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Sharp Bertini Theorem for Plane Curves
over Finite Fields

Shamil Asgarli

Abstract. 'We prove that if C is a reflexive smooth plane curve of degree d defined over a finite field
4 with d < g + 1, then there is an [F4-line L that intersects C transversely. We also prove the same
result for non-reflexive curves of degree p + 1and 2p + 1when g = p".

1 Introduction

A classical theorem of Bertini states that if X is a smooth quasi-projective variety in
P" defined over an infinite field k, then a general hyperplane section of X is smooth.
Specializing to the case when C ¢ P? is a smooth plane curve, it follows that there
exists a line L (defined over k) such that L intersects C transversely, meaning that
C N L consists of d distinct geometric points where d = deg(C). But when k = I is
a finite field, it is possible to have a smooth plane curve C ¢ P? such that every line
L defined over [, is tangent to the curve C (see Example 2.2). Moreover, Poonen’s
Bertini Theorem [8, Theorem 1.2] guarantees that such smooth curves, where all the
IF;-lines are tangent, do exist in every sufficiently large degree (see Example 2.3). With
a view toward an effective version of Poonen’s theorem, one can ask the following
question.

Question 1.1  Suppose C ¢ P? is a smooth plane curve defined over F,. Let d =
deg(C). What conditions on q and d will ensure that there is a line L € P? defined over
IFy such that L meets C transversely?

Let us call L a good line if L meets C transversely. We expect that if g is large with
respect to d, then good lines will exist. Indeed, if ¢ > d(d — 1), then the dual curve
C* cannot be space-filling, i.e., C*(F,) # (P?)*(F,). This is because deg(C*) <
d(d —1) < g and a curve of degree of at most g cannot go through all the points of
(P?)*(F,). Any point in (P*)*(F,) ~ C*(FF,) represents a good line L ¢ P* defined
over IF;. A generalization of this observation to higher dimensions is proved by Ballico
[1, Theorem 1].

In this paper, we improve the quadratic bound g > d(d — 1) to the linear bound
g>d-1
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Theorem 1.2 If C is a smooth reflexive plane curve defined over F, with deg(C) <
q +1, then there is an I ;-line L such that L intersects C transversely.

The theorem is sharp in a sense that the statement cannot be improved to g >
d — 2. There is a counter-example when g = d — 2 (see Example 2.2). The “reflexive”
assumption on C is same as saying that C has finitely many flex points (see Section 2).
As a natural follow-up, we can ask the following question.

Question 1.3  Does Theorem 1.2 hold when C is non-reflexive?
In Section 3, we prove a partial result in this direction.

Theorem 1.4  Let C be a smooth non-reflexive plane curve of degree p +1or 2p +1
defined over ¥y where q = p" with r > 2. Then there is an IF 4-line L such that L intersects
C transversely.

Finally, in the last section of the paper (Section 4), we focus exclusively on Frobe-
nius non-classical curves, which are non-reflexive curves of a special kind. As we will
see, Question 1.3 in this case is equivalent to a statement about collinear IF;-points on
the curve.

Conventions In order to avoid various pathologies, we will assume throughout the
paper that the characteristic of the field is p > 2.

2 Reflexive Curves

In this section we review the theory of reflexive plane curves and prove Theorem 1.2. If
Cisa plane curve defined over a field k, we can consider the Gauss map ¢: C — (P?)*
that associates with each smooth point p of C its tangent line. The dual curve C* is
defined to be the closure of ¢(C) inside (??)*. By looking at the Gauss map for the
dual curve, we get ¢': C* — C**. In what follows, we will identify P and (P?)**.

Definition 2.1 'The curve C is called reflexive if C = C** and ¢’ o ¢: C - C** is the
identity map.

A theorem of Wallace [9] asserts that C is reflexive if and only if ¢ is separable.
As a result, all smooth plane curves in characteristic zero are reflexive. Recall that a
point P of C is called a flex point if the tangent line at P meets the curve C at P with
multiplicity at least 3. When char(k) = p > 2, we have the following characterization:
C is reflexive if and only if C has finitely many flex points [7, Proposition 1.5].

Before we prove Theorem 1.2, here are some counter-examples of smooth curves
C where all the lines defined over I, are tangent to C (so that no good line exists).

Example 2.2 Let Cbeasmooth plane curve with deg(C) = g+2 such that #C(IF,) =
#P?(FF,). Such curves exist, and have been extensively studied by Homma and Kim
[6]. For such a curve C, every Fy-line L intersects C at g + 2 points (counted with
multiplicity). But g + 1 of these points are already accounted by the points of L(FF,) =
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P'(F,). Thus, the residual intersection multiplicity results from L being tangent to C
at one of the F;-points.

Example 2.3 Fix a finite field Fy. Let {L,..., Ly2,q41} be all the Fy-lines in the
plane. Pick distinct (geometric) points P; € L; for each i. The condition that C is
tangent to L; at P; is a statement about vanishing of the first few coeflicients in the
Taylor expansion at these finitely many points. By applying Poonen’s Bertini theorem
with Taylor conditions [8, Theorem 1.2], there exists some dy such that for every d >
dy, there exists a smooth plane curve C ¢ P? of degree d such that L; is tangent to C
at P;. In particular, all F,-lines L ¢ P? are tangent to C. A closer inspection of the
proof reveals that the integer dj is in the order of g (essentially because we imposed
g* + q + 1local conditions).

We will now prove the main theorem of this paper.

Theorem 1.2 If C is a smooth reflexive plane curve defined over F, with deg(C) <
q +1, then there is an I ;-line L such that L intersects C transversely.

