RECIPROCAL CONVERGENCE CLASSES FOR
FOURIER SERIES AND INTEGRALS

A. P. GUINAND

Introduction. The classical result of Plancherel for Fourier cosine trans-
forms of functions f(x) of the class L%(0, =) states that (see (7) for references)

gx) = 11m < > ff(t) cos xt dt

converges in mean square to a funct10n g(x) which also belongs to L?*(0, =),

and furthermore

flx) = llm < ) fg(t) cos xt df.

Some years ago in a series of papers (1; 2; 3) on summation formulae I
showed that a similar symmetrical theory for narrower classes of functions
and ordinary convergence of the integrals can also be developed. The relevant

results can be expressed as follows:

THEOREM 1. If f(x) s the integral of its derivative and xf'(x) belongs to

L0, «), then
lim f(x) =1

Z00
exists, f(x) — I belongs to L*(0, ), and

fe) =1 = o)
as x tends to +0 or to + .

Definition 1. If f(x) is the integral of its derivative and x f'(x) belongs to
L2(0, =), and if the limit to which f(x) tends as x tends to infinity is zero,

then we say that f(x) belongs to the class S;2(0, «).
TareoreM 2. If f(x) belongs t0 S12(0, «) then for x > 0

% —>o0
1) g(x) = (%) f(@) cos xt dt
[1]
converges, g(x) also belongs to S12(0, =), and
3 oo
2) flx) = <‘1gr> , g(¢) cos xt dt.

Here we use the notation
- T
f = lim .
a T a

19
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That is to say that the class S;2(0, «) is a subclass of L2(0, «), and that
it can be described as a self-reciprocal convergence class for Fourier cosine
transformations.

This theory has recently been extended by Miller (5) to cover wider sub-
classes of L%(0, ) and more general transformations. A disadvantage of
Theorem 2 is that, although the result is simple and easily applied, the proof
of Theorem 2 is indirect and it uses results from the Plancherel theory.

In the first part of the present paper I show how to find narrower self-
reciprocal convergence classes for Fourier cosine transtorms, and I give a
direct proof of the Fourier inversion formula without using the Plancherel
theory for one such self-reciprocal convergence class.

In the second part of the paper I prove analogues of Theorems 1 and 2 for
Fourier series. I define a class S;%(0, 27) of functions f(x) of period 27 and a
class X1 (— o, =) of sequences {c,} (=0, %1, £2,...,) which are
reciprocal convergence classes for Fourier series in the sense that:

(1) if f(x) belongs to S;2(0, 27) then it has a Fourier series

3) f@) = 2 e

which converges for x # 0 (mod 27), and {¢,} belongs to Y_2(— o, «);
(i) if {c,} belongs to > ;*(— ©, =) then > ,—_.~ ¢, ¢"® converges for all
x # 0 (mod 27) and defines a function f(x) belonging to S;%(0, 27).

PART I: FOURIER INTEGRALS

1. Reciprocal classes and Mellin transforms. If f(x) and g(x) are
Fourier cosine transforms connected by the equations (1) and (2), and §(s)
and ®(s) are their Mellin transforms then, formally (7, p. 213),

(4) G(s) = R(s) FA —9)
and

) = K(s) G0 —5),
where

R(s) = <z>z I'(s) cos s,

™

and consequently
(5) [R(G + )| =1
for all real ¢.

From the L? theory of Mellin transforms (7, p. 94) it follows that if f(x)
belongs to L2(0, «) then §(s) belongs to 82(— «, «). Hence by (4) and (5)
it follows that ®&(s) also belongs to ¥*(— «, ») and consequently g(x) be-
longs to L*(0, =), as required by the Plancherel theory.

