

1 −P{Zn = In for 0 ≤ n ≤ n(N)} = O(N−1I
3/2
0 m3n(N)/2) = O(N−1(EZn(N))

3/2). (2.2)

We use (2.2), with n(N) chosen such thatmn(N) 
 N7/12, to justify using the branching process
for calculations about the epidemic process up to the time when (if ever) aboutN7/12 individuals
have been infected. Because we can do this accurately for so long, we never have to cope with
the ‘ghosts’ alluded to in the introduction.

We begin with a Poisson approximation lemma.

Lemma 2.1. For M ≥ s and i in Z+ and for 0 ≤ p = 1 − q ≤ 1,

dTV(bin(s, 1 − qi),Poi(Mip)) ≤ ip + (Mip)−1/2[(M − s)ip + 1
2 si(i − 1)p2].

If also M − s ≥ i then

dTV(bin(s, 1 − qi),Poi(Mip)) ≤ 1

2
(M − s)

√
ip

M
(3 + 2Mp).
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Proof. Since, by Taylor’s theorem, (1 − qi) ≤ ip and 0 ≤ ip − 1 + qi ≤ 1
2 i(i − 1)p2, it

follows from Barbour et al. (1992, Chapter 1, Equation (1.23) and Theorem 1.C(i)) that

dTV(bin(s, 1 − qi),Poi(s(1 − qi))) ≤ ip

and that

dTV(Poi(s(1 − qi)),Poi(Mip)) ≤ (Mip)−1/2[(M − s)ip + 1
2 si(i − 1)p2].

For the final simplification, note that the result is trivial for i = 0, and that, for i ≥ 1 and
M − s ≥ i, √

Mip

M − s
≤

√
Mp

M − s
≤ √

Mp ≤ 1

2
(1 +Mp),

and s(i − 1)p/(M − s) ≤ sp ≤ Mp, from which the last part follows.

We now couple a branching process Z with offspring distribution Poi(Mp) to the process
of infectious individuals I in the Reed–Frost epidemic, where M ≥ S0. Lemma 2.1 is used to
compare the stochastic recursion (2.1) to the recursion

L(Zn+1 | Zn) = Poi(MpZn) (2.3)

for the branching process.

Lemma 2.2. If M ≥ S0 then the Reed–Frost process of (2.1) with S0 + I0 = N and the
branching process Z with offspring distribution Poi(Mp), both starting with Z0 = I0, can be
coupled so that Zn = In, 0 ≤ n ≤ n0, with probability of failure at most

c(Mp)I
3/2
0 M−1(Mp)n0/2[(M − S0)+ (Mp)n0 ],

where x−1c(x) is bounded in any interval x ≥ 1 + δ for δ > 0. In particular, if m > 1 and
α > 0 are fixed, p = m/(N − 1), n0 ≤ α logN/ logm, and M − S0 ≤ Nα , then, as N → ∞,
the probability of failure equals O(N−1+3α/2), and, hence, is small for any α < 2

3 for any
fixed I0.

Proof. Let Bl := ∑l
j=0 Zj denote the number of individuals ever alive in the branching

process up to time l. Then, if Il = Zl for 0 ≤ l ≤ n, it follows that Sn = N − Bn ≥ S0 − Bn
and that In = Zn. Comparing recursions (2.1) and (2.3), noting that M − Sn ≥ In and using
Lemma 2.1, it follows that Zn+1 and In+1 can be coupled in such a way that

P{Zn+1 �= In+1 | Il = Zl, 0 ≤ l ≤ n} ≤ 1

2
(M − S0 + Bn)

√
Znp

M
(3 + 2Mp).

Write m̃ := Mp, and note that, for the martingale {Wn} := {m̃−nZn} with limit W ,

E[(Wn+r −Wn)
2] ≤ I0m

−n

m− 1
and EW 2

n ≤ I 2
0m

m− 1
. (2.4)

It thus follows that E[√Zn ] ≤ m̃n/2
√
I0 and that

E[Bn
√
Zn] =

n∑
r=0

mr+n/2E[Wr E[√Wn | Zr ]]

≤
n∑
r=0

mr+n/2{EW 2
r }3/4

≤
(

m

m− 1

)7/4

m3n/2I
3/2
0 .
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Hence, Zn and In can be coupled exactly for 1 ≤ n ≤ n0 with failure probability at most

c(m̃)I
3/2
0 M−1m̃n0/2[(M − S0)+ m̃n0 ]

for c(x) := ( 3
2 + x)max{1, x3/4(x − 1)−7/4} and with m̃ := Mp.

