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Introduction. The classical result of Plancherel for Fourier cosine trans­
forms of functions/(x) of the class L2(0, °°) states that (see (7) for references) 

g(x) = l.i.m. I —) I f(t) cosxtdt 

converges in mean square to a function g(x) which also belongs to L2(0, °°), 
and furthermore 

= l.i.m. (—J I g(t) cosxtdt. 

Some years ago in a series of papers (1; 2; 3) on summation formulae I 
showed that a similar symmetrical theory for narrower classes of functions 
and ordinary convergence of the integrals can also be developed. The relevant 
results can be expressed as follows: 

THEOREM 1. If f{x) is the integral of its derivative and xf(x) belongs to 
L2(0, « ), then 

lim/(x) = I 
ar->oo 

exists yf(x) — I belongs to L2(0, °°), and 

f(x) - I = o{x~h) 

as x tends to + 0 or to + °°. 

Definition 1. If f(x) is the integral of its derivative and xf'(x) belongs to 
L2(0, oo), and if the limit to which/(x) tends as x tends to infinity is zero, 
then we say thatf(x) belongs to the class Si2(0, <»). 

THEOREM 2. If fix) belongs to Si2(0, <») then for x > 0 

(1) g(x) = ( J j £~f(t) cosxtdt 

converges, g(x) also belongs to Si2(0, °°), and 

(2) f(x) = [~J f* g(t) cos xt dt. 

Here we use the notation 
/»-»oo nT 

J = l i m J • 
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20 A. P. GUINAND 

That is to say that the class Si2(0, °°) is a subclass of L2(0, » ) , and that 
it can be described as a self-reciprocal convergence class for Fourier cosine 
transformations. 

This theory has recently been extended by Miller (5) to cover wider sub­
classes of L2(0, oo ) and more general transformations. A disadvantage of 
Theorem 2 is that, although the result is simple and easily applied, the proof 
of Theorem 2 is indirect and it uses results from the Plancherel theory. 

In the first part of the present paper I show how to find narrower self-
reciprocal convergence classes for Fourier cosine transforms, and I give a 
direct proof of the Fourier inversion formula without using the Plancherel 
theory for one such self-reciprocal convergence class. 

In the second part of the paper I prove analogues of Theorems 1 and 2 for 
Fourier series. I define a class Si2(0, 2ir) of functions f(x) of period 2ir and a 
class Y,i2 ("" °°> °°) of sequences {cn) {n = 0, ± 1, ± 2, . . . ,) which are 
reciprocal convergence classes for Fourier series in the sense that: 

(i) iif(x) belongs to Si2(0, 2w) then it has a Fourier series 
oo 

(3) /(*) = E cneinx 

n=—oo 

which converges for x ^ 0 (mod 2x), and {cn} belongs to 5Zi2(~~ °° » °°) ; 
(ii) if {cn} belongs to Za2(— °°, °°) then ^n=-œ

c° cn einx converges for all 
x ?£ 0 (mod 2T) and defines a function/(x) belonging to 5*i2(0, 2w). 

PART I: FOURIER INTEGRALS 

1. Reciprocal classes and Mellin transforms. If f(x) and g(x) are 
Fourier cosine transforms connected by the equations (1) and (2), and $(s) 
and @(s) are their Mellin transforms then, formally (7, p. 213), 

(4) ®(5) = ®(S) 5(1 - S) 

and 

%(S) = f (S) ®(1 - 5), 

where 

$ 0 0 = ( J y TO*) COS !<> 7T, 

and consequently 

(5) |tf(è + t*)| = l 
for all real t. 

From the L2 theory of Mellin transforms (7, p. 94) it follows that if f(x) 
belongs to L2(fl, oo) then g (s) belongs to £2(— <», oo). Hence by (4) and (5) 
it follows that ®(s) also belongs to &2(— oo ? oo) and consequently g(x) be­
longs to L2(0, 0°), as required by the Plancherel theory. 

A similar argument can be used to show that the class 5i2(0, oo) is self-
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RECIPROCAL CONVERGENCE CLASSES 21 

reciprocal for Fourier cosine transformations. Uf(x) belongs to Si2(0, °°) then 
the Mellin transform of xf(x) exists and is 

(6) l.i.m. I xf'(x)xs l dx 

= l.i.m. \ [xj(x)]lx - s fXf(x)x'-1 dx\ 

since the integrated terms vanish for R(s) = J by Theorem 1. Hence s $(s) 
belongs to £2(— oo, » ) and it follows from (4) and (5) that s ®(s) also 
belongs to 82( — °°, <»). Then, reversing the above argument, it follows that 
g(x) belongs to Si2(0, °°), as required by Theorem 2. 

