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Abstract

We present some correlated fractional counting processes on a finite-time interval. This
will be done by considering a slight generalization of the processes in Borges et al.
(2012). The main case concerns a class of space-time fractional Poisson processes and,
when the correlation parameter is equal to 0, the univariate distributions coincide with
those of the space-time fractional Poisson process in Orsingher and Polito (2012). On the
one hand, when we consider the time fractional Poisson process, the multivariate finite-
dimensional distributions are different from those presented for the renewal process in
Politi e al. (2011). We also consider a case concerning a class of fractional negative
binomial processes.
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1. Introduction

Several fractional processes in the literature are defined by considering some known equa-
tions in terms of suitable fractional derivatives. In this paper we are interested in particular
Lévy counting processes, as in the recent paper [6]; in particular, we deal with Poisson and
negative binomial processes. There is an extensive literature on fractional Poisson processes;
see, e.g. [7], [8], [16], [19], [24], and [26] (we also cite [15] and [20] where their representation
in terms of randomly time-changed and subordinated processes was studied in detail). For
fractional negative binomial processes; see, e.g. [6, Example 3] and [28]. Among the other
fractional processes studied in the literature, we recall the diffusive processes [2], [3], [18],
[22], [27], the telegraph processes [21], and the pure-birth processes [23].

Often the results for these fractional processes are given in terms of the Mittag-Leffler

function
r

X
Eap(x) =) pops’

r>0

Received 25 July 2014, revision received 26 September 2014.

* Postal address: Dipartimento di Scienze Statistiche, Sapienza Universita di Roma, Piazzale Aldo Moro 5,
1-00185 Roma, Italy. Email address: luisa.beghin @uniromal.it

** Postal address: Dipartimento di Scienze di Base e Applicate per I'Ingegneria, Sapienza Universita di Roma,
Via A. Scarpa 16, 1-00161 Roma, Italy. Email address: rolinipame @yahoo.it

*** Postal address: Dipartimento di Matematica, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1-00133
Rome, Italy. Email address: macci@mat.uniroma?2.it

1045

https://doi.org/10.1239/jap/1450802752 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1450802752

1046 L. BEGHIN ET AL.

see, e.g. [25, p. 17]. We also recall the generalized Mittag-Leffler function

v o () Ox"
E"'ﬂ(x) - g r'T(ar +B)’

where, for y € R,

(y)(r) = V(V+1)"()/+r_1) ifr?_ 1’
1 ifr=0
is the rising factorial (also called the Pochhammer symbol), and E Z P) coincides with E, g when
y =1

In this paper we consider some processes {N,(:): p € [0, 1]} on a finite-time interval [0, T']
for some T € (0, 0o). More precisely, Ny(-) = {N,(t): t € [0, T1} is defined by

Mg
Np(®) := Y lion(XFP),

n=1

where M, is a nonnegative integer-valued random variable with probability generating function
(PGF) g, ie. g(u) := E[uMe], and {X[”: n > 1} is a sequence of random variables with
(common) distribution function F such that F(0) = 0 and F(T) = 1, and independent of M,;
moreover, the correlation coefficient between any pair of random variables X, and X,,, with
n # m, is equal to a common value p € [0, 1].

Remark 1.1. We have N,(T) = M,; thus, the distribution of N,(T') does not depend on p.

In this way we are considering a slight generalization of the processes presented in [9];
indeed, we can recover several formulas in [9] by setting g () = ¢*®~D for some A > 0 (which
concerns a Poisson distributed random variable with mean 1), and F(t) = ¢ for¢ € [0, 1], where
T = 1. The case without correlation, i.e. the p = 0 case, appears in [4]; see also [17], where
that process is considered as a claim number process in insurance. Here, in view of what
follows, we recall the following formulas; see, e.g. [9, Equations (9) and (10)]). We have the

PGF —
Grn,y(w) =p(1 = F@)+pF()gw) + (A — p)g(l — F(t) + F()u), (1.1)

and the probability mass function (PMF)

P(N,(t) = k) = (1 — p)P(No(t) = k)
+ p{(1 = F(t)) Lg=0) +F(1)P(Mg = k)} forallk >0, (1.2)

where
P(No(t) =k) =) (:) FKO)( = F(t))" *P(Mg =n) forallk>0  (1.3)
n=k

concerns the p = 0 case; see [4, Equation (2.4)].

