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1. Introduction. The notation and terminology of this paper coincide with that of
reference [4], except that here the term, compactification, refers to a Ty-space. It is known
that a completely regular totally bounded Hausdorff quasi-uniform space (X, 7") has a
Hausdorff compactification if and only if ¥ contains a uniformity compatible with J(7")
[4, Theorem 3.47]. The use of regular filters by E. M. Alfsen and J. E. Fenstad [1] and O.
Njastad [5], suggests a construction of a compactification, which differs markedly from the
construction obtained in [4]. We use this construction to show that a totally bounded T;
quasi-uniform space has a compactification if and only if it is point symmetric. While it is
pleasant to have a characterization that obtains for all Ti-spaces, the present construction
has several further attributes. Unlike the compactification obtained in [4], the compac-
tification given here preserves both total boundedness and uniform weight, and coincides
with the uniform completion when the quasi-uniformity under consideration is a
uniformity. Moreover, any quasi-uniformly continuous map from the underlying quasi-
uniform space of the compactification onto any totally bounded compact Ti-space has a
quasi-uniformly continuous extension to the compactification. If 4 is the Pervin
quasi-uniformity of a 7,-space X, the compactification (X, (%)) we obtain is the
Wallman compactification of (X, 7(%)). It follows that our construction need not provide
a Hausdorff compactification, even when such a compactification exists; but we obtain a
sufficient condition in order that our compactification be a Hausdorff space and note that
this condition is satisfied by all uniform spaces and all normal equinormal quasi-uniform
spaces. Finally, we note that our construction is reminiscent of the completion obtained

by A. Csészar for an arbitrary quasi-uniform space [2, Section 3]; in particular our
Theorem 3.7 is comparable with the result of [2, Theorem 3.5].

2. Preliminary results. For the sake of completeness, we begin by citing some
definitions given in reference [4]. A quasi-uniform space (X, %) is point symmetric
provided that for each Ue % and xeX there is a symmetric V €U such that
V(x)cU(x). It is useful to observe that % is point symmetric if and only if
T(U)< T(U™"). Evidently, if U contains a uniformity compatible with J(%), then U is
point symmetric; the converse is false even for completely regular quasi-uniform spaces.
Every compact T;-space is point symmetric; and, since every quasi-uniform subspace of a
point-symmetric quasi-uniform space is point symmetric, point symmetry is a necessary
condition for a quasi-uniform space to have a compactification.

If (X, %) is a quasi-uniform space, U* denotes the coarsest uniformity that contains
% and, for each x € X, n} denotes the T (%U*)-neighborhood filter of x. A filter ¥ on a
quasi-uniform space (X, %) is a Cauchy filter provided that for each U € % there is an
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x € X such that U(x) € . A quasi-uniform space (X, %) is totally bounded provided that
for each Ue % there is a finite cover € of X so that CX Cc U for each Ce %.
Equivalently, (X, %) is totally bounded provided that every ultrafilter over X is a
Y *-Cauchy filter. If A and B are subsets of a set X, T(A, B) denotes X X X —A X B. If U
is a totally bounded quasi-uniformity, ¥ = {T'(A4, B): forsome Ue U, AXBNU=T} is
a subbase for %. Each %*-Cauchy filter % contains exactly one minimal 9*-Cauchy filter,
namely the filter that has as a base {U(F): U is a symmetric member of %* and F € }.

Let (X, %) be a quasi-uniform space. Then X denotes the set of all minimal %*-Cauchy
filters on X, for each Ue U, U={(F, ¥) e X X X: there is an Fe % and a G € ¥ so that
F x G c U} and % denotes the quasi-uniformity on X for which {U:U e U} is a base.
The pair (X, %) is called the bicompletion of (X, ). Since (U)* = (U*)~, we always
write %* to denote this uniformity. It is a complete uniformity, and (X, %) is
quasi-unimorphic to a I (%*)-dense subspace of (X, 4).

In the study of quasi-uniform spaces, the bicompletion of a quasi-uniform space is the
natural analogue of the completion of a uniform space; and, since the bicompletion
(X, ) of a quasi-uniform space (X, %) is compact if the quasi-uniform space is totally
bounded, the bicompletion appears to provide the natural compactification of a totally
bounded quasi-uniform space. Our first result rules out this red herring.

_ProrosiTion 2.1. Let (X, ) be a totally bounded T, quasi-uniform space. Then
F(U) is a T, topology if and only if U is a uniformity.