Now the same procedure can be used when g (s), instead of being multiplied 
by —5 as in (6), is multiplied by some other suitable function of s. For example, 
put 

*(i - s) = 5(*)/r(s) 

and assume that $(s) belongs to 82(— o°, oo). Then $(5) is the Mellin trans­
form of a function </>(x) belonging to L2(Q, 00). Further r(s) is the Mellin 
transform of e~x and consequently the relationship 

(7) &(*) = r (* )$ ( i - 5 ) 

corresponds to (7, p. 213) 

J»co 

e-xt4>(t) it. 
0 

From (4) and (7) we have 

@(S) = « ( s ) r ( l - 5)$(S) 

= {^(5) r (p ( 5 )
5 )}{r(5)j .(5)}. 

Hence, by (5), on i?(s) 

T(s) !(*) 
r(i - 5) 

r(s) 
|$(5)| = |$(s)| 

and so ®(s) / r (s ) belongs to 82(— °°, °°). 
Reversing the argument from (7) to (8) it follows that there is a \(/{x) 

belonging to L2(0, » ) for which 

i(X) = r 
«/o 

if* V(0 *• 

and we have the following result. 
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THEOREM 3. If f(x) is the Laplace transform of a function of L2(0, <»), and 
g(x) is its Fourier cosine transform, then g(x) is also the Laplace transform of a 
function of £2(0, <»). 

Let us now make the following definition. 

Definition 2. The function fix) is said to belong to the class A2{h(x)} if there 
exists a function <j>(x) belonging to L2(0, «>) such that 

J»oo 

h(xt)<t>(t) dt 
o 

for all x > 0. 
Then Theorem 3 states that the class A2(e~x) is self-reciprocal for Fourier 

cosine transformations. 
The same type of argument can be used to prove the following more general 

result. 

THEOREM 4. If h(x) belongs to L2(0, <») and has a Mellin transform $(s) 
satisfying 

\m + jt)\ = -, 
\m-it)\ 

for all real t then A2{^(x)} is a s elf-reciprocal class of functions with respect 
to any general transformation of the Fourier type. 

For general transformations see (7, ch. VIII) . 

2. Symmetrical convergence theorems by direct methods. The argu­
ments of § 1 do not prove that the Fourier integrals (1) and (2) converge, 
and they use the L2 theory of Mellin transforms. If we consider the class of 
functions 

A2(e~*x2) 

we can derive a symmetrical convergence theorem for the Fourier cosine 
transformation by a direct method. The result is: 

THEOREM 5. If fix) belongs to the class 

A Ve*2) 
then 

(9) g{x) = (~Y J f(t) cos xt dt 

converges for x > 0, gix) also belongs to 

and 
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RECIPROCAL CONVERGENCE CLASSES 2 3 

(10) f(x) = \^y J~*"g(t) cos xt dt 

for x > 0. Further, if, for x > 0, 

J»oo 

0 

and 

w accordance with Definition 2 /Ae» 

(12) , ( , ) = i * @ 

almost everywhere. 

From Definition 2 there exists a function </>(x) of Z2(0, oo) satisfying (11). 
Hence 

(13) g(x) = (~Y J /(/) cos a* dt 

= ( —) I cos xtdt I <j)(u)e~^u2t2 du 

= ( —) I 4>{u) du I £~*w ' cos xtdt, 

provided that this formal process can be justified. Now 

(2V re^*cosxtdt = ie-w, 
\7r/ Jo w 

so (13) becomes 

eu) *(*)= r ^ v - * * 2 ^ 
*/o W 

J»co 

0 

-\x* t* 
dt 

by (12). 
We can justify this process by the following three lemmas. 

LEMMA 1. / / Vx > V > 0, y > 0, *Ae» 

2 _ i y 2 J *vi x 2 

e -**' c o s ;yz> dz> < 
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Proof. 

