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RINGS OF INVARIANTS AND/?-SYLOW SUBGROUPS 

H. E. A. CAMPBELL, I. HUGHES, AND R. D. POLLACK 

ABSTRACT. Let V be a vector space of dimension n over a field k of char­
acteristic p. Let G Ç Gl(V) be a finite group with p-Sylow subgroup P. G 
and P act on the symmetric algebra R of V. Denote the respective rings of 
invariants by RG and Rp. We show that if Rp is Cohen-Macaulay (CM) so 
also is R°, generalizing a result of M. Hochster and J. A. Eagon. If P is nor­
mal in G and G is generated by P and pseudo-reflections, we show that if RG 

is CM so also is Rp. However, in general, RG may even be polynomial with 
Rp not CM. Finally, we give a procedure for determining a set of generators 
for RG given a set of generators for Rp. 

Introduction. Let V be a vector space of dimension n over a field k of characteristic 
p > 0 with basis {x\,...,xn}. Suppose G C Gl(V) is finite group with a /?-Sylow 
subgroup P. In what follows, if p — 0, set P = { 1}. G and P act on the symmetric 
algebra R = A:[JCI , . . . ,JC„] of V as algebra automorphisms. Denote the respective rings of 
invariants by RG and Rp. These rings are known to be finitely generated by a fundamental 
result due to Hilbert, see for example the beautiful survey paper of R. P. Stanley [10]. 

In this paper the relations between RG and Rp are investigated; the philosophy has been 
to try and locate the difficulties at Rp. For example, it is well-known that RG is Cohen-
Macaulay (CM) when/?/| G\ (here | G\ denotes the order of G) and G is finite—see the 
fundamental paper of Eagon and Hochster [4]. However, when/? > 0 and/? divides the 
order of G, RG need not be CM. In fact, H. Nakijima [7, example 4.1, pgs. 211-212] 
gives examples of elementary abelian /?-groups generated by pseudo-reflections ( g G G 
is a pseudo-reflection if rank(l — g) < 1) with RG not CM. 

In section one a proof that Rp CM forces RG to be CM is given. First a Reynold's or 
averaging operator p : Rp —• RG is built using the cosets of Gj P and then the proof is 
word for word that of [10, theorem 3.2, pg. 482]. In fact, in the cases/? = 0 or/?/| G\, P = 
{ 1}, so Rp = R is polynomial and the original proof in [10] is recovered. If P is normal 
in G, and G is generated by P and pseudo-reflections, the converse is true, see Proposition 
2. 

In general, RG may even be polynomial (and so CM) with Rp not CM. See the example 
following the proof of Proposition 2. 

In section two a procedure for determining a set of generators for RG given any set 
of generators for Rp is described. In turn, this relies on the paper [1]. This is perhaps 
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the most interesting result of the paper for the following reason. Invariant theorists are 
familiar with two cases: 

(1) p — 0 or p/\ G\, the so-called non-modular case, 
(2) p\ | G|, the modular case. 
In the non-modular case the proofs of many classical (p = 0) theorems work word for 

word in the more general setting p/\ G\. However, E. Noether (see H. Weyl's description 
[11, pgs. 275-276]) shows that when/? = 0, then RG is generated by the ( \G[+n ) polyno­
mials ji- £g<EG g(f), a s / ranges over all monomials in the variables jq , . . . , xn of degree 
at most IG\. The procedure described below requires averaging polynomials of degree 
at most max{\ G\, nr G')) to achieve a proof that works also for p/\G\, see proposition 3 
in section two. Finally, an attempt is made to obtain generators for Rp. 

We would like to point out that this paper relies heavily on the papers of R. P. Stanley 
[10] and J. A. Eagon and M. Hochster [4]. 

Section One. Recall that a finitely generated N-graded commutative fc-algebra A = 
0£ >QAI with AQ = k has Krull dimension n if n is the maximum number of algebraically 
independent elements of A over k. Further, if A has Krull dimension w, then a set/i, . . . , /„ 
of algebraically independent homogeneous elements of positive degree is said to be a 
homogeneous system of parameters (hsop) if A is finitely generated as a module over the 
polynomial subalgebra B = k\f\ , . . . , / „ ] . IfA is a domain then the Noether normalization 
lemma, see [13, theorem 25, pg. 200] implies that a hsop for A exists. 

Let {/1,... ,/„} be a hsop for A. A is said to be Cohen-Macaulay (CM) if A is free 
as a module over the polynomial subalgebra B = k\f\, • •. Jn\- In other words, A is CM 
if there exist homogeneous elements g\,...,gm such that A = &^çfigi as B-modules. 
Further, if A is CM this holds if and only if the images of g\,..., gm in A/ / form a vector 
space basis for A/1 over &, where / is the ideal of A generated by {/1,... , /„} . Finally, 
a standard result is that if A is free over one hsop then it is free for every hsop, see 
[9,theorem2,p.IV-20]. 

