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Sharp Bertini Theorem for Plane Curves
over Finite Fields

Shamil Asgarli

Abstract. We prove that if C is a re�exive smooth plane curve of degree d deûned over a ûnite ûeld
Fq with d ≤ q + 1, then there is an Fq-line L that intersects C transversely. We also prove the same
result for non-re�exive curves of degree p + 1 and 2p + 1 when q = pr .

1 Introduction

A classical theorem of Bertini states that if X is a smooth quasi-projective variety in
Pn deûned over an inûnite ûeld k, then a general hyperplane section of X is smooth.
Specializing to the case when C ⊆ P2 is a smooth plane curve, it follows that there
exists a line L (deûned over k) such that L intersects C transversely, meaning that
C ∩ L consists of d distinct geometric points where d = deg(C). But when k = Fq is
a ûnite ûeld, it is possible to have a smooth plane curve C ⊆ P2 such that every line
L deûned over Fq is tangent to the curve C (see Example 2.2). Moreover, Poonen’s
Bertini _eorem [8,_eorem 1.2] guarantees that such smooth curves, where all the
Fq-lines are tangent, do exist in every suõciently large degree (see Example 2.3). With
a view toward an eòective version of Poonen’s theorem, one can ask the following
question.

Question 1.1 Suppose C ⊆ P2 is a smooth plane curve deûned over Fq . Let d =
deg(C). What conditions on q and d will ensure that there is a line L ⊆ P2 deûned over
Fq such that L meets C transversely?

Let us call L a good line if L meets C transversely. We expect that if q is large with
respect to d, then good lines will exist. Indeed, if q ≥ d(d − 1), then the dual curve
C∗ cannot be space-ûlling, i.e., C∗(Fq) /= (P2)∗(Fq). _is is because deg(C∗) ≤
d(d − 1) ≤ q and a curve of degree of at most q cannot go through all the points of
(P2)∗(Fq). Any point in (P2)∗(Fq) ∖ C∗(Fq) represents a good line L ⊆ P2 deûned
overFq . A generalization of thisobservation tohigherdimensions isproved byBallico
[1,_eorem 1].

In this paper, we improve the quadratic bound q ≥ d(d − 1) to the linear bound
q ≥ d − 1.
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_eorem 1.2 If C is a smooth re�exive plane curve deûned over Fq with deg(C) ≤
q + 1, then there is an Fq-line L such that L intersects C transversely.

_e theorem is sharp in a sense that the statement cannot be improved to q ≥
d − 2. _ere is a counter-example when q = d − 2 (see Example 2.2). _e “re�exive”
assumption on C is same as saying that C has ûnitelymany �ex points (see Section 2).
As a natural follow-up, we can ask the following question.

Question 1.3 Does _eorem 1.2 hold when C is non-re�exive?

In Section 3, we prove a partial result in this direction.

_eorem 1.4 Let C be a smooth non-re�exive plane curve of degree p + 1 or 2p + 1
deûned overFq where q = pr with r ≥ 2. _en there is anFq-line L such that L intersects
C transversely.

Finally, in the last section of the paper (Section 4), we focus exclusively on Frobe-
nius non-classical curves, which are non-re�exive curves of a special kind. Aswewill
see,Question 1.3 in this case is equivalent to a statement about collinear Fq-points on
the curve.

Conventions In order to avoid various pathologies, we will assume throughout the
paper that the characteristic of the ûeld is p > 2.

2 Reflexive Curves

In this sectionwe review the theory of re�exive plane curves and prove_eorem1.2. If
C is a plane curve deûned over a ûeld k,we can consider theGaussmap φ∶C → (P2)∗
that associates with each smooth point p of C its tangent line. _e dual curve C∗ is
deûned to be the closure of φ(C) inside (P2)∗. By looking at the Gauss map for the
dual curve, we get φ′∶C∗ → C∗∗. In what follows, we will identify P2 and (P2)∗∗.

Deûnition 2.1 _e curve C is called re�exive if C = C∗∗ and φ′ ○ φ∶C → C∗∗ is the
identity map.

A theorem of Wallace [9] asserts that C is re�exive if and only if φ is separable.
As a result, all smooth plane curves in characteristic zero are re�exive. Recall that a
point P of C is called a �ex point if the tangent line at P meets the curve C at P with
multiplicity at least 3. When char(k) = p > 2, we have the following characterization:
C is re�exive if and only if C has ûnitely many �ex points [7, Proposition 1.5].
Before we prove _eorem 1.2, here are some counter-examples of smooth curves

C where all the lines deûned over Fq are tangent to C (so that no good line exists).