Hence 

ÇV1 _è„2 [sin yv _ie 2> 1 f ' _is2 . 
I e 2 cos yv dv — e 2 H — I i>e 2 sin ys a». 

f F l«-* , s cos yv dv\ < - («T*"' + «r^ 1 ' ) + i f ' V * ' <fo 

y 

LEMMA 2. If T, x, 5 are positive real numbers and </>(x) belongs to L2(0, a>) 

J
è°° p 5 _ i 2 2 I 2^7r* ( r 5 \^ 

cosxtdt I e - 2 W l"4>{u)du\ < — ^ T ' J I |</>(w)|2dw( . 
Proof. Consider 

cosxtdt I é f ^ 2 * 2 4 > 0 ) ^ 
T Jo I 

where 7*1 > T > 0. Since </>(x) belongs to L2(0, °°) it follows that <t>(x) 
belongs to L(0, 8) for any finite <5, and that (16) converges absolutely. Hence 
(16) is equal to 

J' *8 CTl i 

<t>(u) du e~*uU2 c o s ut ( 
0 *s T 

= I ("*(«)- fV»"co8^. 
I Jo u JTu U 

X Jo 

by Lemma 1. By Schwarz's inequality (17) is less than or equal to 

(is) ;{/><«> i^r«-"*'}1 

<?{joV(M)r4è{X>v4è 

= ï f {jo\<t>M\2du\\ 
Making T and 7\ tend to infinity it follows that the double integral in 

(15) converges, and (15) follows from (18) if we keep T fixed and make T\ 
tend to infinity. 

Idt 

- dv 
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L E M M A 3. If x is real and positive, and 4>(x) belongs to L2(0, °° ) then 

J»->oo /»oo i 

cos xtdt cf>(u)e~iu2t2du 
o Jo 

converges and is equal to 

J»oo /»oo 

<t>(u) du e~W t2 cos xt dt. 
0 t / 0 

' 0 t / 0 

Proof. The inversion of order of integration 
/»oo /»oo /»cx> /*oo 

I <l>(u) du \ e~*u * cos xtdt = I cos xtdt I <j>(u) e~*u l du 
Jh */0 t/0 t/3 

is justified by absolute convergence since 

| ( />(^) |^ | ^ 2 ' 2 c o s x / | ^ < |0(w)|dw e~hu2t2dt 
Jh Jo Js Jo 

-(2„)'J>(.)l£ 

-(T) ,{J>MI ,*'1 
Also 

xW)i.-*"'*<{j:'w.)i'*.}'{x' .-*•$}' 
(2i) = { r i*(M)i2d«|a| r v * 2 * 2 ^ j 2 

< { j V w r ^} 2 {jv^2^ |̂2 

Hence 
/ » ->0O /»0O / * O 0 /»0O 

(22) I cos xtdt J <t>(u)e~hu2t2 du - 4>(u) du e~^2 * cos xt dt 
Jo Jo Jo Jo 

cos xt dt I 4>{u) e~*u l du — I <t>(u) du I e~^w ' cos xtdt 
o t/o t/o t/o 

Xoo /»oo 

4>(u) du I e~*M * cos x^ 
Jo 

cos xt dt I 4>(u) e~*u du — I 4>(u) du I e~*M ' cos x/ 
0 t / 0 t / 0 t /o 

= I cos xtdt I <j)(u) e~*u l du + I cos xtdt I <j>{u) e~*u l du 
Jo Jo JT JO 

- W Jo 0 (^ } e v-

* 

* 
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Now 

(23) J cos xtdt I <t>(u) e 2"2* d 
o Jo 

J dt I | # (w) | du 
0 J 0 

T \ I \<t>(u)\2 du} \ I du} 

< 

< 

4C I* = TS*\ J \4>(u)\~dut . 

Hence, by Lemma 2, (21), (22), and (23) 

I cos xtdt I <j>{u) e"^"1 du — I <j>{u) du \ é~*u l zo^xtdt\ 
Jo Jo Jo Jo I 

< |r«* + f f i + 2"*A-* | | J \<i>(u)\2duj. 

This can be made arbitrarily small by choosing T first and then making 8 
sufficiently small, and Lemma 3 follows. 

Proof of Theorem 5. Lemma 3 justifies the result (14). Further yf/(x) belongs 
to L2(0, «> ) since 

J>*>r*-r^|*0 dx 

J»oo 

o i * o w) I~ du. 

Hence g(x), defined by (9), belongs to A2(e~*x2). Then repeating the preceding 
argument 

J»oo 

<j>{t) e* 
o 

"dt 

dt 

= /(*) 
since (12) implies that for almost all x 

*<*> = ; * © • 
This completes the proof of Theorem 5. 