Observe that Lemma 2.2 establishes (2.2).
Now let I0 be fixed, and take S0 = N − I0; let p = pN = m/(N − 1) as before. For

0 < α < 2
3 , let nα(N, I0) be the integer such that

θα(N)I0m
nα(N,I0) = Nα, where m−1 < θα(N) ≤ 1. (2.5)

Define nf(N) := n7/12(N, I0) and nb(N) := n5/12(N, 1), and correspondingly θf(N) and
θb(N). Note that nb(N) is the time for which we couple the susceptibility process for a single
individual to the backward branching process, so that the initial number here is always 1. Then,
by Lemma 2.2, the branching process Z with Z0 = I0 and offspring distribution Poi(m) can
be coupled exactly to the process {In} of infectives for nf(N) steps with failure probability at
most equal to O(N−1/8).

For the main theorem of this section, we condition on {Zn : n = 0, 1, . . . , nf(N)}, denoting
this information by F0. We establish the almost deterministic development from time nf(N)

onwards only on an event in F0 of asymptotically high probability. Let CN denote the event
that the coupling up to time nf(N) is successful, and set A(1)N := {Bnf (N) ≤ N2/3} and A(2)N :=
{| logWnf (N)| ≤ 1

24 logN}, where, as before, Wn := m−nZn and W := limn→∞Wn. Then

set A∗
N := CN ∩ A(1)N ∩ A(2)N . The probability of A∗

N is close to the probability 1 − qI0 of
nonextinction of the branching process Z, starting with I0 individuals. The probability of a
small epidemic, when the proportion of susceptibles always stays near 1, is close to qI0 .

Theorem 2.1. For the Reed–Frost epidemic process defined above and any ε > 0, asN → ∞,

P

{
sup
r∈Z

∣∣∣∣N−1Snf (N)+nb(N)+r − s

(
r + log cN + logWnf (N)

logm

)∣∣∣∣ > ε

∣∣∣∣ F0 ∩ A∗
N

}
→ 0,

where s(u) := ψ(eu logm), ψ(v) := E[e−vW ], and limN→∞ P(A∗
N) = P{W > 0}.

Proof. As outlined in the introduction, for K a uniformly distributed element of [N ] :=
{1, 2, . . . , N},
E[N−1Snf (N)+nb(N)+r | F0 ∩ CN ]

= P{K ∈ Snf (N)+nb(N)+r | F0 ∩ CN }
= P{K /∈ Bnf (N)−1} P{Ũnb(N)+r ∩ Znf (N) = ∅ | F0 ∩ CN ∩ {K /∈ Bnf (N)−1}}, (2.6)

where Bnf (N)−1 denotes the set of indices randomly assigned to the Bnf (N)−1 individuals in-
fected before timenf(N), Znf (N) those assigned to theZnf (N) infected individuals at timenf(N),
Sl those assigned to individuals uninfected at time l, and Ũnb(N)+r those assigned to individuals
who would contactK within an elapsed time of nb(N)+ r . IfK ∈ Bnf (N)−1,K cannot belong
to Snf (N)+nb(N)+r , since it has already been infected before time nf(N). If not then no member
of Ũnb(N)+r can belong to Bnf (N)−1 unless there is also a member of Ũnb(N)+r that belongs
to Znf (N), because all individuals directly in contact with Bnf (N)−1 belong to Bnf (N)−1∪Znf (N),
by construction. Thus, for Ũnb(N)+r := |Ũnb(N)+r |, we have