Proof. If U is a uniformity, 9 is the usual completion, which is well known to be a
Hausdorff uniformity.

Now suppose that I(U) is a T, topology. Both (%) and F(U~") are coarser than
9’(%*) which is compact. Thus % and %~ are point symmetric and J ""("u) =J(U")=
F(U*). Since U is a T, quasi-uniformity, ()% = A and it follows that 9 consists of all
the T(%) x T(U)-neighborhoods of A [4, Theorem 1.20]. Evidently % and hence % is
a uniformity. W

A filter & on a quasi-uniform space (X, %) is a regular filter provided that for each
F € & there exists an E € % and a U € U such that U™'(E) = F. Note that in case (X, U)
is a uniform space the definition of a regular filter given here coincides with the definition
of a regular filter given by Alfsen and Fenstad [1]. For any filter & on (X, %), %" denotes
the filter for which {V~}(F):V e U, F € %} is a base. We omit the proof of the following
proposition, since comparable results are obtained in reference [1].

ProPOSITION 2.2. Let & be a filter on a quasi-uniform space (X, U).

(a) & and F’ have the same set of cluster points.

(b) Euvery regular filter is contained in a maximal regular filter.

(c) A regular filter ¥ is a maximal regular filter if and only if either X — A or B
belongs to % whenever U™'(A) < B.

3. Construction of a compactification. The first result of this section demonstrates
the importance of total boundedness in the forthcoming construction.
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Lemma 3.1. Let (X, U) be a quasi-uniform space. Every regular U*-Cauchy filter is a
maximal regular filter, and if (X, U) is totally bounded every maximal regular filter is a
U*-Cauchy filter.

Proof. Suppose that & is a regular % *-Cauchy filter on X, let A and B be subsets of
X and let U be an entourage in % such that U~'(A) c B. Let F € Fsuch that FX Fc U.
If FﬁA#@ then Fc U™ '(A)cB so that Be%. If FNA=(, then Fc X—-A and
X —Ae%. It follows from Proposition 2.2(c) that & is a maximal regular filter.

Now suppose that 4 is totally bounded and that & is a maximal regular filter. Then
S ={T(A, B):for some Ue U, AXBNU=} is a subbase for %. Let T(A,B)e &.
Then T(B, A}(B) c X — A so that either X — A or X — B belongs to %. Since (X — A) X
(X-A)UX-B)x(X—B)cT(A,B), we have shown that & is a U*-Cauchy
filter. W

ProrosiTiON 3.2. Let (X, AU) be a totally bounded quasi uniform space and let & be a

maximal regular ﬁlter on X. Then for each U € U and F € &, there exists a x € F such that
Ux)NU'(x)e &

Proof. Let U € % and F € %. By the preceding lemma, % is a 9*-Cauchy filter and
sothereisa GeZFsuchthat GXGcU. Letxe FNG;then Ux)NU™'(x)e % N

ProvposiTioN 3.3. Let (X, U) be a totally bounded quasi-uniform space. Then every
maximal regular filter is a minimal U*-Cauchy filter.

Proof. Let % be a maximal regular filter. By the preceding lemma, % is a
AU *-Cauchy filter so that by [4, Proposition 3.30] it suffices to show that B = {U(F):Uis a
symmetric entourage in U* and F € #} is a base for . Let F e %. There is a U € % and
an E € % such that U"'(E)c F. Evidently, UNU'e Band UNUY(E)cF. B

ProrosiTioN 3.4. Let (X, U) be a point-symmetric quasi-uniform space. Then, for
each x € X, n*(x) is a maximal regular filter.

Proof. Let x € X. Since (X, U) is point symmetric, {U™!(x): U € U} is a base for
n*(x). Let Ue U and let V < U such that V2< U. Then V-Y(V~!(x)) = U™'(x) and so
n*(x) is a regular filter. The result follows from Lemma 3.1. W

THeOREM 3.5. Let (X, U) be a point-symmetric totally bounded T, quasi-uniform
space. Then (X, ) has a totally bounded compactification (X, 1) that is a subspace of the
bicompletion of (X, U). Moreover, if U is a uniformity, (X, %) is the uniform completion
of (X,U).

