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SOME NOTES ON THE METHOD OF MOVING PLANES

E.N. DANCER

In this paper, we obtain a version of the sliding plane method of Gidas, Ni and
Nirenberg which applies to domains with no smoothness condition on the boundary.
The method obtains results on the symmetry of positive solutions of boundary
value problems for nonlinear elliptic equations. We also show how our techniques
apply to some problems on half spaces.

In this note, we show how to apply the method of moving planes [6] on domains in
Rm which are not at all smooth and for solutions not necessarily continuous up to the
boundary. Our methods are a variant of those in Berestycki and Nirenberg [1] but are
based on an idea in [4] (which was done independently of [1]). We feel that, even in the
regular case, our method is a little simpler than that in [1]. (Note that our argument
simplifies greatly if the solution is continuous up to the boundary.) More precisely, we
are interested in symmetry and monotonicity properties of positive solutions of

-Au = flu) in fi
(1) A ;

u = 0 on dCl

where fl is a bounded domain in Rm. (In fact, we shall study slightly more general
equations.) In [1], it is proved that the original Gidas-Ni-Nirenberg results are valid for
solutions which are continuous up to the boundary without any regularity assumptions
on fl. (They also prove much more.) Here we prove similar results for solutions in
W1<2(£1) nL°°(Q). This seems a natural class of solutions because with no smoothness
conditions on the boundary, one can frequently establish the existence of solutions in this
class. (Indeed, for many problems, one can show by regularity theory that solutions
of weaker types belong to this class.) This contrasts with the continuity up to the
boundary requirement in [1] which one can usually only justify for domains with some
regularity (regular in the sense of Wiener). Note also that it can be shown that the
solutions in the sense of [1] are Wlt2(Sl) solutions.

Finally, we greatly improve the result in [6] on the half space case. As a consequence
we improve a result of Gidas and Spruck [8].

In Section 1, we prove our main result on bounded domains and discuss generalisa-
tions and in Section 2 we prove some technical lemmas needed in Section 1. In Section
3, we consider the problem on half spaces.

Received 20th November, 1991.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 $A2.00+0.00.

425

https://doi.org/10.1017/S0004972700012089 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700012089


426 E.N. Dancer [2]

1. THE MAIN RESULT

We assume that / : R —> R is a locally Lipschitz function and SI is a bounded
domain in R™. If A G R, let Six - {x G SI : xx > A} and I \ = {x G Rm : xi = A}
(where x = (x i , . . . ,xm)) and let f\ be the reflection in the hyperplane x\ = A.
Note that the boundary condition for a solution of (1) is given in the weak sense by
the condition that u G W1'2(Sl). Note also that, since /(«) G L°°(Sl), standard local
regularity result implies that u is in W?'p(Sl) ("1 C,1 (SI).

THEOREM 1. Assume that the above conditions hold, that u(x) > 0 in SI and
that P\(Slx) C SI for X > X* where T\* intersects SI. Then u(P\*x) ^ u(z) and
(du(x)/dx1)<Q ifxeSlx'-

REMARK: AS in [7], one can deduce many other results from this basic result.
Before proving the result, we state three technical lemmas. We defer the proof,of two
of these until Section 2.

LEMMA 1. Assume that T C Rm is open, &,-, t = 1, . . . ,n and c are measurable,
\bi\ ̂  K almost everywhere on T and |c(x)| ^ K ahnost everywhere on T. Then there
is a 6 > 0 such that ifWQTis open and bounded, if u is a weak (W1'2) supersolution
of - A M + b.Vu + cu = OinW,ifu-£ Wlfl(W), and if {x G W : u(x) < 0} has
measure less than 6, then u ^ 0 in W.

REMARK: This is a variant of a result in [1]. Our proof seems simpler.

LEMMA 2 . If u G W1'2(Sl), u is continuous on H and u ^ 0 on dSl, then
u~ G W1'2^).

REMARK: This is folklore (see Gilbarg and Trudinger [10]) but we could not locate
a proof in the literature.