Example 2.2 LetC be a smooth plane curvewith deg(C) = q+2 such that #C(Fq) =
#P2(Fq). Such curves exist, and have been extensively studied by Homma and Kim
[6]. For such a curve C, every Fq-line L intersects C at q + 2 points (counted with
multiplicity). But q+ 1 of these points are already accounted by the points of L(Fq) =
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P1(Fq). _us, the residual intersection multiplicity results from L being tangent to C
at one of the Fq-points.

Example 2.3 Fix a ûnite ûeld Fq . Let {L1 , . . . , Lq2+q+1} be all the Fq-lines in the
plane. Pick distinct (geometric) points Pi ∈ L i for each i. _e condition that C is
tangent to L i at Pi is a statement about vanishing of the ûrst few coeõcients in the
Taylor expansion at these ûnitelymany points. By applying Poonen’s Bertini theorem
with Taylor conditions [8,_eorem 1.2], there exists some d0 such that for every d ≥
d0, there exists a smooth plane curve C ⊆ P2 of degree d such that L i is tangent to C
at Pi . In particular, all Fq-lines L ⊆ P2 are tangent to C. A closer inspection of the
proof reveals that the integer d0 is in the order of q2 (essentially because we imposed
q2 + q + 1 local conditions).

We will now prove themain theorem of this paper.

_eorem 1.2 If C is a smooth re�exive plane curve deûned over Fq with deg(C) ≤
q + 1, then there is an Fq-line L such that L intersects C transversely.

Proof Let Φ be the Frobenius map, deûned on points by

Φ([X ∶Y ∶Z]) = [Xq ∶Y q ∶Zq].

We will write TP(C) for the tangent line to C at a (geometric) point P. Set

N = #{P ∈ C(Fq) ∶ Φ(P) ∈ TP(C)} ,

which is ûnite, because C is re�exive [4]. Let d = deg(C). _e following inequality is
proved in [5,_eorem 8.41]:

(∗) 2 ⋅ #C(Fq) + N ≤ d(q + d − 1)

under the assumption that C has ûnitely many �ex points and that characteristic of
the ûeld is p > 2. _is is the step where we use the hypothesis that C is re�exive.
Assume, to the contrary, that every Fq-line is tangent to the curve C at some (geo-

metric) point. Let us divide these lines into two groups: if L is tangent to C at an
Fq-rational point, we will call L a rational tangent. Otherwise, we will call L a special
tangent. Since every Fq-line is tangent to C, and there are q2 + q+ 1 lines deûned over
Fq , we get

#{rational tangents} + #{special tangents} = q2 + q + 1

and
#{rational tangents} ≤ #C(Fq)

Now, if L is a special tangent, it is tangent to the curve C at a non-Fq-point P. _en
L is also tangent to C at P,Φ(P),Φ2(P), . . . ,Φe−1(P) where e = [k(P) ∶Fq] is the
degree of the point P. Since e ≥ 2, the line L contributes at least 2 elements to N . As
a result,

2 ⋅ #{special tangents} ≤ N .
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Combining all the inequalities above, we obtain that

q2 + q + 1 = #{rational tangents} + #{special tangents}

≤ #C(Fq) +
N
2
≤ 1

2
d(q + d − 1) (using (∗))

≤ 1
2
(q + 1)(q + (q + 1) − 1) = 1

2
(q + 1)(2q) = q2 + q,

which is a contradiction.

When q = p is a prime, every smooth curve of degree at most p is re�exive. More-
over, Pardini [7, Proposition] has shown that every smooth non-re�exive curve of
degree p + 1 (over any ûeld of characteristic p) is projectively equivalent to the curve
given by the equation xyp + yzp + zx p = 0. For this curve,many good lines exist. For
instance, take two Fp-points on the curve, and join them with a line L. _en L will
intersect C transversely.
Consequently, we deduce the result for all smooth plane curves over Fp where p is

prime.

Corollary 2.4 If C is a smooth plane curve deûned over Fp with deg(C) ≤ p + 1,
where p is a prime, then there is an Fp-line L such that L intersects C transversely.

3 Non-reflexive Curves

In this section, we will restrict attention to non-re�exive curves and prove _eo-
rem 1.4.

Let C ⊆ P2 be a smooth non-re�exive curve deûned over Fq with q = pr where
r ≥ 2. Pardini [7, Corollary 2.4] has shown that C is deûned by an equation of the
form:

apx + bp y + cpz = 0
where a, b, c ∈ Fq[x , y, z] arehomogeneouspolynomials of degree t ≥ 1. In particular,
deg(C) = tp + 1.

We establish a Bertini-type theorem for the case t = 1 and t = 2.