A similar argument can be used to show that the class S;2(0, «) is seli-
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reciprocal for Fourier cosine transformations. If f(x) belongs to S$;2(0, =) then
the Mellin transform of x f’(x) exists and is

X

(6) Lim. | xf'(x)x" " dx

X 1/x

Lim. {[xsf(x)]f/x -5 flle(x)xs'1 dx}

X500

= — 50,

since the integrated terms vanish for R(s) = % by Theorem 1. Hence s §(s)
belongs to (— », ) and it follows from (4) and (5) that s &(s) also
belongs to *(— «, ). Then, reversing the above argument, it follows that
g(x) belongs to S;2(0, «), as required by Theorem 2.

Now the same procedure can be used when $(s), instead of being multiplied
by —sasin (6), is multiplied by some other suitable function of s. For example,
put

®(L —5) = F(s)/T(s)
and assume that ®(s) belongs to 2(— «, ). Then &(s) is the Mellin trans-

form of a function ¢(x) belonging to L?(0, «). Further T'(s) is the Mellin
transform of ¢=* and consequently the relationship

) §(s) = T(s)ed — )
corresponds to (7, p. 213)
(8) fx) = Lme‘%(t) dt.

Froxﬁ (4) and (7) we have
G() = KE)TA — 5)d(s)

= {@(s) %s:)i)} {T(s)®(s)}.

Hence, by (5), on R(s) = %

S (s) ra-—s)
T'(s) T'(s)

and so ®(s)/T'(s) belongs to ¥(— », =).
Reversing the argument from (7) to (8) it follows that there is a y¥(x)
belonging to L?(0, «) for which

glx) = fo me‘“x&(t) dt,

= IQ(S)

[@(s) = [2(5)]

and we have the following result.
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THEOREM 3. If f(x) s the Laplace transform of a function of L*(0, =), and
g(x) is its Fourier cosine transform, then g(x) is also the Laplace transform of a
function of L2(0, «).

Let us now make the following definition.

Definition 2. The function f(x) is said to belong to the class A2{%(x)} if there
exists a function ¢(x) belonging to L2(0, ) such that

1@ = [ h o at

for all x > 0.

Then Theorem 3 states that the class A%(e~?) is self-reciprocal for Fourier
cosine transformations.

The same type of argument can be used to prove the following more general
result.

THEOREM 4. If h(x) belongs to L*(0, ») and has a Mellin transform $(s)
satisfying

(3 +at)

DTy

OG —at)
for all real t then A*{h(x)} is a self-reciprocal class of functions with respect
to any general transformation of the Fourier type.

For general transformations see (7, ch. VIII).

2. Symmetrical convergence theorems by direct methods. The argu-
ments of § 1 do not prove that the Fourier integrals (1) and (2) converge,
and they use the L? theory of Mellin transforms. If we consider the class of
functions

A2(e3?)

we can derive a symmetrical convergence theorem for the Fourier cosine
transformation by a direct method. The result is:

THEOREM 5. If f(x) belongs to the class

A2(e—%zz)
then
©) g(x) = (%) Tr@) cos de
converges for x > 0, g(x) also belongs to
AP,
and
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(10) ) = (%) ;oog(t) cos xt dt
for x > 0. Further, if, for x > 0,

a1 1@ = [T e a
and

glx) = f:e‘%"z "ot dt

in accordance with Definition 2 then

(12) 069 = Lol2)

X

almost everywhere.

From Definition 2 there exists a function ¢(x) of L2(0, «) satisfying (11).
Hence

(13) g(x) = <§) J;mf(t) cos xt dt

2 b e et 1,240

S f cos xt dtf d(u)e ™ ¥ du
, 0 0
2 % {ee] {ee}

= (—) f ¢ (u) duj e cos xt dt,
, 0 0

provided that this formal process can be justified. Now

<Z)5 f TP cos pp df = L B
7l' 0 u
so (13) becomes

” b ()3
(14) g@ = [ oot L

_ (71 1) e
- J; :® <t> cr
= f Y()e ™" dt
0
by (12).
We can justify this process by the following three lemmas.
LEMMA 1. If Vi > V> 0,y >0, then
Vi 1.0
f e 2" cos yv dv

14

—iy?