As pointed out in [4], this class of counting processes can be useful to tackle the prob-
lem of overdispersion and underdispersion in the analysis of count data where correlations
between events are present. A possible application can be given, for example, in models
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of nonexponential extinction of radiation in correlated random media; see, e.g. [13]. We
also remark that, as far as the marginal distribution of each random variable N,(¢), in (1.2)
we have a mixture between three PMFs, ie. {P(Ng = k): k > 0}, {1x=0): k > 0}, and
{P(Mg = k): k > 0}, and the weights are 1 — p, p(1 — F(¢)), and p F (¢), respectively.

The aim of this paper is to present some correlated fractional counting processes by choosing,
in a suitable way, the PGF g and a distribution function F above. In Section 2 we present a class
of space-time fractional Poisson processes (in fact we have the same univariate distributions of
the space-time fractional Poisson process in [24] when p = 0). A class of fractional negative
binomial processes is presented in Section 3.

Finally, since the presentation of the results in [9] refers to the concept of weighted Poisson
processes (see also [4] concerning the p = 0 case), in Section 4 we give some minor results on
weighted processes. Even though this section seems to be disconnected from the other sections
in this paper, in our opinion it is a nice enrichment of the content of [9].

2. A class of correlated fractional Poisson processes

For the aims of this section, some preliminaries are needed. First, we consider the Caputo
(left fractional) derivative d¥/dt" of order v > O (see, e.g. CDZ 4 in [12, Equations (2.4.14)
and (2.4.15)] with a = 0. We use the notation [x] := max{k € Z: k < x}) defined by, for all

t>0,
1 ! 1 d-
— d
@ F(n—v) Jo (t—s)r—tldsn f(s)ds
@f(l‘) =14 (wheren =[v]+1), if v is not integer,
d\)
—f® if v is integer.

dev

Note that, since here we consider v € (0, 1], we have (see, e.g. [12, Equation (2.4.17)] with
a =0),forallr >0,

1 t 1 d ‘
L= {Ta=n o sy ds) s iEve@D,

drv
—f(t ifv=1.
@ f@) ifv
We also consider the (fractional) difference operator (I — B)“ in [24]. More precisely, I is

the identity operator, B is the backward shift operator defined by Bf (k) = f(k — 1), and
B"~'Bf (k) = f(k — r) and, therefore,

o0
(I -B)* =) (-1 (",’)B!’. @.1)
=0 ]

We now recall that Orsingher and Polito [24] considered the space-time fractional Poisson
process {Ng’”(t): t > 0} for a, v € (0, 1], whose PMFs {p(¢): k > 0} solve the Cauchy

problem:

d¥ 0, k>0
—pe(t) = 2% — B)* pr (1), 0)=1" ’
dt,,Pk( ) ( )y Z10) Pi(0) [1, k=0

The explicit form of the PGF of this process has the following form (see [24, Equation (2.28)]):

Eu™ O] = E, 1 (—2%" (1 — u)®).
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In this section we consider a class of correlated space-time fractional Poisson processes on

a finite-time interval [0, T']. For «, v € (0, 1], we consider N,(-) = Nf,’"’(-) such that the PGF
of My is

gu) 1= Ey1(=A"T"(1 — u)%), 2.2)

and the distribution function of the random variables {X ,’,: Pin>1}is

v/a
F(t) = (%) fort € [0, T].

In what follows we present the PGFs in Proposition 2.1 and the corresponding PMFs
in Proposition 2.2. Moreover, in Proposition 2.3, we give an equation for the PMFs in
Proposition 2.2 with respect to time ¢.

Proposition 2.1. The PGFs {G NE'(ni T E [0, T} are

¢ v/a t v/a o o
GNg.v(,,(u>=p(1—(T) )+p(7) Eu1(—2°T" (1 = w)%)

+ (1 = p)Ey1 (=A% (1 — u)®).
Proof. We have

¢ v/a ¢ v/a
G gy W) = p(l - (;) ) + p(;) Eu 1 (AT (1 - w)*)