P{Ũnb(N)+r ∩ Znf (N) = ∅ | F0 ∩ CN ∩ {K /∈ Bnf (N)−1}; Ũnb(N)+r}
= P(N − Bnf (N)−1, Znf (N), Ũnb(N)+r ), (2.7)
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where P(n,m1,m2) denotes the hypergeometric probability that two independently chosen
uniform random subsets of [n] of sizes m1 and m2 do not intersect. Now the Ũl, l ≥ 0,
again arise as a Reed–Frost epidemic, this time on the set [N ] \ Bnf (N)−1 and with the same
p as before; hence, we can use Lemma 2.2 once more to show that they can be generated by
a branching process (Z̃l, l ≥ 0) with Z̃0 = 1 and with offspring distribution Poi(m), with
exact coupling failing to hold up to time nb(N) + r with probability of order O(N−1/12),
on the set A(1)N , if r is such that mr ≤ N1/12; we write B̃l to denote

∑l
j=0 Z̃j and W̃ :=

limn→∞m−nZ̃n. Noting also that P{K ∈ Bnf (N)−1} ≤ N−1/3 on A(1)N , it follows from (2.6),
and by taking the expectation with respect to Ũnb(N)+r in (2.7), that

E[N−1Snf (N)+nb(N)+r | F0 ∩ CN ∩ A(1)N ]
= E[P(N − Bnf (N)−1, Znf (N), B̃nb(N)+r ) | F0 ∩ CN ∩ A(1)N ] +O(N−1/12). (2.8)

Furthermore,

0 ≤ exp

(
−m1m2

n

)
− P(n,m1,m2) ≤ n−1(m1 +m2),

by Barbour et al. (1992, Theorem 6A), and, for 0 ≤ x ≤ m and 0 ≤ y ≤ n/2,

0 ≤ e−(m−x)l/n − e−ml/n ≤ xl

n
, 0 ≤ e−ml/n − e−ml/(n−y) ≤ 4

mly

n2 e−ml/n.

Hence,∣∣∣∣E
[
Snf (N)+nb(N)+r

N

∣∣∣∣ F0 ∩ CN ∩ A(1)N
]

− E

[
exp

(
−Znf (N)B̃nb(N)+r

N

) ∣∣∣∣ F0 ∩ CN

]∣∣∣∣
≤ C′(N−1/3 +N−7/12 +N−1/12) (2.9)

for a constant C′.
Now, from (2.4) with I0 replaced by 1, if r is such that mr ≥ N−1/12,

E|m−(nb(N)+r)Z̃nb(N)+r − W̃ | = O(N−1/6).

Similarly, also using (2.4) with I0 = 1,

E

[(
B̃n−1 − Z̃n

m− 1

)2]
= E

[(n−1∑
r=0

mr(W̃r − W̃n)− W̃n

m− 1

)2]

≤ (n+ 1)

(n−1∑
r=0

m2r
E[(W̃r − W̃n)

2] + m

(m− 1)3

)

≤ 2mn
m(n+ 1)

(m− 1)3
,

so that, in the same range of r ,

E

∣∣∣∣m−(nb(N)+r)
[
B̃nb(N)+r − mZ̃nb(N)+r

m− 1

]∣∣∣∣ = O(N−1/6 logN).
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Thus, we conclude that, for |r logm| ≤ 1
12 logN ,∣∣∣∣E

[
exp

(
−Znf (N)B̃nb(N)+r

N

)
− exp

(
− mr+1Wnf (N)W̃

(m− 1)I0θf(N)θb(N)

) ∣∣∣∣ F0 ∩ CN

]∣∣∣∣
= O(N−1/12), (2.10)

since also, from (2.5),N = I0θf(N)θb(N)m
nf (N)+nb(N). Combining (2.9) and (2.10), it follows

that

E

[
Snf (N)+nb(N)+r

N

∣∣∣∣ F0 ∩ CN ∩ A(1)N
]

= ψ(cNWnf (N)m
r)+O(N−1/12),

where cN := m/[(m− 1)I0θf(N)θb(N)], uniformly in |r logm|≤ 1
12 logN , andWnf (N) can be

replaced by W using (2.4) once more, without change to the order of the error.
It remains to examine var(N−1Snf (N)+nb(N)+r | F0 ∩CN ∩A(1)N ). For two pointsK andK ′

chosen independently and uniformly from [N ], we can write, as above,

E

[(
Snf (N)+nb(N)+r

N

)2 ∣∣∣∣ F0 ∩ CN ∩ A(1)N
]

= P{{K,K ′} ∩ Snf (N)+nb(N)+r = ∅ | F0 ∩ CN ∩ A(1)N }. (2.11)