LEMMA 3 . IfWis connected and open, if u G W1'2(W), ifm>0,ifu^m
on a. set of positive measure, and if u ^ 0 on a set of positive measure, then for each
a > 0 {x G W : (m — a)/2 ^ «(x) ^ u(x) ^ (m + a)/2} has positive measure.

Results of this type are well known and reflect the "almost continuity" of u. This
result follows immediately from [3, Lemma 4.4].

PROOF OF THEOREM: Let n = sup{xi : x G Si) and let A = {X £ (A*,n) :
tt(Pxx) > u(x) if x £ Six and (du/dxi)(x) < 0 if x G Tx D SI}. (Note that, since SI

is open; n is never achieved by points of SI.) Let A — {X G (A*,n) : (A,n) C A}. We
prove that A is open and closed in (A*,n) and that A is non-empty because any A
close to n (but less than n) is in A. Hence A = (A*,n) and the result will then follow
easily.

First note that A G A if u(P\x) ^ «(x) on Six with equality not holding on any
component of Six • To see this, note that u(Pxx) is a solution of (1) on Six and hence
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[3] Moving planes 427

w\(x) = u(P\x) — u(x) is a solution of — Av = f(u(P\x)) — / (u (z ) ) on ft.\.Since
/ is Lipschitz, —Atu^ + c(x)w\ = 0 on Qx where \c(x)\ ^ K\. The weak Harnack
inequality (as in [10]) now ensures that wx > 0 on ft* and (as in [7]) the boundary
point version of the maximum principle (applied to u>.x )ensures that (dwx/dxi) > 0 on
Tx • (Note that, if x G T\, ft* is smooth up to the boundary nearby. Note also that the
proof of the maximum principle in [13] easily generalises to solutions in W2'p.) Thus
2(9u/9xj) < 0 on Tx and our claim follows.

As a first step we prove that A G A if A < n but A is close to n. In this case,
ft* C Bx(X,n) where B is a fixed ball in Rm~1 (since ft is bounded in Rm). Hence we
see that, if A is close to n , ilx has small measure. Thus W = {x G ft* '• u(x) > u(Pxx)}
has small measure. Much as before, we find that — Aw* + c(x)wx = 0 on Six where
|c(x)| ^ K\ . Hence we can apply Lemma 1 if we prove that w\~ G Wlt2(tt\). To see
this, we note that, since u G Wlt2(Q), there exists un € CQ°(CI) such that u n - > t i i n
^ • 2 ( n ) a s m o o . Thus (see [9, p.81]) |un | -^ |u| = u weakly in W1'2^). Thus
vn = \un\ converges weakly to u in W l l 2 ( n ) , vn ^ 0 on f2, vn is continuous on fi
and vn vanishes near dfi. Let wn(x) = un(Pxx) — un(x). Then wn —* wx weakly on
W1>2(Qx), v>n is continuous on 0.x and wn ^ 0 on ddx (since un(x) — un(Pxx) on
Tx and un{Pxx) ^ 0 if x E OA n dil). Thus, by Lemma 2, w~ £ W1'2^)- Since
wn —* wx weakly in W1'2(Qx) o u r claim follows. This proves that A £ A if A is close
to n (and hence A 6 A if A is close to n) except we have to prove that wx cannot
vanish on a component of fi^.

If wx vanishes on a component Zx of Clx then u(Pxx) = u(x) on Zx • Since A > A*
and Px^lx Q ft for A > A*, a simple geometric argument ensures that ilx — {{i,x>) '•
A < t < g(x'), x' £ C} where C C W = {x G Rm : xx = 0}. Since ftA is open, one
easily sees that C is relatively open in W and g is lower semicontinuous. It is easy to
see from the lower semicontinuity of g that Zx — {(t,x') : A < t < g(x') : x' £ .4} where
A is a component of C. Moreover, since A > A*, it is easy to see that Px(dfl (~l ilx)
does not intersect dfl. Thus, if x 6 dQDOx, u is continuous at Pxx and u{P\x) > 0.
Hence we see that, if x' 6 A, x = (g(x'),x') G Zx and u(x) ^ m > 0 for all x close to
Pxx. Since g is lower semicontinuous, we can choose x' 6 A so that 5 is continuous
at x' (by [11, p.193]). Choose a neighbourhood T of x' in W so that T C. A and
then choose a neighbourhood T of (g(x'),x') so that T = (g(x') — e, g(x') + e) X
T, g{y) > g(x') — e for y £ T and u(x) Jj m on PA?1. Since 5 is continuous at
z', we can choose f so that {(t,x') : z' G T, f > 5(2') - e, a; G ft} C f. We now
consider the set K = {(t,x') : x' G T, t > g(x') - e}. Now, since u G W1'2^),