£\V/e £\ 1\ @
vt (- (3 () )
by (1.1), and we conclude with some manipulations of the last term.
Remark 2.1. By Proposition 2.1, if p = 0, we have the PGF
Gy @) = Ey 1 (=257 (1 = u)%), (2.3)

which coincides with the PGF presented in the last case of [24, Table 1]. Note that (2.3) is a
generalization of (2.2) with ¢ € [0, T]instead of t = T. Thus, the univariate distributions of the
random variables {N(}'”(t) 1t € [0, T} (for the & = 1 case) coincide with the distributions of
the random variables of the renewal process {M(¢): t € [0, T']} in [26] (restricted to the same
finite-time interval). On the other hand, one can check that the multivariate finite-dimensional
marginal distributions are different from those in [26] (and, in fact, {Nf,‘*" (®):t €0, T]}isnot
a renewal process). We explain this with a simple example where we take into account that
PM(Gs)=1)= ]P’(N(;"’(s) =1)= As"Ef_v+1(—As”) fors € [0, T

by [8, Equation (2.5)]. In fact, for t € (0, T'), we have

PM@®) =1, M(T)=1)= At"Efva(—At”)Ev,l(—)t(T -0Y) 2.49)

by combining [26, Equations (11) and (14)] (with (71, ) = (¢, T) and (n1, n2) = (1, 1)) with
[26, Equations (2) and (4)], and

t
(NG () = 1, Ng™(T) = 1) = ZATVEL . (<AT") @5)

because P(Ng'"(t) = 1 | Ny*"(T) = 1) =t/ T by construction. Then (2.4) and (2.5) coincide
only for the nonfractional v = 1 case; see Figure 1.
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FIGURE 1: The probabilities (2.4) (dashed line) and (2.5) (solid line) versus v € (0, 1] fort = % and
T=A=1.

Proposition 2.2. The PMFs {P(N;"(t) = -): t € [0, T]} are

(=DF & (=A%) T(ar+1)
k! = IF'r+DIT(ar+1-k%)

(- (2) e

N (t V(R X (=ATYY T(ar +1)
T k! = Fwr+ D) T(ar+1-—

PIVG™ (1) = k) = (1 = )

) } forallk > 0.

Proof. First, we have
P(Mg =n) =P(Ny"(T) = k)

(=D G (=T T(ar +1)
T oon! ZTr+1)T(er+1-n)

foralln >0 (2.6)

by the PGF in (2.2) (see [24, Equation (1.8)]) and by Remark 1.1. Moreover, if we consider
(1.3), we obtain

PN (1) = k)

NI

n X sagvyr
X(—l) Z( ACTYY T(ar+1)

n! = Fwvr+ D T'(er+1—n)
_ (—l)k ¢ (v/a)k 00 (__l)n—k ¢ viay n—k
=-5(7) 2 G (-(7))

o]

Z (—A9tv)y" (Z)"’ F@r+1) Tar+1-k)
Frwr+1)\ ¢ Far+1—k)T(ar+1—n)

r=0
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_(=Df [ (”/“”‘i (=A%) (T)”’ T(ar+1)
CORA\T ZTwr+D\t/) Tlr+1-k

00 i viay j
(=1)/ t Far+1—k)
1—{ = fi Ik >0.
2, < (T) )r<ar+1—k—j> oratk=

j=0

Then, by the well-known ‘Newton’s generalized binomial theorem’, we obtain

~1 k (v/a)k
e S0

Z ( —A9% v)r( )vr F(ar+1) (1+(t)u/a_ l)ar—k
T(vr+1) C(ar +1—k) T

( l)k 00 ( —A%t v)r (v/a)k—vr+vr—(v/a)k l"(otr +1)
k! Z:l“(vr+1)( ) Far+1—-k)

forall k > 0,

(=K i (=A%t T(ar+1)
TR —~ T(r+1)Ter+1-k

where, as we expected by (2.3), ]P’(Ng"’(t) = k) here meets ]P’(N;’"’(T) = k) in (2.6) (here we
have ¢ and k in place of T and n in (2.6)). We conclude the proof by considering (1.2) together
with the last expression above obtained for the p = 0 case.

In view of Proposition 2.3, we remark that in a part of the proof we refer to [5, Theorem 2]
which can be derived by referring to a subordinated representation of the space-time fractional
Poisson process in terms of both stable subordinator and its inverse; see also [5, Equations (3.20)
and (3.1)].