PART II : FOURIER SERIES 

3. The class of functions Si2(0, 2ir). 

Definition 3. If f(x) is a periodic function of period 27r, is the integral of its 
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derivative, and (sin \ x) f(x) belongs to L2(0, 27r), then we say that/(V) be­
longs to the class 5i2(0, 2w). 

Definition 4. If f{x) is a periodic function of period 2w, and is such that there 
exists a function <j)(x) of L2(0, 2TT) for which 

(24) f(x) = cosec \x j <$>(t) dt 
Jo 

and 

J*2r 
<K0 (ft = o, 

0 

then we say that / (x) belongs to the class Si2[0, 2T]. 

These definitions give two ways of characterizing the same class of func­
tions. Properties of this class of functions are given by the following theorem. 

THEOREM 6. The classes vSi2(0, 2w) and Si2[0, 2T] are identical, and all func­
tions f(x) of either class belong to L2(0, 2w). Also x1 f(x) and x* f(2ir — x) 
both tend to zero as x —» + 0. 

This result is analogous to results given by (4). 
To prove the result we use Lemmas 4, 5, and 6. 

LEMMA 4. If f(x) belongs to Si2[0, 2w] then x* f(x) and x^ f(2w — x) both 
tend to zero as x —> + 0 , and f{x) belongs to L2(0, 2ir). 

Proof. As x —» + 0 , by (24) and Schwarz's inequality 

|/(x)|2 < cosec2 hx\\ \<t>(t)\2dtï\j dt^ 

= o(x~ ). 

Hence x% f(x) —> 0 as x —• + 0 . Further 

J
»2ir — x 

<l)(t) dt 
0 

J»2TT 

4>(t) dt 
2r-x 

by (25), and a similar argument shows that x1 f{2ir — x) —» 0 as x —> + 0 . Now 
let 0 < a < b < 2TT, put 

*i(*0 = I 0(0 * , 
Jo 

and suppose tha t / (#) is real. Then 

{/(#)}2 dx = I cosec2 \ x {</>i(x)}2 dx. 
a J a 

Integrating by parts (26) becomes 
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[ - 2 cot ir{</>iO)}2]a + 4 I cot \x <j>(x)<t>i{x) dx. 

As a —> + 0 and b -» 2TT - 0, this is 

0(1) + 4 I cos ^ x </>(x) f(x) dx 

< o ( l ) + A\J cos2 ̂  x {^(x)^ dxj \J |/(x)|2<fxf 

< o ( l ) + 4<( f |*(*) |*<fcM f \f(x)\2dxf. 

Dividing by 

{j)f(x)\2 dx}2 

and taking the limit as a —» + 0 , & —> 27r — 0, we have 

U 27T U / ^2T ) i 

( |/(x)|2<2x| < 4 | J o | 0 ( x ) | 2 J x | , 
and hence f(x) belongs to L2(0, 2ir), as required. If f(x) is complex the result 
follows by splitting into real and imaginary parts. 

LEMMA 5. Iff(pc) belongs to Si2(0, 2ir) then x* f(x) and x^ f(2w — x) both tend 
to zero as x —» + 0 , and f(x) belongs to Z,2(0, 2w). 

Proof. By Definition 3 there exists a function \f/(x) = sin %xf'(x), belonging 
to Z2(0, 2TT), such that 

(27) /(*•) - /(*) = J cosec \tt(t) dt. 

Suppose that/(7r) = 0 and consider the behaviour of f(x) as x —* + 0 . Choose 
0 < 3 < T so that 

f \$(t)\2dt < e. 

Then for 0 < x < ô 

| / (x) | < I cosec e ^ ( 0 l ^ + I cosec \t\\p{t)\dt 

< j cosec \t\^{t)\dt + \ j | ^ ( 0 | 2 * f ) I cosec2^tdt 

< cosec | Ô I | ^ ( 0 | * + €*(2 cot %x - 2 cot |Ô)è. 
t / 0 

Hence as x —> + 0 
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xkf(x) = 0(xh) + 0(<?){x cot \x - x cot §5)* 

= 0(xh) + 0(eh) 

= o(l) 

since x cot \ x —> 2 as x —> 0. 
A similar argument also shows that x* f(2w — x) —» 0 as x •—> + 0 . 
Now suppose that 0 < a < 7r, and that / (x) is real, and put 

h(x) = ff(t) dt. 