<ge
y
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Proof.

Vi H Vi Vi
1, 1,2 1 1,2 .
J. e cos ywdy = [——Slr;—)—n—}e 2? ] + ;f ve*"” sin yo dv.
vV \ 4

14

Vl 1.9
J‘ e *" cos yv dv

12

Hence

=

< (e

Ve 1p,2 1 (7" e
+ e + —f ve 2 dv
yJdv

I

1y 1 1 -1 1 2
(" 4 7 -I—;(e WP T

|
(X
<

M

[

LIN L= I

I\

LemMa 2. If T, x, 6 are positive real numbers and ¢ (x) belongs to L2(0, =)

then
® by 2f it ’ d
f cos xt dtf eV e(u)du| < —= {J‘ |¢(u)]2du} .
0 xT 0

T
T1 8 Lo
f cos xt dtJ‘ e ™Y o(u) du
0

T

(15)

Proof. Consider

(16)

where T, > T > 0. Since ¢(x) belongs to L2(0, ») it follows that ¢(x)
belongs to L(0, §) for any finite §, and that (16) converges absolutely. Hence
(16) is equal to

8 1 19,92
17) ‘f ¢(u) du f e Y cos ut dt‘
0 T

s du (™ 30 aw
= ’f o(u) — f e cos—dv
0 u u

Tu

2 8 12,2
<= ) o)™ du
X Jo

by Lemma 1. By Schwarz’s inequality (17) is less than or equal to

(18) agc {J;sl ou)|’ du}% {J:e_ﬂ“z du}%
E{Floer Freee)
2 Mo af

Making 7" and 77 tend to infinity it follows that the double integral in
(15) converges, and (15) follows from (18) if we keep 7 fixed and make 77
tend to infinity.
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LeMMA 3. If x is real and positive, and ¢ (x) belongs to L2(0, «) then
(19) f cosxtdt | ¢w)e ™ du
0 0
converges and is equal to

(20) f ¢ (u) du f e cos xt dt.
0 0

Proof. The inversion of order of integration

J‘ o(u) du f e coswt dt = f cos xt dtf o) e du
] 1] 1] 8

is justified by absolute convergence since

[Tlowlan [T cosalar < [[lotlan [ a
= @0t [ o] &
< @mn} {ﬁ |¢(u)]2du}% {f:’%}
_ @51) {J;mw(uﬂ?du}%.

£a|¢(u)[e—%ﬁmz du { () du} { J; e_zz/u, AL y
21) { l¢(u)l2du} { oo dv}
A
— o}

Also

[¢(u)[2du}%{ e }
[ Lot du}
Hence

(22) f cos xt dtf () e du — f () du f e ¥ cos xt dt
0 0 0
e e 1,22 s ® _ture
= f cos xt dtf o(u) e * " du — o(u)du | e cos xt dt
0 0 0 0
— f o(u) du f ¢ " cos at dt
s 0

e 8 1,9 ,9 8 P 1,

= J cos xt dtf o) e ™" du — f o(u) duf e " cos xt di
0 0 0 0
T 8 1,242 > s 1,22

= f cos xt dtf o) e ™" du + f cos xt dtf o(u) e ™ " du
0 0 T 0

2 0¢u ¢ u '
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Now
T 8 1,242
(23) f cos xt dtf d(u) e ™ " du
0 0

< [l [ 16 au
<T {J:[ )|’ du}% {J:du}%

= TB%{J;BI ()| du}%.

Hence, by Lemma 2, (21), (22), and (23)
‘f cos xt di f o(u) e du — f é(u) du f e H cog at dt
0 0 0 0

. 9igd . 8 3
< {T&7 +—=+ 2_77r‘x—%} {f |¢(u)|2du} .
xT 0

This can be made arbitrarily small by choosing T first and then making §
sufficiently small, and Lemma 3 follows.