_eorem 1.4 Let C be a smooth non-re�exive plane curve of degree p + 1 or 2p + 1
deûned overFq where q = pr with r ≥ 2. _en there is anFq-line L such that L intersects
C transversely.

Proof If deg(C) = p + 1, then C is projectively equivalent to the curve given by the
equation xyp + yzp + zx p = 0, for which many good lines L exist (see the discussion
before Corollary 2.4). For the rest of the proof, we will assume that deg(C) = 2p + 1.
Since C is non-re�exive, by [7, Corollary 4.3] the degree of the dual curve is

deg(C∗) = d(d − 1)
p

= (2p + 1)(2p)
p

= 4p + 2.

For p ≥ 5, we observe that deg(C∗) = 4p + 2 ≤ p2 ≤ q, so C∗ cannot contain all of
(P2)∗(Fq), and hence any point L ∈ (P2)∗(Fq) ∖ C∗(Fq) will be a desired line that
intersects C transversely.
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When p = 3, the inequality deg(C∗) = 4p + 2 = 14 ≤ pr = q still holds for r ≥ 3.
_e only case that requires a separate analysis is (p, r) = (3, 2), which corresponds to
degree 2 ⋅ 3 + 1 = 7 curve deûned over F32 = F9. _e rest of the proof is devoted to
studying this remaining case.

Let C be a smooth non-re�exive curve of degree 7 deûned over F9. Assume, to the
contrary, that all the lines deûned overF9 are tangent to C. Following the same termi-
nology used in the proof of_eorem 1.2, we call L a rational tangent if L is tangent to
C at some F9-point. Otherwise, L is called a special tangent. Since C is non-re�exive,
each tangent line L must intersect the curve at the tangency point with multiplicity at
least 3 ([7, Proposition 1.5]). _en the following hold.
(i) If L is a rational tangent, then L ∩ C contains at most ûve F9-points.
(ii) If L is a special tangent, then L∩C contains a conjugate pair of F81-points and a

single F9-point. In symbols, L ∩ C = {Q ,Qσ , P}, where Q ∈ P2(F81) ∖ P2(F9)
and P ∈ P2(F9).

Consider the following incidence correspondence of points and lines:

I = {(P, L) ∶ L ∈ (P2)∗(F9) and P ∈ (C ∩ L)(F9)} .

Each P ∈ C(F9) is contained in q + 1 = 10 diòerent F9-lines. _erefore, #I =
#C(F9) ⋅ 10. On the other hand, using (i) and (ii) above, each special tangent L con-
tributes 1 point,while each rational tangent L contributes atmost 5 points to #I. _us,
#I ≤ S + 5R where S and R are the number of special and rational tangents, respec-
tively. We deduce that #C(F9) ⋅ 10 ≤ S + 5R. Since #C(F9) ≥ R, we get 10R ≤ S + 5R,
which implies 5R ≤ S. Since S + R = 92 + 9 + 1 = 91, we have 5(91 − S) ≤ S, so that
S ≥ 5⋅91

6 = 75.8333 . . . . _us, S ≥ 76.
Next, take any rational tangent L0. Every special tangent line intersects L0 in one

of its ten F9-points. Since S
10 ≥

76
10 > 7, there exists P0 ∈ L0(Fq) such that there are at

least 8 special tangent lines that pass through P0. By looking at the tenF9-lines passing
through P0, we can estimate #C(F9) as follows. Each of the 8 special tangents will
contribute at most 1 rational point, while the remaining (at most 2) rational tangents
will contribute at most 5 rational points. _us, one gets #C(F9) ≤ 8 + 2 ⋅ 5 = 18.
Consider the incidence correspondence

J = {(P, L) ∶ L is a special tangent and P ∈ (C ∩ L)(F9)} .

By (i) above, every special tangent contains exactly one F9-point of C, so that #J = S.
As a result,

S = #J = ∑
P∈C(F9)

#{special tangents passing through P}.

Since
S

#C(F9)
≥ 76

18
> 4,

there exists a point P ∈ C(F9) such that at least 5 special tangents pass through P.
Consider the corresponding line P∗ in the dual space (P2)∗, which consists of all
lines passing through P. Let us look at the intersection of the line P∗ and the dual
curve C∗ inside (P2)∗. _e intersection has all the ten F9-points of P∗, since all the
F9-lines are tangent to C. However, each of the special tangents is bitangent to C, so it
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is a node in C∗, and hencewill contribute 2 to the intersection. It follows that P∗∩C∗
has at least 5 ⋅ 2 + 5 = 15 intersections, contradicting the fact that deg(C∗) = 14.