Proposition 2.3. Let {P(Ng"’(t) =-):t € [0, T]} be the PMFs in Proposition 2.2. Then we
have the following equations:

EV—JP’(N"‘ V() = 0)

= —A*P(N%V(1) = 0) + A%

(N[, T+l s
o(7) (g )0 P @ =00 ork=o

v

d
HPNET 0 =)

= —2%(] — BY*P(N®*(t) = k) + A%p(1 = (& e < (*
= (I —B)'P(N; (1) =k) + p( (7) )(—)(k)

¢ v/a o o _y T/a+1) v

In all cases we have the initial conditions ]P’(Ng"’(O) =0)=1and ]P’(Ng"’(O) = k) =0 for
allk > 1.
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Proof. The initial conditions trivially hold. Throughout this proof we consider the notation
pZ"’(t) =P(Ny"(t) =k) forallk >0
for the PMF concerning the p = O case. Then, by (1.2) and Remark 1.1, we obtain

dU o,V dv o,V
FP(NP @O=k=~0- p)-—dt,, P ()
v

1 d 1 d
- — v/ - , = v/
+p{ Tv7a Le=0) dt"tv *+ Tv/alP’(Ng UT) = k)dt”tu a]

= (1= vy - 2 Ny vy =iy | L e
= ( —P)Fpk ()—m {k=0} o (T)=k) LIt

Moreover, we have
v

d
—p () = =22 — B)*py" (1)

drv
by [5, Theorem 2] and
@ e _ ey _TOW/atD)
drv Fw/a—v+1)
(see, e.g. [12, Equations (2.2.11) and (2.4.8)], or a correction of [12, Equation (2.4.28)]). Then,

we obtain
v

d v
PO = k) = =%~ B)*(1 = o) ()

Fw/a+1)

¢ V/a a,V -V

T

From now on we consider the k = 0 and k > 1 cases separately.
Case 1: k = 0. First, we have

oo
I = B)*pg" () =3 (=1 (t;)l’g'—vj(t) =p5" ()
j=0
by (2.1); therefore,
d ,
G P, (0) = 0) = =A%(1 = p)py”" ()

F'(v/a+1)

t v/ a,v -V
—p(7) (1 = BVZ* (D) = )™ e

Then, by (1.2) and Remark 1.1,

dv
F]P’(Ng"’(t) =0) = —A“{]P’(Ng‘”(t) =0)

' v/a ¢ v/a o
—p{l—(i) +(7) P(N, (T)=O)”

¢ v/a . - Tw/a+1)
_p(7> (=BG (T) = O} mo s,

and, finally, we can check by inspection that the last equation is equivalent to that in the statement
of the proposition.
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Case 2: k > 1. First, again by (1.2) and Remark 1.1, we have

dl)
PO =)

= - = B[PV 0 = )

£\ Ve
o3 relg) =

e\ _, Tw/a+1)
“’(?) PN D =B e v D

v/a
= —A%(I = B)*P(Ny"" (1) = k) + k"‘p(l - (%) )(1 = B)* 1=
£\ o @ .-y TWa+1) .
+p(_T_) [x (I — B +1 —————F(v/a_v+l)]n»(1vp (T) = k).

Then we obtain the desired result by noting that

(I - B)* 1y=q) = Z(—l)j (a) Ly—jmoy = (= 1F (‘;)
j=0 J

The proof is complete.

Finally, we remark that, even if the equations in Proposition 2.3 have some analogies with
other results for fractional Poisson processes in the literature, here some standard techniques
do not work because we deal with a finite-horizon time case (i.e. ¢t € [0, T]).

3. A class of correlated fractional negative binomial processes

It is well known that the negative binomial process can be seen as a suitable compound
Poisson process with logarithmic distributed summands; see, e.g. [14, Proposition 1.1]. More
precisely, for some p € (0, 1) and some integer r > 1, we have the PGF

u = h"(mu)),

where h(u) := e*®~1, with A = —log p, is the PGF of a Poisson distributed random variable
with mean A = —log p, and

1= =
sl p

mu) :
log p -p

is the PGF of a logarithmic distributed random variable (obviously, we have m(u) = oo if
lul = 1/(1 = p)).