Proof of Theorem 5. Lemma 3 justifies the result (14). Further ¢ (x) belongs

to L?(0, =) since
Jvwra= 7L o2)

= [Tlowl? au.

Hence g(x), defined by (9), belongs to A2(¢=***). Then repeating the preceding

argument
2 J s [1)
(7,- , g(t) cos xt dt = V7 ¥ 7)) dt

_ f To() e ar
= f(x)

since (12) implies that for almost all x

o0 = 1)

This completes the proof of Theorem 5.

2
dx

ParT Il: FOURIER SERIES
3. The class of functions S;2(0, 27).

Definition 3. If f(x) is a periodic function of period 2, is the integral of its
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derivative, and (sin % x) f'(x) belongs to L2(0, 27), then we say that f(x) be-
longs to the class S;2(0, 27).

Definition 4. If f(x) is a periodic function of period 27, and is such that there
exists a function ¢ (x) of L2(0, 27) for which

(24) f(x) = cosec % x J:q&(t) dt
and
(25) Towa =0,

then we say that f(x) belongs to the class S;2[0, 27].

These definitions give two ways of characterizing the same class of func-
tions. Properties of this class of functions are given by the following theorem.

THEOREM 6. The classes Si2(0, 2m) and S:%(0, 2] are identical, and all func-
tions f(x) of either class belong to L*(0,2x). Also x* f(x) and x* f(2r — x)
both tend to zero as x — + 0.

This result is analogous to results given by (4).
To prove the result we use Lemmas 4, 5, and 6.

LeEMMA 4. If f(x) belongs to Si2[0, 2n] then x* f(x) and x* f(2r — x) both
tend to zero as x — 40, and f(x) belongs to L*(0, 27).

Proof. As x — +0, by (24) and Schwarz’s inequality

[f(x)|* < cosec® % x {J‘:[ o()|* dt}{fdt}

= o(x ).

Hence x* f(x) — 0 as x — +0. Further
2r—z
f(2r — x) = cosec %xJ‘ o(t) dt
0

= — cosec %xf o(t) dt
2r—z

by (25), and a similar argument shows that x* f(2r —x) > 0as x — +0. Now
let 0 <a < b <2 put

we) = [s0a,
and suppose that f(x) is real. Then
b b
(26) J‘ (f)}  dx = fcosec2 1x {¢1(x)}) dx.

Integrating by parts (26) becomes
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[—2cot 3x{ i (x)}*]s + 4 fbcot 1 x o(x)¢1(x) dx.

Asa— +0and b — 2r — 0, this is

o(l) + 4 fbcos 3 x o(x) f(x) dx

b 3 b 3
<o(l) + 4{f cos” }x l¢(x)l2dx} {f lf(x)|2dx}

<o(1) + 4{£2W[¢(x>|2dx}% {j;b[f(x)ﬁdx}%.

{rras)

and taking the limit as a — 40, & — 27 — 0, we have

swrael’ < of [Tocor o),

and hence f(x) belongs to L2?(0, 2w), as required. If f(x) is complex the result
follows by splitting into real and imaginary parts.

Dividing by

LeEMMA 5. If f(x) belongs to S1%(0, 2r) then x* f(x) and x* f(2r — x) both tend
to zero as x — +0, and f(x) belongs to L*(0, 27).

Proof. By Definition 3 there exists a function ¢(x) = sin 3x f’'(x), belonging
to L2(0, 27), such that

27) f(m) — fx) = J:cosec i y(t) dt.