Hence/i(x) = o(x*) as x —» + 0 . Also 

J' W I 

cosec \t$(t)dt\ 
x I 

< { J l ^ ( 0 | 2 * } a { J cosec2 i / d / | 

<{Jo I^W|2^}2{2cot*x}2' 
whence f\(x) is bounded for the whole interval (0, w). 

Now let 0 < a < T and consider 

I I/0*012 dx = I /(x) dx I cosec % t \f/(t) dt 
*J a *)a *Jx 

/i(x) cosec | x ^ ( x ) dx. 

As x —» 7T — 0, /i(x) is bounded and f(x) -+fW = 0, and as x —> + 0 

fi(x)f(x) = o(x*)o(xr*) = o(l). 
Hence 

J*7T /ITT 

{/(*)} 2dx = o(l) + /i(x) cosec \ x f(x) dx 

J r \ 12 I1 / r 2 Ie 

< 0(1) + j I /i(x) cosec i x <ixf ) I |^(#) | ^ ( • 

Now 

Mx) = f 7(0 & 
nx nir 

— \ dt \ cosec | u \f/(u) du 

J *X f*U /»7T r*X 

cosec J w iïW du \ dt + I cosec J ^ ^ M ^ I ^ 
= I u cosec I w yp(u) du — xf(x) 
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by (27). Hence 

(29) fi(x) cosec \ x = cosec \ x I u cosec \ u \f/(u) du — x cosec \ xf(x). 
Jo 

Now 
2 < x cosec \x < 7r 

for 0 < x < 7T. Hence x cosec \x \f/(x) belongs to L2(0, w), and by Lemma 4 

(30) cosec \x \ u cosec | u yp{u) du 
Jo 

belongs to L2(0, w). 
Substituting (29) in (28) and using Minkowski's inequality we have 

I {f(x)}2dx < 0(1) + \ \ I cosec \ x I w cosec \ u\f/(u)du\ dx i 

+ |£x2|/(x)|2dxj\ X {jj*(*)|2<&/ 

cosec \x \ u cosec % u ip(u) du\ dx} 

+ x | J j / ( x ) | 2 < f x j J X | J V ( x ) | 2 J x | 

since we know that (30) and ^(x) both belong to L2(0, ir). That is, 

(31) J |/(x)|2rfx < A + B\( \f(x)\idxY 

where A and B are constants independent of a. Now unless /(x) vanishes al­
most everywhere in (0, w) we can find an at and a & such that 0 < ai < x 
and 

From (31) 

\j |/(x)|2<fxf > k > 0. 

{jj/(*)|2 <**}' < ^{Jj/(*)l* <**/+£ 

<!+ 
for a < ai. Hence 

{£\f(X)fdXy <i + B 
k 

and /(x) belongs to L2(0, x). Combining the above with a similar argument 
for the interval (x, 2ir) we find tha t / (x ) belongs to L2(0, 2x). 
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If / (x) is not zero the above argument shows that f(x) — f(ir) belongs to 
L2(0, 2TT), SO f(x) belongs to Z,2(0, 2TT). 

Lastly, if f(x) is complex the result of Lemma 5 follows by splitting into 
real and imaginary parts. 

LEMMA 6. The classes Si2(0, 2ir) and 5i2[0, 2w] are identical. 

Proof. With <f>(x) and \//(x) as in Lemmas 4 and 5 we have 

<t>(t) dt = f(w) - cosec \t\p{t) dt. 
0 Jx 

By differentiation 

<j)(x) = sin %xf{x) + J cos ^xf(x) 

and 
T^(X) = sin %xf(x) 

almost everywhere in (0, 2w). Hence 

(33) <t>(x) = $(x) + I cos £*/(*) 

almost everywhere in (0, 2w). 
Now if f{x) belongs to 5i2 [0, 2ir] this means that <j>(x) belongs to L2(0, 2w), 

and, by Lemma 4, so doesf(x). Hence from (33) \f/(x) also belongs to L2(0, 2T) ; 
that is,/(x) belongs to 5i2(0, 2TT). 

Conversely if f{x) belongs to Si2(0, 2ir) then by Lemma 5 it also belongs to 
Z,2(0, 2w) and \f/(x) belongs to L2(0, 2ir). Hence from (33) #(x) also belongs 
toL 2 (0 , 2TT). Also by (32) 

r 
Jo 

4>{t) dt = sin \ xf(x). 