Again, only the eventE(1)N := {{K,K ′} ∩ Bnf (N)−1 = ∅} is important because the complemen-
tary probability is of orderO(N−1/3) onA(1)N . Then, the corresponding sets Ũ(i)

nb(N)+r , i = 1, 2,
can be constructed by using independent branching processes Z̃(i), with an error of order
O(N−1/12). Note that the probability of the event (E(2)N )c that Ũ(1)

nb(N)+r and Ũ(2)
nb(N)+r intersect,

conditional on their sizes Ũ (i)nb(N)+r being known, is the hypergeometric probability

1 − P(N − Bnf (N)−1, Ũ
(1)
nb(N)+r , Ũ

(2)
nb(N)+r ) = O(N−1Ũ

(1)
nb(N)+r Ũ

(2)
nb(N)+r )

on A(1)N . Taking expectations, it follows that

P{(E(2)N )c | F0 ∩ CN ∩ A(1)N ∩ E(1)N } = O(N−1/12).

But then, given the sizes Ũ (i)nb(N)+r and that the two sets do not intersect, we have

P{{K,K ′} ∩ Snf (N)+nb(N)+r = ∅ | F0 ∩ CN ∩ A(1)N ∩ E(1)N ∩ E(2)N ; Ũ (i)nb(N)+r , i = 1, 2}
= P(N − Bnf (N)−1, Znf (N), Ũ

(1)
nb(N)+r ) P (N − Bnf (N)−1 − Ũ

(1)
nb(N)+r , Znf (N), Ũ

(2)
nb(N)+r ),

and, on A(1)N and if also Ũ (1)nb(N)+r ≤ N2/3, this is equal to

P(N − Bnf (N)−1, Znf (N), Ũ
(1)
nb(N)+r ) P (N − Bnf (N)−1, Znf (N), Ũ

(2)
nb(N)+r )

+O(N−2(Ũ
(1)
nb(N)+r Ũ

(2)
nb(N)+rZnf (N))),

since |P(N, r, s) − P(N − K, r, s)| ≤ rsK/[N(N − K)]. Replacing Ũ (i)nb(N)+r by B̃(i)nb(N)+r
and taking expectations, and noting the independence of B̃(1) and B̃(2), this gives

P{{K,K ′} ∩ Snf (N)+nb(N)+r = ∅ | F0 ∩ CN ∩ A(1)N ∩ E(1)N }
= (E[P(N − Bnf (N)−1, Znf (N), B̃

(1)
nb(N)+r ) | F0 ∩ CN ])2 +O(N−1/12),
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which in turn implies the same estimate for the probability without conditioning on E(1)N .
In view of (2.11) and (2.8), this shows that var(N−1Snf (N)+nb(N)+r | F0 ∩ CN ∩ A(1)N ) is of
order O(N−1/12) for any fixed r .

The extension to the supremum over r is almost immediate, because both functions in the
approximation are bounded and decreasing. The function s(u) decreases smoothly from 1 to
the extinction probability q of the branching process Z̃, so that, for any ε > 0, there are values
aε < bε such that s(aε) = 1 − ε/2 and s(bε) = ε/2. Hence, given the value of Wnf (N), there
are no more than (bε − aε)+ 3 values of r such that

r + log(cN)+ logWnf (N)

logm
∈ (aε − 1, bε + 1).

We have proved ε/2-approximation with high probability at each of these points, for large
enough N , provided always that, for each of them, |r| logm ≤ 1

12 logN , and this is also the
case, for large enough N , if | logWnf (N)| ≤ 1

24 logN . The ε-approximation for values of r
outside this range then follows by monotonicity.

The statement of the theorem is complicated by the fact that the process is significantly
discrete in the range in which an important change in the proportion of susceptibles takes place.
The underlying function s is the same for eachN , but it is observed only at arguments lying on
a lattice of span 1. The position of this lattice on the line is random, depending on the value
taken by the limiting branching random variable W relevant to the early development of the
process. There is also a deterministic offset log cN/ logm, which varies with N , and is again a
feature of the discrete generation structure in the process.