Suppose that f(r) = 0 and consider the behaviour of f(x) as x — 0. Choose
0 < 6 < mso that

j; |3//(t)]2dt < e

Then for0 < x < ¢

fx) < J:rcosec Ly (@)|dt + fscosec Lty ()|dt

< f:cosec Lty ()|dt + {fslxl/(t)lz dt}7 {J:ccosec2 3t clt}E

< cosec 3 6f |y (t)|dt + (2 cot 3x — 2 cot 18)}.
0

Hence as x — 40
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x%f(x) = O(x%) + O(e%) (x cot 3x — x cot 16)*
= 0(") + 0(e)
= 0(1)

since x cot + x > 2 as x — 0.
A similar argument also shows that x* f(2r — x) — 0 as x — +0.
Now suppose that 0 < a < =, and that f(x) is real, and put

i@ = [ 1w a
Hence f1(x) = o(x?) as x — +0. Also

fx)| = 1J‘rcosec Ley(@)dt

< {f:l 01k dt}% {J:cosec2 1t dt}i
< {fw) k dt}% {2 cot 3 x}

whence f;(x) is bounded for the whole interval (0, ).
Now let 0 < ¢ < 7 and consider

. J:r]f(oc)]2 dx = f:f(x) dx J:rcosec Lt y(t) dt

= I:fl(x) f(x) ]: -+ J:rfl(x) cosec 3 x ¥(x) dx.
As x = 7 — 0, fi1(x) is bounded and f(x) — f(x) = 0, and as x — +0
AE)f(x) = o(xHo(x) = o(1).

Hence

(28) J:r{f(x)} dx = o(1) + f:f;(x) cosec % x ¢ (x) dx
<om +4f e [ o)

i = [ a
= f:dt J‘rcosec Luy(u)du
= J; cosec 3 u Y (u) du J:dt + J; cosec 3 u Y(u) du J; dt
= j:u cosec 3 u Y(u) du — x f(x)

f1(x) cosec 3 x

Now
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by (27). Hence

(29) fi(x) cosec 3 x = cosec %xf u cosec ¥ u Y(u) du — x cosec % x f(x).
0

Now
2 < xcosec x < 7

for 0 < x < 7. Hence x cosec ix ¥ (x) belongs to L%(0, ), and by Lemma 4
(30) cosec ¥ xJ‘ u cosec 3 u y(u) du
0

belongs to L2(0, 7).
Substituting (29) in (28) and using Minkowski’s inequality we have

Jireras <o +[{ [ anf
AL wrora) | x| vor s
e
v [reraf | x{ [ ver e

since we know that (30) and ¢(x) both belong to L2(0, 7). That is,

(31) Jrera<ast B{ S vewr dx}

where 4 and B are constants independent of a. Now unless f(x) vanishes al-
most everywhere in (0, 7) we can find an a; and a k2 such that 0 < a; < 7

and 1
{J:If(x)fdx}? > k> 0.

{J:rlf (x)]? dx}% < A{f:] fx)|? dx}_% +B

A
<%+B

{fjlf(x)l2 dx}f < ‘% + B

and f(x) belongs to L?(0, 7). Combining the above with a similar argument
for the interval (r, 27) we find that f(x) belongs to L2(0, 2).

z
cosec ¥ x f u cosec 3 uy (u)du
0

<o) + [{f

z
cosec %xf u cosec 3 u Y (u) du
0

From (31)

for @ < a;. Hence
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If f(x) is not zero the above argument shows that f(x) — f(w) belongs to
L%(0, 27), so f(x) belongs to L2(0, 2).

Lastly, if f(x) is complex the result of Lemma 5 follows by splitting into
real and imaginary parts.

LeMMA 6. The classes S12(0, 27) and S:2[0, 27] are identical.
Proof. With ¢(x) and ¢ (x) as in Lemmas 4 and 5 we have

(32) f(x) = cosec % x J;xda(t) dt = f(w) — ffcosec Ty () dt.

By differentiation
¢ (x) = sin jx f'(x) + 3 cos 3x f(x)
and
¥ (x) = sin 3x f'(x)
almost everywhere in (0, 27). Hence
(33) é(x) = ¢(x) + 3 cos 3x f(x)
almost everywhere in (0, 27).

Now if f(x) belongs to S;? [0, 27] this means that ¢(x) belongs to L2(0, 2),
and, by Lemma 4, so does f(x). Hence from (33) ¥ (x) also belongs to L2(0, 27);
that is, f(x) belongs to S;2(0, 27).