( u(x) if z G ft
is in W1'2(Rm). Hence

0 otherwise
U\K is in W1<2(K). Since w(z) = u(Pxx) on Zx, we eventually see that the function
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428 E.N. Dancer [4]

f u(Pxx) iixeK
u(x) = < is in W1<2(K). This is impossible by Lemma 3 since

^ 0 otherwise
our construction ensures that u{x) ^ m if x £ K fl fi and is zero on K \ fi. Hence
w\ cannot vanish identically. For future reference note that this argument does not use
that A is close to n.

As a second step, we prove that A is open. Assume that fi £ A. Thus u(P^x) >
u(x) if x £ fiM. Since u is continuous on fi^, it follows by continuity that u{P\x) >
u(x) if A is near fi and x £ fi^ unless a; is close to X\ = fi or to dfl. Hence we see
that u(P\x) > u(x) on fix for A near î unless xi is close to /x or x is close to dfl.
Let fie = {x £ fi : <Z(«,d^) < e}- By countable additivity m(fie) -> m(dfi) as e-» 0
and hence m{x 6 fi : d(x,dfi) ^ e} —-> 0 as e —> 0. Here m denotes Lebesque measure.
Since the set of points of fi where xi is near fi has small measure (by a similar argument
to that in the first step), we see that, if A is near fi, Z\ = {x £ fl\ : u(P\x) < u(x)}
has small measure, that is {x € Q\ : TUA(a:) < 0} has small measure. As in the first
step, w^ (E W1<2(Q\) and —Aw\ + cw\ = 0 on Qx where \c(x)\ ^ Ki. Hence, by
Lemma 1, w\ ^ 0 on $7\ as required. We need to prove strict inequality. As before,
the only way that this can fail is that w\ vanishes on a component of fix. This is
impossible by our earlier arguments. Thus A is open and hence A is open.

It remains to prove that A is closed. If An £ A and An —> A as n —v oo, it follows
by the continuity of u on fi that u{P\x) ^ u{x) on fl*. (Note that, if x £ fix, x £ Sl\n

for large n.) We can then prove that strict inequality holds everywhere by a similar
proof to the proof that w\ cannot vanish on Z\. By our earlier arguments, it follows
that (du/dxi) < 0 on T\. Thus A £ A. Hence A is closed and thus A is closed. Hence
by connectedness A = (A, n) as required.

By the same limiting argument as in the previous paragraph, u{P\*x) ^ u(x) on
fix* . This completes the proof. D

REMARKS:

1. The proof can be simplified a great deal if u is continuous on fi.
2. The result is still true if in the statement of the theorem we replace fix by a

component of fix. The proof is essentially the same. This is sometimes useful as in [5].
3. Our techniques can easily be extended to cover cases where / depends on Vu

provided that / is even in (du/dxi), and / is Lipschitz in Vu. (We need only assume
that / is locally Lipschitz on Vu if Vu is bounded on fi.) Note that our result here is
a little weaker than that in [1] or [7] in this case as they allow some linear dependence
on (du/dxi). As in [1] or [7], we could allow / to depend on x in a suitable way. Note
that in [1] much more strongly nonlinear equations are studied.