Proof . Let X denote the set of all maximal regular filters on X. By Proposition 3.3,
Xc X Foreach UeQUlet U=UNXxXandlet %=%|XxX. Since (X, %) is totally
bounded, so is (X, %)

To show that (X, %) is a T, space, let % and & be two members of X and suppose
that (%, 9) e %U. Since ¥ and 4 are maximal regular filters, there exist F € # and
G e 9 such that FNG =. As G is a regular filter, there exist U e U and G, € ¢ such

https://doi.org/10.1017/50017089500006303 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006303

34 P. FLETCHER AND W. F. LINDGREN

that U™'(G,) = G. Since (¥, 9) € 9, there exist F € % and G, € ¢ such that F, X G, U.
Let xe FNE and y»sGlﬁG2 Then xe FNU'(y)eFNU N(G)cFNG=CJ—a
contradiction.

The map i:X— X defined by i(x)= n*(x) is a quasi-uniform embedding and, by
Proposition 3.4, i(X)c X. Furthermore i(X) is a dense subspace of (X, 7(U*)) and
therefore i(X) is a dense subset of (X, T(U*)).

We show that (X q¢) is compact. By Proposition 2.2(a), it suffices to show that every
regular filter on X has a cluster point. Let . be a regular filter on X. Since i(X) is a
T(U')-dense subset of X, {i"'(M):M e M} is a base for a filter ¥ on X. It is a routine
matter to show that & is a regular filter. Let ¢ be a maximal regular filter containing &.
We show that %, as a point of X, is a J(U)-cluster point of #. Let Ue U, V € U such
that V2c U and let M e M. Since i~'(M) € 9, by Proposition 3.2 there exists an x in
i~'(M) such that V™'(x) € 4. As V(x) e n*(x) and V7' (x) X V(x) c U, n*(x) € U(%) N M.

Finally, if % is a uniformity, (X, %) coincides with the standard completion of a
uniform space by means of regular Cauchy filters [1, Page 101]. W

The following corollary is a curious consequence of the preceding theorem and
Proposition 2.1.

CoroLLARY. Let (X, L) be a totally bounded point-symmetric T, space. Then L is a
uniformity if and only if every minimal U*-Cauchy filter is a maximal regular filter.

In general, a totally bounded quasi-uniform space may have many totally bounded
compactifications; indeed, if # denotes the Pervin quasi-uniformity of a Tychonoff space
X and # denotes the Pervin quasi-uniformity of any Hausdorff compactification X of X,
then (X, ?) is a totally bounded compactification of (X, ). [3, Proposition, Page 203].
The remaining results indicate the well-behaviour of the compactification selected by the
construction of Theorem 3.5.

ProrosiTioN 3.6. Let (X, U) be a point-symmetric T, quasi-uniform space, let F be a
maximal regular filter on X, and let x be a cluster point of %. Then F = n*(x).

Proof. Since n*(x) is a regular filter, it suffices to show that % c n*(x). Let
B={FeF:F=F} Then x €[ ) B and % is a base for . Let Ue U and B € B. Then
UNU'(x)cU (B)and so U"'(B)e n*(x). Thus F=F cn*(x). A

CoroLLARY. If (X, ) is a compact totally bounded T, quasi-uniform space, X = X.

THeoOREM 3.7. Let (X, U) be a totally bounded point-symmetric T, quasi-uniform
space, let (Y, V) be a totally bounded compact T, quasi-uniform space, and let
f1(X, W)~ (Y, V) be a quasi-uniformly continuous map. If f maps X onto Y, or V' is a
uniformity, then f has a quasi-uniformly continuous extension f: (X, U)— (Y, ‘V)

Proof. By [4, Theorem 3.29], there is a %U-¥ quasi-uniformly continuous map
§:X—Y defined for each minimal %*-Cauchy filter & by g(%)=J(V™*)-limit
fil{f(F):Fe %}. Let f=g | X. If ¥ is a uniformity, (Y, ¥') = (Y, ¥) and we are finished.
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Now suppose that f maps X onto Y and let ¥eX. Then, as is easily verified,
{f(F):F e #} is a base for a maximal ¥-regular filter %; we show that %, considered as
a point of Y, is f(%). Since J(V*) is a Hasudorff topology, it suffices to show that ¥ is a
T(V*)-cluster point of . To this end, let Fe %, let Ve ¥, and let W e V so that
ch V. By Proposition 3.2, there is a yef(F) so that W(y)ﬁW (y)e &. Since

Wl(y)en*(y) and W)X W™'(y)c V™, n*(y)e V' x (#)Nf(F). Similarly, we
see that n*(y)e V(%)ﬂf(F) and so ¥ is a J(¥*)-cluster point of %. By the pre-
vious corollary, Y = Y, and so f maps into Y as required. &

Any continuous map between two topological spaces is a quasi-uniformly continuous
map between the two corresponding Pervin quasi-uniform spaces. The extension property
established in the previous theorem suggests, therefore, that the compactification (X, )
might be of particular interest. In considering this compactification, we use the following
standard notation: For any subset A of a set X, A* denotes {%: % is a maximal closed
filter on X and Ae %} and S(A)=T(A,X —A). A subbase for the Pervin quasi-
uniformity of a topological space (X, 7) is {S(A):A € T} and a base for the topology of
the Wallman compactification of a Ty-space (X, 7 ) is {G*:G e T}.