In this section we present a class of correlated fractional negative binomial processes on a
finite-time interval [0, T]). More precisely, we consider the same approach with the PGF of a
space-time fractional Poisson distributed random variable; thus, for «, v € (0, 1], we have

ha,w (W) i= Ep,1 (=A% (1 —u)%)
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in place of h (note that 4 coincides with /1, 1), again with A = — log p, and this meets g in (2.2)
with T = 1. Thus, we have

log(1 — (1 — “\Y
o= (oo S0

[oumr(=2))

where, again, r > 1 is an integer power of the function E, 1, p € (0, 1) and |u| < 1/(1 — p).
We remark that g in (3.1) is the PGF of N,(T), but it does not depend on T as happens for g
in (2.2).

As far as the distribution function F is concerned, we argue as in Section 2 as follows. For
all ¢ € [0, T'], we want to have the condition

1-(-— r
Gngr () = {Ev,l (— loga(———( q(t)q(t))u))}

for some g(-) such that g(t) € (0, 1] for allt € [0, T] and q(T) = p. Then, by (1.1) with
p = 0 and by (3.1), we require that

1 -1 —q@)u _1-(01-p)1-F@)+ F(@)u)

q(1) - P
_ 1—(1-p)1—-F@)—(1-p)F(@t)u
p
So, if we divide both numerator and denominator by 1 — (1 — p)(1 — F(t)), we obtain
q(t) = P

1-1-pA-F@)

Moreover, we have

() = P - :
T T (U-pF® ~ 1+(1/p) = DF (@)’
which yields
(1/q() — 1
F@) = ———— fi T 2
® 1/p) =1 ort €[0,T], (32

and the function g (-) has to be decreasing. We also give a particular example with a choice of
q(-), and we provide the corresponding distribution function F.

Example 3.1. If we set
1—-A
= ———————
10 =10 =n
for some A € (0, 1), we recover the example in [4, Section 3.3] (see also [9, Section 4.3] for a
generalization). In fact this choice of g(-) is the analogue of [4, Equation (3.6)]; moreover, if

we set p =1 — A, we have

)4 _ 1
—(1-t/T)A=p)  1+4((1/p)—D/T)

qm=1

and therefore F(¢t) =¢/T.
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In what follows we present the PGFs in Proposition 3.1 and, forr = 1 only, the corresponding
PMFs in Proposition 3.2 (for r > 2 we have the rth convolution of the PMF of the r = 1 case, but
we cannot provide manageable formulas). Moreover, in Proposition 3.3, we give an equation
for the PGFs {GNg-"(,)I t € [0, T]} in Proposition 3.1 for r = 1, v = «, and p € {0, 1}; in this
case we consider fractional derivatives with respect to their argument u, and not with respect
to time .

Proposition 3.1. The PGFs {G RO [0, T]} are

_ () a1
Ol =~ (1 /p -1 )

(1/q(0)) — 1 ( a(l—(l—p)u))]'
Yl E =1 el S st
TP —1 { A\ T8 P

+( —p)[EvJ(-log“(l—:—Q—:—‘&)—)—Ii))] )
q()

Proof. This is an immediate consequence of (1.1) and the formulas above.

In view of Proposition 3.2 some preliminaries are needed. First, we consider the Stirling
numbers {sx 5: k > h > 0}; see, e.g. [1, p. 824] for their definition and some properties used
below. Moreover,

(al,al)...(a,,,a,,)] — [17_, T(an +O!hj)z_j
rq [(bl,ﬁl)...(bq,ﬂq> @: JZO T Tk + i) J!

is the Fox—Wright function (see, e.g. [12, Equation (1.11.14)]) under the convergence condition

q p
D B—) an>—1 (3.3)
k=1 h=1

(see, e.g. [12, Equation (1.11.15)]).

Proposition 3.2. Ifr = 1, the PMFs {P(Ny'"(t) =-): t € [0, T]} are

PN (1) = k)
= (1 - p)B(NG" (1) = k)

(1/p) —(1/q()) (1/q@®) -1 Ay
+p W 1ik=0) +WP(N0 (T) = k)} forallk >0,
where, forallt € [0, T],
Ey1(—log*(1+ Ay)) ifk =0,
1 (—Apk

k
—_—— log™"(1+ A
PN () = k) = { K1 (1 + A)F ; g s

(L) (1, 1) a :
Xz‘pz |:(1—h,a) (I,V)] (—log®(1+ Ap)) ifk>1,

(3.4)

and A; = (1/q(t)) — 1 (note that the convergence condition (3.3) holds because we have
a+v—(x+1)=v—-1>-1).
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Proof. First, we remark that it is enough to check (3.4) (concerning the p = 0 case); in fact,
we obtain the formula for the general case by combining (1.2), F in (3.2), and (3.4). It is well