Remark 3.1 As we saw above, the hardest part of the proof is the case p = 3. _is
answers a question of FelipeVoloch,who asked, in a private communication,whether
or not there exists a transverse line for a degree 7 smooth non-re�exive curve deûned
over F9. _e small primes still persist when we try to extend _eorem 1.3 to non-
re�exive curves of degree 3p + 1. Indeed, if C is a smooth non-re�exive curve of
degree 3p + 1, then

deg(C∗) = (3p + 1)(3p)
p

= 9p + 3 ≤ p2 ≤ q

for p ≥ 11; the usual argument shows that (C∗)(Fq) /= (P2)∗(Fq), implying that good
lines exist for p ≥ 11. However, themain diõculty lies with the primes p = 3, 5, 7.

4 Connection to Frobenius Non-classical Curves

In this section, we observe the implications of a Bertini-type theorem for a special
class of non-re�exive curves, known as Frobenius non-classical curves.

Deûnition 4.1 LetC ⊆ P2 be a smooth plane curve deûned overFq . _enC is called
Frobenius non-classical if Φ(P) ∈ TP(C) for every P, where TP(C) is the tangent line
to C at the point P, and Φ∶P2 → P2 is the q-th power Frobenius map.

We should remark that the usual deûnition of Frobenius non-classical is stated
diòerently (by looking at the order sequence of C), but the deûnition given above is
equivalent in the case of smooth plane curves [4, Proposition 1].

Example Let C be the curve deûned over Fq2 by the equation

xq+1 + yq+1 + zq+1 = 0.

It can be checked that C is a smooth Frobenius non-classical curve for Fq2 .

If C is a smooth Frobenius non-classical plane curve of degree d deûned over Fq
where q = pr , then it is known that C is non-re�exive [4, Proposition 1] and√q + 1 ≤
d ≤ q−1

q′−1 , where q′ is the generic order of contact of the curve with a tangent line
[4, Propositions 5 and 6]. In particular, deg(C) ≤ q − 1 always holds. So Question 1.3
is equivalent to the following.

Question 4.2 If C is a smooth Frobenius non-classical plane curve deûned over Fq ,
does there exist an Fq-line L such that L intersects C transversely?

_e existence of such a line L can be veriûed for the curve xq+1 + yq+1 + zq+1 = 0,
andmore generally, for the curve given by the equation

xqn−1+⋅⋅⋅+q+1 + yqn−1+⋅⋅⋅+q+1 + zqn−1+⋅⋅⋅+q+1 = 0,
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where n ≥ 2. _ese curves are indeed smooth and Frobenius non-classical with re-
spect to the ûeld Fqn [4,_eorem 2].

If the Question 4.2 has an aõrmative answer, then it implies that there is a line L
deûned over Fq such that L∩C consists of d = deg(C) distinct Fq-rational points. In-
deed, if L contains a non-Fq-point Q, then we observe that Q ,Φ(Q) ∈ TQ(C) (since
C is Frobenius non-classical) and Q ,Φ(Q) ∈ L (as L is deûned over Fq), implying
that L = TQ(C) is a tangent line. _us, any good (transverse) line L intersects C at
deg(C) distinct Fq-points. _is allows us to reformulate Question 4.2 as follows.

Question 4.3 If C is a smooth Frobenius non-classical plane curve deûned over Fq ,
then does C have d = deg(C) many Fq-rational points on a line?

Question 4.3 is motivated by the fact that Frobenius non-classical curves have
many Fq-points. In fact, the Fq-points on these curves have been used in [2, 3] to
construct certain complete arcs in the plane. Moreover, the following theorem due
to Hefez and Voloch [4, _eorem 1] gives the exact the number of Fq-points on any
smooth Frobenius non-classical plane curve.

_eorem 4.4 (Hefez–Voloch) If C ⊆ P2 is a smooth Frobenius non-classical curve of
degree d deûned over Fq , then #C(Fq) = d(q − d + 2).

We can apply _eorem 4.4 directly to get an estimate on the number of collinear
points of C. Consider the incidence correspondence {(P, L) ∶ L ∈ (P2)∗(Fq) and P ∈
(L ∩ C)(Fq)}. Since each Fq-point P is contained in q + 1 lines,

#C(Fq)(q + 1) = ∑
P∈C(Fq)

(q + 1) =∑
L

#(L ∩ C)(Fq).

_e sumon the right runs over all q2+q+1 lines. _us, anFq-line on average contains

#C(Fq)(q + 1)
q2 + q + 1

= d(q − d + 2)(q + 1)
q2 + q + 1

> d(q − d + 2)
q + 1

> d( 1 − d
q + 1

)

Fq-points of C. As q gets larger, this number approaches d. _is heuristic suggests
that Question 4.3 may have an aõrmative answer.
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