Conversely if f(x) belongs to S;%(0, 27) then by Lemma 5 it also belongs to

L2(0, 27) and ¢(x) belongs to L%(0, 2r). Hence from (33) ¢(x) also belongs
to L2(0, 27). Also by (32)

f ¢(¢) dt = sin % x f(x).
0
By Lemma 5 «* f(2r — x) — 0 as x — +0. Hence

02r¢(t) dt = lim {sin $27 — x) f27 — x)}

z5>+0
= 0.
That is, f(x) belongs to S;2[0, 2x], and this completes the proof of Lemma 6.
Combining Lemmas 4, 5, and 6 we have Theorem 6.

We also require the following result to connect S;2(0, 27) with Fourier
Series in § 5.

THEOREM 7. The class S12(0, 27) is identical with the class of functions f(x)
of pertod 2w which can be expressed in the form

(34) j@) = = [ x0 an,
where x (x) belongs to L*(0, 27) and
(35) fo Tx(t) dt = 0.
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Proof. By (24), (25), (34), and (35) we require that

1

(36) T—-*_—,;f x(t) dt = cosec %xf ¢(t) dt
— € 0 0

where
2 2w
o(t) dt = f x(t) dt = 0
0 0
and ¢(x) and x(x) belong to L*(0, 2r). Now (36) gives

(37) fo x(t) dt = 2i e—%”J; & (t) dt
and hence
(39) X@) = 2078 g) + 7 [ 90)

almost everywhere in (0, 27). If ¢ (x) belongs to L2(0, 27), so does

Jewa

and hence from (38), x(x) belongs to L%(0, 27). A similar argument shows
that ¢ (x) belongs to L2(0, 27) if x(x) does.
Finally if we put x = 27 in (37) we have

2 27
f x(t) dt = =21 #(t) dt.
0 0

Hence the vanishing of either of these integrals implies the vanishing of the
other.

4. The class of sequences Y *(— », «)

TaEorREM 8. If {c,}, (n =0,1,2,...,) 1s a sequence of complex numbers
such that the series

= 2 2
Zl 1 |cn — Cat1
1s convergent, then
(i) ¢, tends to a finite limit l as n — o, and
(39) e — 1 = o(n?),
(i1) the series
Z lcn[2
n=>0

converges.

Proof of (). lf m > n > 1 then
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m—1
(40) Cn — Cn| = l Z (cr — €rq1)
m—1 3 m—1 3
A E e et { E
= o(n‘%).

Hence, by the principle of convergence, ¢, tends to a finite limit [ as n — o,
and making m — « in (40) we have (39).

LemMa 7. If {a,}, (n =1,2,3,...,) is any sequence of complex numbers
and N a positive integer then

N—1 N
6 E nzlan - an+1]2 + 2N]‘1Nl2 > }: Ian|2-
n=1 n=1

Proof of Lemma 7. We have
ﬁnzlan - an+1[2 + (2” + l)lan-l»l[z

= (2n* — 2n)|a, — @upa|® + {20]ay — @uia| — |anial}?
+ 2”’{[&" - an+l[ + ‘an+1l}2
> Qn{,an - an+l[ + Ian+l'}2
> 2nla,|?
since 2n® — 2n > 0 for all integers # and
[0 = @na] + |@nsa| > |anl.
Hence

6n%la, — apil* +2(n + 1)|0n+1|2 - inanP > |an]?

and the lemma follows on summing over n = 0,1,2,..., N — 1.

Proof of (ii). If we put a, = ¢, — I then by (39) N|ay|? tends to zero as
N — «. Hence

6 Zl nzlcn - Cn+1l2 > Z len — ll2

n=1

and the latter series converges.