To interpret the function s, note that writing sn := N−1Sn in (2.1) gives the large N
approximation

sn − sn+1 ≈ sn

(
1 −

(
1 − m

N

)N(sn−1−sn))
≈ sn(1 − e−m(sn−1−sn)). (2.12)

On the other hand, the Laplace transformψ of the branching process limiting random variableW
satisfies ψ(v) = f (ψ(v/m)) with f (z) = e−m(1−z), so that, for any c ∈ R,

s(n+ 1 + c) = ψ(mn+1+c) = e−m(1−ψ(mn+c)) = e−m(1−s(n+c)),

and this gives

s(n+ c)− s(n+ 1 + c) = s(n+ c)(1 − e−m(s(n−1+c)−s(n+c))),

which, with s(r + c) replaced by sr , recovers (2.12) with equality.

3. The Markovian SIR epidemic process

The second example is the Markovian SIR epidemic process, formulated by Bartlett (1949).
The process is a continuous-time pure jump Markov process {(SN(t), IN(t)), t ≥ 0} on (Z+)2,
starting with (SN(0), IN(0)) = (N, I0), and having transition rates, for (S, I ) ∈ (Z+)2,

(S, I ) → (S − 1, I + 1) at rate αI (S/N), (S, I ) → (S, I − 1) at rate μI,

where α is the per capita contact rate of an infective, and μ is the recovery rate. We shall think
ofN as being large, and take I0 to be fixed; we shall also assume that α > μ, so that the chance
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of a significant epidemic is not small. Then it has long been understood that (SN, IN) can be
approximated by an initial birth-and-death phase, the Whittle (1955) approximation, until the
random time τN := τ

γ

N at which the number of infectives has reached some chosen power Nγ

of N for some suitable 0 < γ < 1. After this, the development of N−1(SN(t), IN(t)) is well
described by the solution of the differential equations

ds

dt
= −αs(t)i(t), di

dt
= (αs(t)− μ)i(t) (3.1)

in t ≥ τN , with s(τN) = N−1SN(τN) and i(τN) = N−1+γ . We now illustrate how our
approach can be used to justify these approximations, with γ = 7

12 ; the formal statement is
given in Theorem 3.2 below. As in the previous section, a key ingredient in the proof is the
accurate coupling of the epidemic and branching processes until the first time (if ever) that
there are Nγ infectives, where 1

2 < γ < 2
3 . A more detailed description of the final phase,

when IN(t) falls below Nγ again, can also be undertaken if, for instance, the distribution of
the time until the epidemic finally dies out is of interest; see Barbour (1975).

The initial branching approximation is made using the process (S∗
N, I

∗) having N indepen-
dent transition rates

(S, I ) → (S − 1, I + 1) at rate αI, (S, I ) → (S, I − 1) at rate μI,

for (S, I ) ∈ Z × Z+, with (S∗
N(0), I

∗(0)) = (N, I0). Note that the distribution of the second
component I ∗ is indeed the same for all N , as is that of B∗ := N − S∗

N , and that the paths
of B∗ can be deduced from those of I ∗. Here I ∗ itself is a linear birth-and-death process with
constant per capita birth and death rates α and μ.

Theorem 3.1. Let τγN := inf{t ≥ 0 : IN(t) ≥ Nγ }, with τγN = ∞ if there is no such t . Then
the epidemic process (SN, IN) can be coupled to a process (S∗

N, I
∗) as defined above, in such

a way that

pCN(γ ) := P{(SN(t), IN(t)) = (S∗
N(t), I

∗(t)) for all 0 ≤ t ≤ τ
γ

N } = 1 −O(N−1+3γ /2).

In particular, limN→∞ pCN(γ ) = 1 if γ < 2
3 .

Proof. The proof can be carried out along exactly the same lines as the Radon–Nikodym
argument in Theorem 3.1 of Barbour (2010), though much more simply, to arrive at the statement

P{(SN(t), IN(t)) = (S∗
N(t), I

∗(t)) for all 0 ≤ t ≤ Tm} ≥ 1 − CN−1m3/2

for any m ∈ Z+, where Tm denotes the time of the mth jump, and C is a constant. However,
because the jump chain of I ∗ is a simple random walk, its position after m jumps can be
written as I0 + 2Zm − m, where Zm ∼ bin(m, p) and p := α/(α + μ) > 1

2 . Hence, taking
m = m(N) = �2Nγ /(2p−1)�, we have P{I0 +2Zm−m < Nγ } = o(N−r ) for any r > 0, by
the Chernoff inequality for the binomial distribution, which entails P{τγN > Tm(N)} = o(N−r )
also. This completes the proof.