known that
GNg'v(t) (0) ifk = 0,
PN @0 =k =1 | g 3.5)
! dukGNO (,)(u) o lsz 1.
First, if A, = (1/q(t)) — 1 as in the statement of the proposition, we have
1—(1—=qg@t)u
Gngvay) = Ev, (— IOg‘x(——q'(?)g(—p—)) = Ey1(=log"(1 + A/(1 — u))),
and we immediately obtain (3.4) for k = 0. Moreover, if we prove that
k
2k Ev. 1(—log”(1+ A(1 —u)))
(—A) (=1)JT(aj + 1) ih
plog® "1+ A1 —
T U+A0—w) ;);.Z; T@j—ht DI + 1) krloe” "+ Al —u)
3.6)

1 (A “h L) 1,1 .
k' a+ A)k leog 1+ A)Sk,h 2"1/2 [(l —ha) (1, \))] (- log 1+ 4)) (37)

for k > 1 (and for all A € R), we obtain (3.4) for k > 1 (and the proof is complete) as an
immediate consequence of (3.5) and (3.7) with A = A;. Therefore, in the remaining part of the
proof we only prove (3.6) by induction; in fact, (3.7) can be checked by inspection. Fork = 1,
we have

d o v (=D Tog® A+ AL - w)
5 Bvi(=log"(1 + (1 ”)”‘gor(wn A=

(=4,

and (3.6) is proved noting that

_Te+1

s =1, -
b T'(a))

Now we assume that (3.6) holds for k > 1. Then, we have

dk+1
FpEs) Ey1(—log"(1 + A(1 — u)))

_df A
"_10+Aa—w%

k o
=Dl (@j+1) wioh ) ]
" 1;);:21 Fej—h+DI'j+ 1) A log® (1 + Al — u))
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(=k)(=4)
(1+ A1 — )kt

k o
(=1)/T(aj + 1) aimh )
g ,;;,; Fj—-h+ DI+ 1)k log™ ™" (1 + A(1 — u))

1
t AT A 0F

k .
=D)T(@j+1)
x> D Tj—h+ DI+ 1) "

=(—Aﬁ[

j=0h=1
j — aj—h—1 _
X (aj — h)log a + A( = ) Cal
1+ A(l — u)
and we obtain
dk+l
St Bva (= log* (1 + AQL - w))
(—A)kH!
- (1 + A(l — u))k+l
k ] .
(=1)/T(aj + 1) .
X —-k N - s 10 7] 1+A l—u
[ ,;0,2 F(@j—h+ DO(vj + 1) "8 ( (1 —u))
k o
(=1)/T(aj + 1) .
log®/ 14+ A1 —
+ ZZ F(a] — h)r‘(vj + l)sk,h og ( + ( u))
Jj=0h=0
because (aj — h)/T'(aj —h +1) = 1/T'(aj — h) and s¢,0 = 0. Then, we obtain
gk+1
Gt Evi (- log* (1 + AU —w)

(_A)k+l
T 0+ AQ — u))kH1

k i .
_ (~1)/T@j + 1) o )
g { ";0% Faj —h+ DI(j 11 er o8 Al —w)

k+1

DT+ aj—(m—1)-1 - }
+,§m§=:1 l“(aj—m+1)r(vj+1)skvm-1‘°g (14+ A1 —u)

(__A)k+1
- (14 A1 — u))k+!
k

(=1)/T(aj + 1) _ i )
X ;{}; r(aj —h+ I)F(vj + 1)( kSk,h +sk,h—l)10g (1+ A1 —w))

(-1)/T(@j + 1)
T(ej— (k+ 1)+ DO(j+1)

selogd=®+D (1 4 A1 - u))},

and (3.6) holds for k + 1 because —ksk n + Sk,n—1 = Sk+1,» and Sk k = Sk+1.k+1 = L.
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In view of Proposition 3.3 some preliminaries are needed. First, let (O), be the operator

defined by
1 Z
f 1og,,_l_m(a-4~bz)
F'(n—a) Ju-aym a+bt

(0)a f(2) = ><|:((ﬂ + t)%) f(‘r)] b dt ifae@®—1,n), (3.8)

b a+ bt

a d\" .
((E +Z)d—z‘) f@@ ifa=n,

where z > (1 — a)/b. Here, for the moment, we are assuming that @ > 0 and r is an integer
value. Thus, for @ € (n — 1, n), this operator can be formally considered as the regularized
Caputo-like fractional power of the operator (a/b + z)(d/dz). Indeed it can be found from the
definition of Caputo fractional derivative of order «, by means of the simple transformation
z > log(a/b + z). Moreover, we observe that if a = 0 and b = 1, (3.8) coincides with the
Caputo-like regularized Hadamard fractional derivative recently introduced in [10].