Definition 5. 1f {c,}, (n =0, £1, £2,...,) is a sequence of complex num-
bers such that

o)

2 2
Z n [Cn - Cn+1|

n=—co

converges, and if the limits to which ¢, tends as ——>:i: ® are both zero, then
we say that the sequence {¢,} belongs to the class 3 ,*(— @, «).
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5. The convergence of Fourier series for 5;2(0, 2x).

THEOREM 9. If {c,} belongs to the class 3 12(— o, o) then the series

(41) > ™

converges for all x not congruent to zero modulo 2w, and its sum defines a function
f(x), belonging to S1%(0, 27), of which (41) is the Fourier series.

Proof. Consider the series

(42) > ™,
n=1
and put
n(cn - Cn+1) = Xn-
Then
e = (cn — Coy1) + (Cry1 = Cag2) + ...
— Zm: Xr
r=n T
Hence
N ) N
(43) Z Cn em:c — Z emz z At
n=1 n=1 —=n 7V
N T © N
— Xr emz + Xr ema:
;1 Y =1 T’;—l r nE=l
3 i _T{é(ﬁl)z _ 1} + i &{eiwﬂ)z _ 1}
=1 7 e’ —1 r=N+17 e’ —1 ’
Now

ST

since the series

(44) f ]XT]2

converges by hypothesis. Hence by (43), if x & 0 mod 27

3),
N N
2 ™ = g 2 AT — 1 o),

=1

and the series on the right is absolutely convergent. Hence the series (42)
converges, and

(45) > e™ = Z Kr_ T 1y,

n=1 r=1
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Since the series (44) converges the series
. .
Z X ezn:
r=1

converges in mean square to a function x(x) belonging to L2(0, 27), and is the
Fourier series of this function. Hence, by the Fourier series integration theorem
(6, p. 419),

S xwa= i 3 X @ -,
0 =1 7

J:Wx (t)dt = 0.

and in particular

Hence by (45)
(46) > ™ = -—1—_—1;‘[ x(®)dt + 3 X
n=1 1—e 0 =1 T

By Theorem 7 it follows that (46) is a function of the class S;2(0, 27). A
similar argument for negative n shows that the whole series (41) converges
for x 2 0 mod 27, and that its sum is a function of the class S;:2(0, 27).

Since S:2(0, 27) is a subclass of L?(0, 27) the series (41) must be the Fourier
series of its sum.

THEOREM 10. If f(x) belongs to the class S12(0, 27) then it has a Fourier series
Z Cn einz
which converges to f(x) for all x not congruent to zero modulo 2w, and the sequence
{ca} belongs to the class 3_12(— o, ©).

Proof. By Theorem 6 the function f(x) belongs to L2(0, 27). Hence it has a
Fourier series

(47) @)~ 2 cne™
for which ¢, tends to zero as # — = .
By Theorem 7 there exists a function x(x) of L2(0, 2x) such that

z

(48) 1@ = 7= [ x 0 d

and
2w
f x() dt = 0.
0

Hence if

x@) ~ 2 x.e”

r=—00
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then xo = 0 and

@

Z IXTIQ

r=—00

converges. By the Fourier series integration theorem and (48)

f) = 7=z 3 X" — 1),

el
Hence
(49) f@) (L= e®) = 3 Zeet™ — 30 2
since both of these series converge absolutely.
Now
f@ A =™~ =" 2 ce™
= D> (tn — Coy1) €™

n=—co

By (49) and the uniqueness theorem for Fourier series of functions of L2(0, 27)
it follows that for # % 0

% = Cp — Cpy1.
Hence the series
< 2 S - 2
E n |Cn - 6n+1‘ = Z IXn]
n=—co n=—co

converges, and therefore the sequence {c,} belongs to the class 3_,2(— ®, «),
as required.

By Theorem 9 the series (47) converges for x # 0 mod 27 to a function of
S5:2(0, 27) which must therefore be equal to f(x) almost everywhere. From
(34) functions of 5,2(0, 27) are continuous for x # 0 mod 2w, so the sum of
the series (47) must be equal to f(x) for all such x.
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