THEOREM 3.8. Let X be a Ti-space and let P be the Pervin quasi-uniformity for X.
Then (X, J(P)) is the Wallman compactification of X.

Proof. We take X to be the collection of all filters on X that are maximal with respect
to the property of having a closed base; since a filter has a closed base if and only if it is
P-regular, X = X.

Let 2 be the Pervin quasi-uniformity for X. To see that Pc P, let E be a closed
subset of X and let U=S(X — E). We show that U=S(X — E*). Let (¥,9)eU. If
F e E*, it is obvious that (¥, 9)e S(X — E*). If FEE*, there exists an Fe ¥ and a
G e % such that FXG < U and FNE =, It follows that G =« X — E so that 9£€E*;
hence (%, 9) € S(X — E*). Now suppose that (%, 9) e S(X —E*). If Fc E*, then Ec¢ &
and X € ¢ so that (%, 9 e U. If F¢E*, then X —E e %N % so that (¥, ) e U. Thus
J(P) is coarser than the topology of the Wallman compactification of X.

To see that T(P) = T(P), let G be a T(P)-open set, let Fe G and let E=X - G.
Then E=(){E%:a € A} where, for each a € A, E, is a closed subset of X. There exists
a € A so that FEE*. Since S(X — E*) is an entourage of @, V = S(V — E¥) NX X Xis an
entourage of the Pervin quasi-uniformity on X. It suffices to show that V(g:) cd.
Suppose that # € V(%) NE. There exist Fe Fand He ¥ sothat FXHcV =X x X —
(X—-E, X E,). Since $£E%, we assume, without loss of generality, that Fc X — E,.
Thus HN E, =; and, since # € E = E¥, we have a contradiction. W

Our final result establishes a sufficient condition in order that (X', 022) be a Hausdorff
compactification. This condition is easily seen to be satisfied by a T totally bounded
quasi-uniform space that is either normal and equinormal or a uniform space.

We say that a relation V on a set X separates subsets A and B of X provided that
V(A)NV(B)=. A quasi-uniform space (X, ) satisfies property * provided that any

https://doi.org/10.1017/50017089500006303 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500006303

36 P. FLETCHER AND W. F. LINDGREN

two subsets of X that are separated by a member of %™ are also separated by a member
of U.

ProrosiTion 3.9. Let (X, U) be a point-symmetric totally bounded T, quasi-uniform
space satisfying property *. Then (X, %) is a Hausdorff compactification of (X, U).

Proof. Let % and 9 be two members of X. Thereisan A€ %, and Be 4, anda Ue U
so that U~'(A) N U~'(B) =. By hypothesis there is a V € % with V(A)N V(B)=.
Let W € U with W2< V. We assert that W(F) N W(G) =J. Suppose that # e W(F)N
W(%). Then thereisan Fe ¥,aGe %, andan H e ¥ suchthat FXHcW,GxHc W,
and HXHcW. Thus FXGcWoeWeW™'c VoVl Since there exists (p,q) e (F X
G)N (A X B), there is an r € X such that (p,r)e V and (r,q)e V~'; hence re V(p)N
V(q) c V(A) N V(B)—a contradiction. B

According to Theorem 3.47 of reference [4], a totally bounded Tychonoff space
(X, %) has a Hausdorff compactification if and only if % contains a uniformity compatible
with (). Thus any point-symmetric totally bounded Tychonoff quasi uniformity %
satisfying property * contains a uniformity compatible with J(%). If X is a Txchonoff
space that is not normal, then (X, ) has a Hausdorff compactification, but (X, P) is the
Wallman compactification, which fails to be a Hausdorff space. Thus a quasi- umformlty U
may contain a uniformity compatible with J(%) and still fail to satisfy property *. The
problem of determining necessary and sufficient conditions in order that (X, ) be a
Hausdorff compactification is still open; indeed, even property * has not yet been ruled
out as such a condition.
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