Now P C G C G/( V) with P a /7-Sylow subgroup of the finite group G. Further R 
is the symmetric algebra of V, so that RG C Rp. Suppose [G : P] = m so that p /m, 
and let a i , . . . , a m be coset representatives, i.e. G = Uc^P. Define p : Rp —» RG 

by pif) = ^ E^=i at(f)> ^ is e a sy t° s e e t n a t 9 is independent of the choice of coset 
representatives and that pif) G R°. It is also easy to see that p is a map of 7?G-modules, 
p(l) = 1 and p2 = p. It follows that Rp = RG 0 U as flG-modules where U = kerip). 

THEOREM 1. IfRp is CM then so also is RG. 

PROOF. By the Noether Normalization theorem, a hsop / i , . . . ,/n exists for RG 

since it is finitely generated. Since R is integral over RG, so also is Rp and so both are 
finitely generated as RG -modules and so Rp is finitely generated as a module over B = 
Wi, • • • >//iL Consequently {/i,...,/«} is hsop for Rp. But / ^ is CM and so Rp is a free 
module over B. RG is projective over the polynomial algebra B since as shown above 
it is a direct summand in the free module Rp, so RG is a free B-module by Quillen's or 
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Suslin's solutions of Serre's conjecture, see for example [5]. Alternately, the decompo­
sition Rp =RG 0 U yields Rp /1 9* RG/ J&U/K where / is the ideal of Rp generated 
by {/ i , . . . , /„}, / is the ideal of PG generated by {/i,..., / ^ , and t f= / i l /+ - - •+ /„£ / . 
Choose homogeneous elements g\,..., gr in RG which project to a basis for RG / J and ho­
mogeneous elements gr+\ ,...,gsinU which project to a basis for U / K so that Rp /1 has 
basis {gi,...,gs}- But P p is CM and P p / / has {g\,... ,gs} as a basis so Rp = 0j=1#g/ 
and consequently RG — 0/r

=1#g/ and so is a free Z?-module. Thus RG is CM. • 

PROPOSITION 2. Suppose P is normal in G and that G is generated by P and pseudo-
reflections. Then Rp is CM if and only ifRG is CM. 

PROOF. The proposition follows immediately from [4, proposition 16, pg 1035] pro­
vided we show each pseudo-reflection of G acts as a generalized reflection on Rp (a G G 
acts as a generalized reflection on Rp if there is a homogeneous positive degree element 
/ in Rp with (a - l)Rp CfRp). 

Let a G G be a non-trivial pseudo-reflection; then there is an JC G V with (a — l)R C 
xR. Let Stab/>(;c) = {(3 G P | (3 (JC) = x} and let Q, be a set of left coset representatives 
of Stab/>(x) in P containing 1 G P. Set/ = IfyeQ /?(*) so that/ e Rp.Ifg e Rp then 
afe) G #*, so (a - l)(g) G / ^ H xR. ButRpHxR C fl/ïeQ/?(**) = fl/jen/?(*)* = 7 » 
(the last equality since P acts unipotently on V). Thus (a — l)g £ Rp H xR CfRp. m 

In general, RG may even be polynomial, with Rp not CM. For example, consider the 
symmetric group Ep acting on V of dimension p over k as permutations of a basis X. The 
subgroup P of order p generated by a fixed cyclic permutation of X is ap-Sylow subgroup 
of Lp. RZp is the polynomial algebra on the elementary symmetric functions a\,...,ap 

while Rp is not CM for p > 3 by a result of Fossum and Griffith [2, corollary 1.8, pg. 
193]. 

Section Two. As in Section One, let G C Gl(V) be a finite group with a/7-Sylow 
subgroup P. Let Rp be generated as a fc-algebra by {/i,... ,/5} for some 5 > n. Choose a 
set of coset representatives of P in G, a\,..., am, m = [G : P]. Let T denote the subalge-
bra of R generated by the ms elements oa(fj). G acts on 7, since for fixed/ the elements 
of G act as permutations of the afi. Consequently, we obtain a group homomorphism 
£ : G —> Zm where Zm denotes the symmetric group on m letters. If S is the polynomial 
algebra k[zij | 1 < i< m, 1 < j < s] the algebra homomorphism 6 : S —+ R defined 
by 0(zij) = ociifj) has image T. Zm acts on S by tffo/) = za(07 so G acts on 5 via £. 
Consequently S1"" C SG C S. It is not difficult to see that the map 0 is G-equivariant and 
so there is a commutative diagram 

S -^ T C P 
T î Î 

S^ C SG -^ T° CRGC Rp 

We claim that 6 restricted to Slm maps onto RG. To see this take h = h(f\,... ,/s) G 
PG C P p and form g G 5 by defining 

g = - ( / z ( Z l l , . . . , Z l s ) + - " + / l ( z , n l , . . . , Z m s ) ) 

m 
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(recall p/m). It is easy to see that g e SLm since a (h(zn,... ,ZiS)) = /*fo(/)i,...,z<rO>)so 
that a el^m simply permutes the terms of g. 