In what follows we focus our attention on the ¢ € (0, 1) case and, in view of the proof of
Proposition 3.3, we check that

(0)aEq,1(—y log¥(a + bz)) = —y Eq,1(—y log® (a + b2)). 3.9
In fact, by (3.8), for 8 > —1, we have
(0)g logﬂ (a +b2)
1 z a+bz a d b
= log™ — — )logPa+b
rl-a) f(l_a)/b o8 (a + bt)[((b + T) d‘t) og"(a+ T)]a + bt

log?~1(a + b1)
— b
a+ bt

dr

1 z .
= m \/(‘l_a)/b(log(a + bZ) - log(a + b‘l')) ﬂ dr

and, after some computations with the change of variable y = log(a + bt)/log(a + bz), we

obtain .
(0)q logh(a + bz) = _F log?~*(a + bz) / (1-y)"*yPdy
ra-—aw 0
and, therefore,
rg+1 _
B S L B A P ] . .
(0)q log” (a + bz) FG+l-a) log" ~%(a + bz) (3.10)

Then, by (3.10) and some computations, we obtain

oo
(0)aEq, 1 (—Y log“ (a +b2)) = Z
k=1

_ (=y)*log* (a + bz)
== Tak+1)

(—p)k log"k”"‘(a + bz)
Noak—a+1)

k=0

which meets (3.9).
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Proposition 3.3. Assume that r = 1 and let {Gyyv(,): t € [0, T1} be the PGFs in Proposi-
tion 3.1 with a = v. Then we have the following results

(1) (p = 1case) Let (0),,1 be the operatorin (3.8) witha = 1/pand b = (p — 1)/ p. Then

(1/q(®)) —1 1
(O)v,lGN;’-V(t)(u) = _GN]"‘V(t)(u) +1- —(l/p)——l for allu e (1 it;)
(ii) (p = Ocase) Let (O),,o be the operatorin (3.8) witha = 1/q(t) andb = (q(t)—1)/q(t).

Then :
(O)U,OGN(;""(I)(M) = _GN(‘,""(t)(”) for allu e (1, m).
(iii) In both (i) and (ii), we have GN;.v(,)((l —a)/b) = 1.
Proof of Proposition 3.3(i). Fora = v € (0, 1), we have

(1/g@®) -1 v 1= —pu
R L Gl )

(1/q@) — 1 ( v(l - —p)u))
= Eoql -1 -~
a/p—1 T p

(1/9@) —1

a/p)-1"
where (forp =1,a=1/p,b = (p — 1)/p, and y = 1) we have used Proposition 3.1 and, for
the second equality, (3.9). Note that we have u € (1, 1/(1 — p)) because G va'v(,)(u) is finite
for lu| < 1/(1 — p) (see Proposition 3.1 with p = 1)and (1 —a)/b = 1. Fora =v = 1itis
easy to check with some computations that

= _GNIV'V(t)(u) + 1 -

1 i (1/q(1) — 1
< —1 ‘*‘u)d oW = =Gy @+ 1 ==

by Proposition 3.1 (in fact we have a/b = 1/(p — 1)).
Proof of Proposition 3.3(ii). Fora = v € (0, 1), we have

Wf1=Q=gqg®)u
(O)VvOGN]""’(I)(u) = (O)v,0Ev1 (_ log (—q(l‘)—_—))

= - (e (S0G))

= —GN(;’~"(;)("),

where (for p =0,a = 1/q(t), b = (q(¢t) — 1)/q(¢), and y = 1) we have used Proposition 3.1
and, for the second equality, (3.9). Note that we have u € (1, 1/(1 — p)) arguing as we did for
the proof of Proposition 3.3(i). For @ = v = 1 it is easy to check with some computations that

1 d
<q(t) 1 + u)EGN&.l(,)(u) = —GN(;,I(I)(M)

by Proposition 3.1 (in fact we have a/b = 1/(q(¢) — 1)).