4. Our proof can be modified to apply to the periodic boundary value problem.
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That is, the problem

— = Ait+ /(*,«) in ftx[0,T]

u = 0 on 0ft x [0, T]

u is T periodic in t

(where f is T periodic in t.) Here we assume the same conditions on ft and / as
in the statement of the theorem and obtain analogous conclusions on the behaviour
of u in x. Here we look for solutions in i°°(ft x [0,T]) D Wll2(ft x [0,T]) such that
w( ,t) E W1>2(Q) for almost all t. The proof needs some modifications. We need an
analogue of Lemma 1 for the parabolic problem where we assume « £ W1<2(Sl X [0, T]),
u is T periodic in t, u( ,<) 6 W"ll2(ft) for almost all < and m{x : (x,t) £ W^,u(z,t) < 0}
is small for all t. (Note that, if we use the moving plane argument, the set where w\
is negative will have small measure for each t.) This remark is joint work with P. Hess.
Details will appear elsewhere.

5. The argument in part of our proof shows that if u 6 JFll2(n), z £ dfl and
if {a; € Rm \ ft, ||x — z\\ < e} has positive measure for every e > 0, then {x 6 fi :
||z — z\\ < e : \u(x)\ < e} has positive measure for every e > 0.

2. PROOF OF TECHNICAL RESULTS

PROOF OF LEMMA 1: If <f> e W1'2(W) and <j> is non-negative

Thus , if <j> = - « "

/ V u V $ + b.Vu<f> + cu<j> ^ 0.
Jw

~)2(2) / |V«-|2 < - / 6.V«-u- +c(u~)
Jw Jw

(by the Cauchy-Schwartz inequality and our assumptions on 6 and c)

-|g < (4*2 + 2K) | | 1 | 2Hence ||V«-|g < (4*2 + 2K) ||«

Note that the norm are calculated on W. Now the proof of the Poincare inequality in
[10, p.157] shows that

H I , ^ (K2m(Z))1/2 ||Vt,||2
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for all v G W1'2(W), where Z = {x e W : v(x) ^ 0}. If we apply this to u~ we
see that we contradict (2) when 6 is small unless u~|w = 0. Thus u ^ 0 on W as
required.

PROOF OF LEMMA 2: First note that u G W1>2{Q) if u G W1'2^) and u vanishes
close to 90 (by molhfiers). If u is continuous on fi and u ^ O o n 9fi, then u~ vanishes
on dfl. Hence it suffices to prove the result when u vanishes on 9fi. Now (u + e)~
vanishes near d£l (since u = 0 on dfl) and hence (it + e) 6 Wll2(f2) by our comments
above. Thus it suffices to prove that (u + e)~ —» u weakly in W1>2(Q) as e —> 0. This
follows easily by a similar argument to that in [12, p.93]. D

3. THE HALF SPACE CASE

In this section we show that positive bounded solutions of

-Au = f(u) in T

(3) u = 0 on dT

are increasing in xi. Here T — {x € Rm : x\ > 0}. We improve considerably an
earlier result of ours [6] and a result in [8]. Note that T is a half space in Rm (rather
than Rn as in [6]). This enables us to avoid an unfortunate choice of notation in [6].
Note also that, as in [6] or [8], half space results are frequently needed in "blowing up"
arguments.

THEOREM 2 . Assume that f is C1, with /(0) > 0 or both /(0) = 0 and
/'(0) ^ 0, and that u is a non-trivial, non- negative bounded solution of (3) on T with
u = 0 on dT. Then {du/dx^) > 0 if xx > 0.

PROOF: This follows from [6, Proposition 4] unless /(0) = /'(0) = 0. In this case,
we must modify the argument in [6] by using some of the ideas here. Note that, since
/(0) = 0, the maximum principle ensures that tt(z) > 0 on T. If X\ = 0, the result
follows trivially from the maximum principle.