Now 

0(g)=-[9(h(ziu...,zis)) + "- + 0(h(zmi,...,ZnU))] 
m1 J 

= -[h(0(zu),.--,0(zis)) + ''- + h(0(zmi\.--^(zms))} m1 J 

- I [h(ax(fx\..., a i t t ) ) + • • • + A(aw(fi),..., aw(/i))] 

= - [a i ( / î ) + --- + am(/ï)] 
m 

= -(mh) 
m 

= h. 

Thus 0 : S1"" —y RG is onto and is a map of algebras, so if generators for S2"1 are known 
generators for /?G are obtained by using the map 0. 

Generators for S1"" valid over any ring are described in [1]. Here is the result. Let 
/ = [atj] be a m x s matrix of non-negative integers, and let z1 — ^ " • • • 7%g denote the 
corresponding monomial in S. I is said to be an exponent matrix. Let 0(1) = { J \ 3a G 
Zm with a(z!) = z1} so that {z7 | J £ 0(f)} is the orbit of z1 under the action of Zm 

given above. Then s(I) = T.jeO(i) ̂  is an invariant. 
Let Ky be the m x s matrix which is everywhere zero except in its jth column K\j = 

( 1 , . . . , 1,0,..., 0) (/ ones). Denote by atj the orbit polynomial s(Ky). This is the i-th 
elementary symmetric function in the variables zy,... ,zmj> Set B = k[atj | 1 < / < 
m, 1 <j< s]. 

Just for the moment view each column, V , of an exponent matrix, /, as a function 
F' : { 1 , . . . , n} —• N. Define Ker(P) = {i | P(i) = 0} . Let £1 be the set of exponent 
matrices / = [I11 .. . | Is] satisfying / = 0 or both of 

(1) the image of / is an interval in N and, 
(2) { KeriV) \ 1 <j < s} has no minimum element. 

THEOREM. Let A be the B-module generated by { s(T) \ I e Q } . Then A = Slm. 

PROOF. See [ 1, theorem 4.1] • 

Remark. This method is a generalization of Emmy Noether's method for k = Q, 
R or C (see H. Weyl's description [11, pgs. 275-276]). 

PROPOSITION 3. If p/\G\ then RG is generated by polynomials of degree at most 
max(\G\,n(M)). 

PROOF. If n — 1, G is a finite subgroup of k* and hence cyclic. It follows that RG is 
\G\ 

generated by x[ . 
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We take each ztj to have degree 1 so that 9 is degree-preserving. A is generated as an 
algebra by the algebra generators of B (which have degree at most m — \G\) and the B-
module generators of A. Property (2) above guarantees that each column of an exponent 
matrix in £1 has a zero entry, while property (1) then implies that a maximal entry in any 
column is m — 1. Hence the result. • 

Scholium. On generators for rings of invariants of ̂ -groups G = P over a finite 
field of characteristic p. 

The following is an attempt to obtain generators for Rp when k is a finite field of 
characteristic p > 0. Suppose P = {/3i,... ,/3r} so r = pl, for some t. Then P acts 
on itself via left multiplication and we obtain £ : P —• Xr. Fix a basis {x\,...,xn} 
for V and let U denote the upper triangular/7-Sylow subgroup of Gl(V). Replacing P 
by some conjugate of P if necessary assume that P C U. Now Ru is the polynomial 
algebra k[v\,..., vn] where v; = H1EU/ staM*,-)7(JC/). This result is well-known, see for 
example [6,theorem 3.4, pg. 328] or [8, proposition 4.1 and example 4.3, pgs.265 and 
269] or [12, theorem 3.1(c), pg. 428]). Set S = k[zy | 1 < i < r, 1 < j < n] and define 
6 (zij) = oci(xj) G R. Then Xr acts on S by a(zij) — za(ï)j, and so P acts on S via £, and 0 
is equivariant as before. 

Proceeding as above obtain a map of algebras 6 : SZr —» /?p. Construct a subalgebra A 
of Rp by adjoining the elements v i , . . . , vn to the subalgebra /m(0 | ^ ) . Then Ru CA C 
Rp. Since generators for SIr are known (see [1]) a set of generators for A is obtained. 

PROPOSITION 4. Rp = {/ G # | 3 £ e N vWf/i/^ G A}. 

PROOF. For each I set Bt = {f e R \ f>1 e A}. Iff G B£ then/^£ G A c ^ s o 
ct(fpl)= fpi for all a eP. Thus (a(f) - / y 7 ' = 0 and consequently (a - 1)/ = 0 since 
/? is a domain. Hence Z^ C Rp. On the other hand, iff — f(x\, ...,xn) G Rp then the 
element g = UUfiztu... ,z*) G S2^ and 0(g) = f. m 

Let Q(S) denote the field of fractions of a domain S. 

PROPOSITION 5. Rp = 2(A) n /?. 

PROOF. NOW Q(/^) C Ô(A) C Q(RP) C Q(/?), and g(/?) is Galois over g^^7) = 
Q(R)U with Galois group U. So g(A) = e(/?)H for some subgroup H of U with P C / / . 
Consider/ G Rp and A G //. Since f G A we have ((/z - \)f)r = (h - l)(fr) = 0 so 
h(f) = f for/ G Rp. It follows that H = P and Q(RP) = g(A), hence the result. • 
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