Proof of Proposition 3.3(iii). The proposition trivially holds because we always have
GNg,v(,)(l) = 1 (even if @ # v) and, in both Proposition 3.3(i) and (ii), (1 — a)/b = 1.
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4. On weighted processes

In this section we consider { N ,‘," ®):t €[0, T]}, where
My
NY(t) ==Y 1n(XF?)
n=1

and the PMF of the random variable M}’ is given by

_ P(Mg = kyw(k)

P(MY =k) = Elw(My)] forallk > 0 4.1

for some nonnegative numbers (weights) {w(k): k > 0} such that

Elw(Mg)] := Y w(r)P(Mg =r) € (0, 0).
r=0

Then we are referring to the concept of weighted PMF; see, e.g. [11, p. 90], and the references
therein.

We remark that M ;,” has the same distribution of M, if w(k) = 1forallk > 0. Generally, we
have the following well-known property of the weighted PMFs: if we consider ‘proportional
weights’

{w(k): k = 0} o {w(k): k = 0},

i.e. if, for some ¢ > 0, we have w(k) = cw(k) for all k > 0, then we have the same weighted
PMF.

The aim of this section is to illustrate the ‘weighted version structure’ for the PMF of N;,” (1)
foreacht € (0, T}, i.e.

P(No(t) = kw(k, t)
E[w(N,(2), )]

lP’(N;,” t)=k) = forallk =0 4.2)

for some weights {w(k, t): k > 0} which depend on ¢ € (0, T] (obviously we have w(k, T) =
w(k) forall k > 0, i.e. (4.2) meets (4.1) when t = T'). Moreover, we give the corrected version
of some formulas stated in [9].

Proposition 4.1. We set

gk | n, F(1),p):==(1~— p)(:)F"(t)(l - F@o)"*
+ pF*"(0)Q = Fe)' ™" 119,y (k) forallk € {0, 1,...,n}.
Then, for allt € (0, T], we have

Yomei qk | n, F1), p)P(Mg = n)w(n)
Y2 qlk | n, F@t), p)P(Mg = n)

Proof. By [9, Equation (7)], we have the following generalization of (1.3):

wk,t) x forallk = 0.

P(Np(t) =k) = Y _q(k | n, F(t), p)P(Mg =n) forallk > 0. 4.3)

n=k

https://doi.org/10.1239/jap/1450802752 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1450802752

1060 L. BEGHIN ET AL.

Moreover, by (4.3) (with N;," (t) and M;" in place of N, (t) and M) and (4.1), we obtain

Yook qk | n, F(t), p)P(M, = n)w(n)

IP’(N;,” ) =k) = Erw(My)]

Then (4.2) and the last equality yield

E[w(N,(t), )] Y oneiqk | n, F(t), p)P(My = n)w(n)

Zn_k gk | n, F(2), p)P(M; = n)w(n)
P(N, (1) = k) )

We conclude the proof by taking into account (4.3) for the denominator in the last expression.
Now the correction of [9, Equations (17) and (18)]:
cov(N,(t), No(s)) = As{l + Ap(1 — 1)}
and
CoV(Ny(2) — Np(s), Ny(s)) = —Azps(t —5).

We also present the corrected version of the displayed formula in [9, Example 4.1]. We refer
to (1.2) in this paper and, in order to have a strict connection with the presentation in [9], we
consider ¢ € [0, 1] in place of F(¢) with ¢ € [0, T']. We have to choose

() oM

P(No(t) = k) = o

(1—t+%) forallk >0

for the p = 0 case (see [4, Section 3.1]) and
Ak—]

J
—_— fk>1,
P(M, = k) = (k—l)!e ifk >
0 ifk =0.

Then, we obtain

k
P(N,(t) =k) = (1 — p)—— (A ) _M(l —t+ £>

A
A,k_l
+P{(1 — ) Ljp=0) +H—— 7 ) ll{kzl}}
l(l—p)e-“(l—t)+p(1—t) ifk =0,
a0k _,, k At
¢! )—— 1 t+)‘ +pt(k_1)!e ifk>1,

which is the corrected version of the displayed formula in [9, Example 4.1].
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