By Lemma 5 x* f(2w — x) —> 0 as x —> + 0 . Hence 

x 
2TT 

0(0 <ft = lim {sin \{2ir - X)/(2TT - x)\ 
0 z-H-0 

= 0. 

That is, f{x) belongs to 6*i2[0, 2w], and this completes the proof of Lemma 6. 
Combining Lemmas 4, 5, and 6 we have Theorem 6. 

We also require the following result to connect 5i2(0, 2w) with Fourier 
Series in § 5. 

THEOREM 7. The class 5i2(0, 2w) is identical with the class of functions f(x) 
of period 2x which can be expressed in the form 

(34) f(x) = 1
 1-ts f x « dt, 

where x(x) belongs to L2(0, 2w) and 

J»2TT 

x (0 dt = 0. 
o 
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Proof. By (24), (25), (34), and (35) we require that 

(36) =ÎÏ x(t)dt = c o s e c | x </>(t) dt 
I — e Jo Jo 

where 

J
t 2ir /-» 2 T 

o «/o 
and <£(x) and x W belong to L2(0, 27r). Now (36) gives 

(37) f x(0 * = 2i <T*te f%(0 <ft 
*/o Jo 

and hence 

(38) X(x) = 2i e~hx </>(x) + ehx f %(*) dt 
Jo 

almost everywhere in (0, 2x). If </>(x) belongs to L2(0, 2ir), SO does 

J 4>(t) dt, 
Jo 

and hence from (38), x W belongs to L2(0, 2ir). A similar argument shows 
that </>(x) belongs to L2(0, 2ir) if x W does. 

Finally if we put x = 2ir in (37) we have 

J
» 2TT r*2ir 

x(t) dt = - 2 » <f>(t) 
o Jo 

dt. 

Hence the vanishing of either of these integrals implies the vanishing of the 
other. 

4. The class of sequences £ i 2 ( ~ °°> °°) 

THEOREM 8. If {cn}, (n = 0, 1, 2, . . . ,) is a sequence of complex numbers 
such that the series 

n \cn — £n+i | 

is convergent, then 

(i) cn tends to a finite limit I as n —» °o , aw<i 

(39) cn- I = o(n-*), 

(ii) //ze smes 

E l I2 
| ^ K | 

converges. 

Proof of (i). If m > n > 1 then 
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(40) \cn - cm\ = 2^i \Cr "~ Cr+l) 

< ) 23 ^ ^ r - Cr+l\ ( ) Z) r~ ( 

= 0(W 2 ) . 

Hence, by the principle of convergence, cn tends to a finite limit / as n —» °°, 
and making w —» °o in (40) we have (39). 

LEMMA 7. If {an}, (n = 1, 2, 3, . . . ,) w awj sequence of complex numbers 
and N a positive integer then 

6 ]C n^\an — an+i|2 + 2N\aN\2 > X) W*-
i V - 1 

z 
Proof of Lemma 7. We have 

6^2|aw - avfi|2 + (2w + l)|aVfi|2 

= (2n2 - 2»)|an - an+1\
2 + {2n\an - an+1\ - \an+1\)

2 

+ 2n{\an - an+1\ + |aw+i|}2 

> 2w{|aw - an+1\ + |a„+i|}2 

> 2n\an\
2 

since 2n2 — 2n > 0 for all integers n and 

P « "" a,n+l\ ~\~ \an+l\ > l^nj . 

Hence 

6^2|aw - an+i|2 + 2(« + l)|a»+i|2 - 2n\an\
2 > |aw+1|

2, 

and the lemma follows on summing over n = 0, 1, 2, . . . , N — 1. 

Proof of (ii). If we put an = cn — I then by (39) A f̂a l̂2 tends to zero as 
A7" —» oo . Hence 

oo oo 

and the latter series converges. 

Definition 5. If {cn}, in = 0, ± 1 , ± 2 , . . . ,) is a sequence of complex num­
bers such that 

oo 
V ^ 2i |2 
Z^ W Ie» ~~ cn+l\ 

n=—oo 

converges, and if the limits to which cn tends as n —>± °° are both zero, then 
we say that the sequence [cn\ belongs to the class Za2(— °°, °°). 
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5. The convergence of Fourier series for Si2(0, 2?r). 

THEOREM 9. If {cn} belongs to the class ]Li2(— °°> °°) then the series 

(41) S Cn inx 

e 

converges for all x not congruent to zero modulo 2T , and its sum defines a function 
fix), belonging to Si2(0, 2x), of which (41) is the Fourier series. 