The backward (susceptibility) process is more delicate. Denote the set of individuals born
up to time τγN in the epidemic by BN , for the fixed value γ = γ0 := 7

12 , and writeBN := |BN |,
which is also equal to B∗(τ γ0

N ) when the coupling is successful. Consider the susceptibility
process for an individualK0 /∈ BN . Then the probability that it would be infected by any other
individualK ′ /∈ BN , if that individual were ever infected, isα/(Nμ+α). This is the probability
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that a contact would take place before the end of K ′’s infectious period, when the contact rate
isα/N and the infectious period has the Exp(μ) distribution. Conditional on this unlikely event,
the distribution of the time to infection is Exp(μ + α/N). Thus, the ‘offspring’ point process
of K0 in its susceptibility process is a sum of N − BN − 1 independent point processes, each
of which has no point with probability Nμ/(Nμ+ α), and a single point with position having
the Exp(μ + α/N) distribution on the complementary event. By the Poisson approximation
to the binomial, this process differs from a Poisson process with intensity ρNα e−(μ+α/N)u at
u ∈ R+ only on an event of probability of order O(N−1); here, ρN := 1 − (BN + 1)/N .

Now consider the offspring of the (n + 1)th individual Kn of the susceptibility process, in
order of ‘birth’ time. There are n individuals, includingK0, that have already been considered,
and they have had Un offspring, say. The probability of any one of these contacting Kn is of
order (n+Un)/N . The remaining individuals in [N ]\BN are such that their Exp(μ)-distributed
infectious periods were shorter than the independent and Exp(α/N)-distributed times to the first
points in the infection processes along the links from them to individuals K0,K1, . . . , Kn−1.
As a result, the probability of such a K ′ infecting Kn is now α/(Nμ+ (n+ 1)α), and, should
it do so, the distribution of the time until infection is Exp(μ+ (n+ 1)α/N). Hence, except on
an event of probability of order O(N−1(n + Un)), the offspring point process for Kn has the
distribution of a Poisson process with intensity ρNα e−(μ+(n+1)α/N)u on R+. We now show
that a Poisson process with this intensity can be replaced by one with intensity ρNα e−μu, with
only a small error probability, and then that the branching process with this distribution for the
offspring point processes differs from that with intensity α e−μu du only on an event of small
probability, over a suitable length of time. Since we only need to follow the processes until
about N5/12 births have occurred, the cumulative probabilities can be shown to be small.

Lemma 3.1. For fixed α,μ > 0, let� and� be Poisson processes with intensities α e−μu and
α e−νu, respectively. Then, uniformly in ν ≥ μ,

dTV(P,Q) = O

(∣∣∣∣1 − μ

ν

∣∣∣∣
)
,

where P := L(�) and Q := L(�).

Proof. The processes � and � each have almost surely only finitely many points. The
likelihood of a realization of � with k points at times t1 < t2 < · · · < tk < ∞ is

exp

(
−α e−μtk

μ

) k∏
j=1

{
α e−μtj exp

(
−α(e

−μtj−1 − e−μtj )
μ

)}
= e−α/μαke−μsk ,

where sk := t1 + · · · + tk and t0 := 0 in the product. Hence,

dQ

dP
(t1, . . . , tk) = e−(μ−ν)[α/(μν)−sk].

Now, letting Tj ≤ ∞ denote the time of the j th point of a random realization under �, and
S := ∑

{j : Tj<∞} Tj ,

EP [eθS] = exp

(
α

∫ ∞

0
e−μu(eθu − 1) du

)
= exp

(
αθ

μ(μ− θ)

)
for any θ < μ. This implies, taking θ = −2(ν − μ), that

EP

[(
dQ

dP
({Tj , j ≥ 1})

)2]
= exp

(
2α(ν − μ)

μν

)
EP [e−2(ν−μ)S] = exp

(
2α(ν − μ)2

μν(2ν − μ)