Let C denote the non-trivial non-negative bounded solutions u of (3) such that
IMIoo ^ INloo- W e say t t a t * e 6 c (°.°°) if «(A + Zi,z) ^ u(\-xi,z) for every
xi G [0,A], z G Rm-\ u G C. Let 0 = {A G (0,oo) : (0,A) C 6}. If u G C and A G 0,
it follows by applying the maximum principle to u(A + x\, z) — u(X — x\, z) that

«(A + sci,z) > u(A — xi,z) for 0 < xi ^ A

and

(4) sr^.')>o-
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Hence we see that it suffices to prove that 9 is a non- empty open and closed subset
of (0,oo). (Connectedness then implies that 8 — (0,oo) and the result follows by (4)
above. It is easy to see that 0 is closed in (0,oo).)

We first prove that there is a it > 0 such that (O.Jfc) C 0 (and hence (0,fc) C 6).
As in [6], standard local W2'p estimates implies that Vw is bounded on T and the
bound holds uniformly for u in £ . Hence, given 6 > 0, there is a fci > 0 such
that u (z i , z ) < 6 if 0 < Zi < Jfei, z 6 R"1'1, u G C. If A > 0 and u G C; let
w\(xi, z) = u(X + Xi, z) — u{A — xi, z). Then

-Awx = /(u(A + xj,, z)) - /(u(A - X!, z))

= f'{y.{a,z))wx,

where s is between A + xi and A — X\ . Since / ' (0) = 0, we see that, if e > 0, we can
choose Ao > 0 such that \f'(u(s,z))\ < e if 0 < A < Ao, 0 < zi < A, z G R"1'1, u G C.
Thus

(5) -A(-u>A) ^ e{-wx)

on Zx = {(xi, z) G (0, A) x R"1'1 : tuA(a!l,z) < 0} if A < Ao. We prove that Zx

is empty for A < Ao if we choose Ao suitably (where Ao can be chosen uniformly for
u G C). It suffices to choose Ao such that \Q2TT2 > e. It then follows as we shall see
below that, if 0 < A < Ao, there is a positive function h on [0, Ao] x R™'1 such that
—Ah = eh and h(x) —• oo as ||x|| —» oo. Then, since u>x is bounded, wx(x)/h(x) —> 0
as 11as|| —* oo, x G Zx and thus —wx/h has a maximum value on Z\. On dZx, wx = 0
(because u(xi,z) > 0 if x\ — 2A) and thus the maximum occurs at an interior point
of Zx- However, by (5) and by [13, Chapter 2, Theorem 10], —wx/h can not have a
non-negative maximum in Zx and hence we have a contradication unless Zx is empty.
It remains to construct h. Choose Ai such that Aj > Ao and A^"2TT2 > e. We then
look for a solution h of — Ah = eh of the form sin (TTA^ZI — 6)V(R) where 8 is small
and positive, R = ||z|| and V is the solution of

V(0) = 1, V'(0) = 0.

It is easy to see that this is the required h. (Since e — A^"2TT2 < 0, it is easy to prove

that V is increasing and lim V(R) = oo as required.) Hence we have shown that 6
R—>oo

is non-empty.
It remains to prove 6 is open. Suppose not. Then there exist A G 0 and An

decreasing to A such that An ^ 6. Hence there exist un G C, x" G (0, An) and
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zn G Rm~x such that

(6) un(\n + x?,zn)<un{\n-x?,zn).