Proof. Consider the series 
oo 

(42) £ cne
tnx, 

7 1 = 1 

and put 

n(cn — cn+x) = Xn. 

Then 

Cn — \Cn ~~ Cn+i) + (Cn+1 ~" 
CO 

r=n ^ 

* Cn+2) + • • 

Hence 

(43) 
N 

E 
w=l 

Cn 

JV CD 

inx \ "^ inx V ^ Xr 

w= 1 r=w ' 

A'' r co 
\ ^ Xr V*^ itta; i V ^ 

N 
Xr X"** „iwx 

2V ( i(r+l)x •,} oo (^(AM-l)* -,) 

- E H «, -1 + E H 5 - * - ^ 
T î r I e ~ 1 J r ^ + i f I e - 1 ; Now 

i i /• "\ i r \ ^ 
I 2 

E 
r=AT+l 

= o(ir*) 
since the series 

(44) É lx,|2 

r= l 

converges by hypothesis. Hence by (43), if x ^ 0 mod 2T 

E cne
inx = T ^ - T £ *r {eiir+1)x - 1} + 0(J\T*), 

w=l £ — 1 r= l T 

and the series on the right is absolutely convergent. Hence the series (42) 
converges, and 

""* 1 co 

inx J- \""* Xr_ f J(r+l)x ^ * (45) E^ta = A E ^ 
w=i £ — 1 r= i r 
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Since the series (44) converges the series 

12 xr eirx 

converges in mean square to a function x W belonging to L2(0, 2w), and is the 
Fourier series of this function. Hence, by the Fourier series integration theorem 
(6, p. 419), 

X x(t)dt = - * E T <«"" - ! ) ' 
0 r = l r 

and in particular 
-»2TT 

x(t)dt = 0. y 
Jo 

Hence by (45) 
(46) Ë cn e

tnx = r - ^ j fxit) d t + Z - -
n=l 1 — e «/o r=\ 7 

By Theorem 7 it follows that (46) is a function of the class 5i2(0, 2ir). A 
similar argument for negative n shows that the whole series (41) converges 
for x ^ 0 mod 2w, and that its sum is a function of the class Si2(0, 2ir). 

Since Si2(0, 2T) is a subclass of L2(0, 2w) the series (41) must be the Fourier 
series of its sum. 

THEOREM 10. If f{x) belongs to the class 5i2(0, 2TT) then it has a Fourier series 
oo 

Z) cnem 
n « 

n=—oo 

which converges to f{x) for all x not congruent to zero modulo 2ir, and the sequence 
{cn} belongs to the class 2Z i2 ( ~~ °° > °° ) • 

Proof. By Theorem 6 the function f(x) belongs to L2(0, 2ir). Hence it has a 
Fourier series 

inx (47) / ( * ) ~ E cne 
n=—oo 

for which cn tends to zero as n —» ± °°. 
By Theorem 7 there exists a function x W of L2(0, 2w) such that 

(48) /(*) = T — ^ fx(t) 
L — e Jo 

and 
»2TT 

X (0 dt = 0. 

dt 
o 

f 
Jo Hence if 

oo 

xW ^ E x^ ITX 

r=—oo 
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then xo = 0 and 
oo 

E lx,f2 

r=—oo 

converges. By the Fourier series integration theorem and (48) 
1 oo 

/(x)=r=i^Erof(^-l). 
Hence 

(49) / ( x ) ( l - 0 = É V eiTX~ t> f 

since both of these series converge absolutely. 
Now 

CO 

/(*) (1 - e~ix) ~ (1 - <Tte) £ c„e te 

W = — o o 

CO 

(cn - cn+i) e . 
W = — o o 

By (49) and the uniqueness theorem for Fourier series of functions of L2(0, 2T) 
it follows that for n y^ 0 

X?L — r — r 

Hence the series 
CO OO 

E 2| |2 V ^ I |2 

W \Cn — Cn+l\ = 2 ^ |Xn| 
n=—oo n=—co 

converges, and therefore the sequence {cw} belongs to the class X a 2 ( ~ °° > °°)> 
as required. 

By Theorem 9 the series (47) converges for x ^ 0 mod 2w to a function of 
5i2(0, 2TT) which must therefore be equal to f(x) almost everywhere. From 
(34) functions of 5i2(0, 2TT) are continuous for x ?£ 0 mod 2wf so the sum of 
the series (47) must be equal tof(x) for all such x. 
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