)
.
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It is then immediate that varP {dQ/dP } = O((1 −μ/ν)2), uniformly in ν ≥ μ, and the lemma
follows because, if P andQ are two probability measures on the same space, andX ∼ P , then

2dTV(P,Q) = E

∣∣∣∣dQ

dP
(X)− 1

∣∣∣∣.
Lemma 3.2. Let Za denote a Crump–Mode–Jagers branching process with Za(0) = 1, whose
offspring point processes are distributed as Poisson processes Pa with intensities a e−μu at
u ∈ R+. Then, for α1 < α2 < 3α1/2 and any m ≥ 1,

dTV(L({Zα1(s), 0 ≤ s ≤ τ
(1)
m+1}),L({Zα2(s), 0 ≤ s ≤ τ

(2)
m+1})) ≤

√
9me

8

∣∣∣∣1 − α1

α2

∣∣∣∣,
where τ (l)m denotes the birth time of the mth individual in Zαl .

Proof. For x > 0 and f an integrable nonnegative function on R+ with F(t) := ∫ t
0 f (u) du,

consider the probability measure Qx with density xf (u)e−xF(u) at u ∈ R+, and with mass
e−xF(∞) on +∞. Then, for a, b > 0,

1 ≤ EQb

[(
dQa

dQb

(U)

)2]
= 1 + (a − b)2

b(2a − b)
{1 − e−(2a−b)F (∞)} ≤ 1 + (a − b)2

b(2a − b)
.

Now the likelihood dZα2/dZα1 evaluated at a path with its first k jumps at times t1 ≤ · · · ≤
tk ≤ ∞ takes the form of a product Wk := ∏k−1

j=0 Vj , where Vj is a ratio (dQα2/dQα1)(tj+1)

as above, for which

fj (u) := Aj e−μ(u−tj ), u > tj , and Aj := 1

μ

j∑
l=0

e−μ(tj−tl ).

Hence, E[Wj+1 | Fj ] = Wj and

Eα1 [(Wj+1 −Wj)
2 | Fj ] ≤ [(W 2

j − 1)+ 1]ε,
where

ε := (α2 − α1)
2

α1(2α2 − α1)
≤ 9

8

(
1 − α1

α2

)2

for α1 < α2 ≤ 3α1/2. From this, it follows for any j ≥ 1 that

varα1 Wj+1 ≤ varα1 Wj(1 + ε)+ ε ≤ jεejε,

and, hence, varα1 Wm ≤ mεe when mε ≤ 1. The lemma is now immediate, since the bound
exceeds 1 if mε > 1.

As a result of Lemmas 3.1 and 3.2, and because EUr ≤ rα/μ, it follows that the susceptibility
process from anyK ′, chosen uniformly at random from [N ]\BN , can be replaced by a branching
process Z̃ with the distribution ofZα as in Lemma 3.2, until the birth of the (m+1)th individual,
except on an event of probability

O

(√
mN−1(BN + 1)+

m∑
r=0

N−1(r + 1 + EUr)

)
= O(

√
mN−1(BN + 1)+m2N−1),

and, ifBN ≤ N2/3, this is asymptotically small wheneverm = mN = o(N1/2). Now, sinceZα
has Malthusian parameter λ := α − μ > 0 and E[(∫ ∞

0 e−λu Pα(du))2] < ∞, it follows that
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C := supt E[Zα(t)e−(α−μ)t ] < ∞. Hence, defining

tN (u) := 1

α − μ

5

12
logN + u, mN := N23/48, uN := logN

24(α − μ)
,

it follows by Markov’s inequality that

P{Zα(tN(uN)) > mN } ≤ CN−1/48.

Thus, on {BN ≤ N2/3}, the susceptibility process from K ′ can be coupled to Zα up to time
tN (uN) with failure probability of order O(N−1/48). This enables us to prove the following
theorem. The theorem cannot be deduced from the results of Barbour and Reinert (2013b),
because the exponential distribution of an individual’s infectious period does not satisfy their
Assumption 2; see their Remark 2.1.