Since un(x\,z + k) is also a solution of our equation if k G Rm~1, un(xi,z) =
un(xi,z — zn) G C. Thus we may assume zn = 0 for all n. By choosing subse-
quences if necessary, we can assume that x™ —» a £ [0, A] as n —* oo and un con-
verges uniformly on compact subsets of T to a non-negative solution w of (3) with
Halloo ^ Halloo- ^ v (̂ )> i"(X + a,0) ^ •u)(A —o,0). Since A £ 9, either w vanishes
identically or w G C and a = 0. In the latter case, since A G 0, our earlier comments
imply that (dw/dxi)(X,0) > 0 (see (4)). Thus, since we can use standard regularity
theory to ensure that un converges to w in the C1 norm uniformly on compact sets
in T, we see that (9un/c?Xi)(;ci,0) > 0 if asi is near An and n is large (where what
is meant by near is independent of n). Hence un(An + £1,0) > un(An — ^ljO) if x± is
small and n is large. This contradicts (6). (Remember we have shown that x™ —> 0
as n —> oo). Hence u; = 0 and thus un converges to zero uniformly on compact
subsets of T. Hence un (tn,zn) —* 0 as n —> oo if An — x™ ^ tn ^ An + x™. We
have proved that, if un G C and (x",2n) G ^An , then un(tn,zn) —» 0 as n —• oo
provided that An — x" ^ tn ^ An + x". Note that Z\n depends on un. Hence if
An is close to A and un G C, un(tn,z) is uniformly small for (xi,z) G Z\n. Here,
as before, An — x\ ^ tn ^ An + x\. As earlier, the mean value theorem implies that
-Atun(xi ,z) = f'(un{tn,z))w\n{xi,z) where An - xi ^ tn < A n + x i . Since /'(0) = 0
and since un(tn, z) is uniformly small if (xi, z) G Z\n and n is large, it follows that, if
e > 0, — A(—«JAn) ^

 e{~wXn)
 o n ^An provided that un £ C and n is large. In partic-

ular, if we choose e < 7T2A~2 , we can argue by using the maximum principle as in the
previous paragraph that this leads to a contradiction for large n if Z\n is non-empty.
Hence 0 is open as required. This completes the proof. U

REMARKS: 1. The result implies that there is no positive solution u of (1) with
u(xi,z) —> 0 as Xi —» oo. In particular, this implies condition (ii) can be entirely
removed from [6, Theorems 3 and 4]. The two theorems concern the positive solutions
of — Au = A/(u) on a bounded domain fi with Dirichlet boundary conditions when A
is large.

2. As in [6], it follows easily from the theorem that hmZl_ooiI(xi,z) exists and
is a bounded positive solution of —Au = f{u) on Rm~1. (To prove that it is a solution
of this equation we use a test function <f>i(xi + n)<f>2(z) where <j>i and <f>2 have compact
support and let n tend to infinity.) This gives a necessary condition for the existence
of a solution of (3). For example, it follows from Theorem 2 here and [9, Theorem 6.1]
that the problem — Au = ua in T, u = 0 on dT have no bounded positive solution
if 1 < a < (m+ l ) / (m - 3) (a < oo if m ^ 3). This considerably improves in Gidas
and Spruck [8, Theorem 1.3].
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3. If / (0) > 0 or if / (0) = 0 and /'(0) > 0, there is a converse to the result

of the previous paragraph. If there is a bounded positive solution v of —Au = /(it)

on Rm (in particular if there is a solution of this equation on IT™"1), then there is

a bounded positive solution of (3). We use the method of sub and supersolutions. If

/ (0) > 0, we use zero is a subsolution and v is a supersolution. (Technically we use

the method of sub and supersolutions on {x E T : ||x|| ^ n} with Dirichlet boundary

conditions and let n tend to infinity.) If /(0) = 0 and /'(0) > 0, the argument is

very similar but we have to construct the subsolution differently. We choose a ball

B C T o f sufficiently large radius such that /'(O)Ai(B) < 1 where Xi{B) denotes the

smallest eigenvalue of —A on B for Dirichlet boundary conditions. Let <f>i(x) denote

the positive eigenfunction corresponding to Aj (2?). Then it is easy but tedious to use

[2, Lemma I.I] to prove that, if e is small and positive, hc(x) = e^i(s) if x E B and

zero otherwise is a subsolution on T. Note that the result at the end of the last remark

can be used to show that there need not be a positive solution of (3) when there is a

positive bounded solution of — Au = / (u) on Rm in the case where / (0) = /'(0) = 0.

4. Our techniques can be used in a number of other cases. For example, they

could be used to obtain similar results on quarter spaces (that is {x E Rm : x\ >

0, * 2 > 0 } ) .

5. It is possible to give a proof of Theorem 2 without using the proof in [6]. The

idea is to obtain lower estimates for solutions if /(0) > 0 or /'(0) > 0 by constructing

families of subsolutions of compact support and by using a variant of [6, Proposition 1].
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