Theorem 3.2. For the Markovian SIR epidemic process as defined above, and any ε > 0,

lim
N→∞ P

{
sup
u∈R

|N−1S(τ
γ0
N + tN (u))− s(u)| > ε

∣∣∣ F0 ∩ {τγ0
N < ∞} ∩ {BN ≤ N2/3}

}
= 0,

where γ0 := 7
12 , F0 := F

τ
γ0
N

, s(u) := ψ(e(α−μ)u),ψ(v) := E[e−vW̃ ], and W̃ denotes the limit-
ing random variable limt→∞ e−(α−μ)t Z̃(t) for the backward branching process. Furthermore,
limN→∞ P{{τγ0

N < ∞}∩{BN > N2/3}} = 0 and limN→∞ P{τγ0
N < ∞} = P{W ∗ > 0}, where

W ∗ := limt→∞W ∗(t) and W ∗(t) := e−(α−μ)t I ∗(t).

Proof. The proof is similar in spirit to that of Theorem 2.1. At time t = τ
γ0
N , IN(t) = I ∗(t) =

Nγ0 := �Nγ0� and SN(t) = S∗
N(t) with probability at least 1 −O(N−1/8), from Theorem 3.1.

From the argument preceding the statement of the theorem, the backward process Z̃ can be
taken to be distributed as Zα up to time tN (u), with error probability of order O(N−1/48) for
any u ≤ uN , and at time t = tN (u) it has Z̃t = W̃tN

5/12e(α−μ)u individuals.
Let the j th of the Nγ0 individuals Bγ0 of IN at time τγ0

N have Cj direct offspring born at
times {τjl, 1 ≤ l ≤ Cj }. Then a random point K ∈ [N ] is such that K /∈ S(τ

γ0
N + tN (u)) if

K /∈ Bγ0 and

VN(u) :=
Nγ0∑
j=1

Cj∑
l=1

Z̃tN (u)∑
r=1

1[Ljl = L̃r ] 1[τjl ≤ Ar ] = 0,

where {Ljl, 1 ≤ l ≤ Cj , 1 ≤ j ≤ Nγ0} denote the distinct labels assigned to the direct

offspring of the individuals in Bγ0 , and {L̃r , 1 ≤ r ≤ Z̃tN (u)} those corresponding to the
individuals in the version of Z̃ corresponding to K; Ar is the age of the rth individual of Z̃ at
time tN (u). The probability of the latter event is approximated by e−EVN(u) with error at most
of order O(N−5/12) by Barbour et al. (1992, Theorem 4.A), where

E[VN(u)] = W̃tN (u)e
(α−μ)u +O(N−5/24),

because P{Ar ≥ v} = W̃tN (u)−ve−(α−μ)v/W̃tN (u) = e−(α−μ)v(1 +O(N−5/24)), and

E

[ Cj∑
l=1

e−(α−μ)τjl
]

= 1.

Thus, s(u) approximates N−1
E[S(τγ0

N + tN (u)) | F0 ∩ {τγ0
N < ∞} ∩ {BN ≤ N2/3}], and the

rest of the proof is then much as for Theorem 2.1. That

lim
N→∞ P{{τγ0

N < ∞} ∩ {BN > N2/3}} = 0
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follows because, onW ∗ > 0, B∗(t)/I ∗(t) → α/(α−μ) almost surely, and, hence, BNN−7/12

is bounded in probability.

Note that the function s in Theorem 3.2 satisfies (3.1), with

i(t) = −
∫ ∞

0
s′(t − u)e−μu du = −

∫ t

−∞
s′(v)e−μ(t−v) dv. (3.2)

This is because the Laplace transform ψ of the limiting branching random variable W̃ satisfies
the equation

logψ(v) = −
∫ ∞

0
αe−μu(1 − ψ(ve−λu)) du,

and substituting s(t) = ψ(e(α−μ)t ) and differentiating gives s′(t)/s(t) = −α i(t). Then,
differentiating the final expression in (3.2) gives i′(t) = −s′(t) − μi(t), and the previous
equation for s′(t) completes (3.1). However, the explicit expression ψ(e(α−μ)t ) also implies
the initial condition—for instance, setting t = 0 gives values for s(0) and i(0) expressed
in terms of E[e−W̃ ] and E[W̃e−W̃ ]. Alternatively, for an initial condition at −∞, we have
s(−∞) = 1 and

lim
u→−∞ e−(α−μ)us′(u) = (α − μ) lim

u→−∞ψ
′(e(α−μ)u) = −(α − μ)EW̃ .
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