Proof Let @ be the Frobenius map, defined on points by
O([X:Y:2]) = [X?:Y1:29].
We will write Tp(C) for the tangent line to C at a (geometric) point P. Set
N=#{PeC(F,): ®(P) e Tp(C)},

which is finite, because C is reflexive [4]. Let d = deg(C). The following inequality is
proved in [5, Theorem 8.41]:

(*) 2-#C(Fy) + N <d(q+d-1)

under the assumption that C has finitely many flex points and that characteristic of
the field is p > 2. This is the step where we use the hypothesis that C is reflexive.

Assume, to the contrary, that every IF;-line is tangent to the curve C at some (geo-
metric) point. Let us divide these lines into two groups: if L is tangent to C at an
IF;-rational point, we will call L a rational tangent. Otherwise, we will call L a special
tangent. Since every Fy-line is tangent to C, and there are g* + g + 1 lines defined over
IFy, we get

#{rational tangents} + #{special tangents} = g* + g +1
and
#{rational tangents} < #C(IFF,)

Now, if L is a special tangent, it is tangent to the curve C at a non-F,-point P. Then
L is also tangent to C at P, ®(P), ®*(P),...,®°(P) where e = [k(P):F,] is the
degree of the point P. Since e > 2, the line L contributes at least 2 elements to N. As
a result,

2 - #{special tangents} < N.
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Combining all the inequalities above, we obtain that

q* + q +1 = #{rational tangents} + #{special tangents}

s#C(IFq)Jrgg %d(q+d—1) (using (*))

1 1
<S(g+1)(q+(g+1)-1) = 2(9+1)(29) = 4" +q,
which is a contradiction. |

When g = p is a prime, every smooth curve of degree at most p is reflexive. More-
over, Pardini [7, Proposition] has shown that every smooth non-reflexive curve of
degree p + 1 (over any field of characteristic p) is projectively equivalent to the curve
given by the equation xy? + yz? + zx? = 0. For this curve, many good lines exist. For
instance, take two IF,-points on the curve, and join them with a line L. Then L will
intersect C transversely.

Consequently, we deduce the result for all smooth plane curves over I, where p is
prime.

Corollary 2.4 If C is a smooth plane curve defined over I, with deg(C) < p +1,
where p is a prime, then there is an F,-line L such that L intersects C transversely.

3 Non-reflexive Curves

In this section, we will restrict attention to non-reflexive curves and prove Theo-
rem 1.4.

Let C ¢ P? be a smooth non-reflexive curve defined over F, with g = p” where
r > 2. Pardini [7, Corollary 2.4] has shown that C is defined by an equation of the
form:

afx +bPy+cPz=0

where a, b, ¢ € Fy[x, y, z] are homogeneous polynomials of degree t > 1. In particular,
deg(C) =tp+1

We establish a Bertini-type theorem for the case t =1and t = 2.

Theorem 1.4  Let C be a smooth non-reflexive plane curve of degree p +1 or 2p +1
defined over By where q = p" withr > 2. Then there is an IF 4-line L such that L intersects
C transversely.

Proof Ifdeg(C) = p +1, then C is projectively equivalent to the curve given by the
equation xy? + yzP + zx? = 0, for which many good lines L exist (see the discussion
before Corollary 2.4). For the rest of the proof, we will assume that deg(C) = 2p + L.
Since C is non-reflexive, by [7, Corollary 4.3] the degree of the dual curve is

d(d-1) _(2p+1)(2p)
p p

For p > 5, we observe that deg(C*) = 4p + 2 < p* < g, so C* cannot contain all of
(P?)*(F,), and hence any point L € (P?)*(FF;) ~ C*(IF,) will be a desired line that
intersects C transversely.

deg(C”) =

=4p+2.
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When p = 3, the inequality deg(C*) = 4p + 2 = 14 < p" = g still holds for r > 3.
The only case that requires a separate analysis is (p, r) = (3,2), which corresponds to
degree 2-3 +1 = 7 curve defined over ;2 = Fg. The rest of the proof is devoted to
studying this remaining case.

Let C be a smooth non-reflexive curve of degree 7 defined over IFy. Assume, to the
contrary, that all the lines defined over Fg are tangent to C. Following the same termi-
nology used in the proof of Theorem 1.2, we call L a rational tangent if L is tangent to
C at some Fy-point. Otherwise, L is called a special tangent. Since C is non-reflexive,
each tangent line L must intersect the curve at the tangency point with multiplicity at
least 3 ([7, Proposition 1.5]). Then the following hold.

(i) IfLisarational tangent, then L n C contains at most five [F9-points.

(if) IfL isa special tangent, then L n C contains a conjugate pair of [Fg;-points and a
single Fg-point. In symbols, L n C = {Q, Q°, P}, where Q € P*(Fg;) \ P?(Fy)
and P € P*(FFy).

Consider the following incidence correspondence of points and lines:
J={(P,L):Le(P*)*(Fs)and Pe (CnL)(Fs)}.

Each P € C(Fy) is contained in g + 1 = 10 different Foy-lines. Therefore, #J =
#C(Fo) - 10. On the other hand, using (i) and (ii) above, each special tangent L con-
tributes 1 point, while each rational tangent L contributes at most 5 points to #J. Thus,
#J < S + 5R where S and R are the number of special and rational tangents, respec-
tively. We deduce that #C(IFy) - 10 < S + 5R. Since #C(Fy) > R, we get 10R < S + 5R,
which implies 5R < S. Since S + R = 92 + 9 + 1 = 91, we have 5(91 - §) < S, so that
S§ > 321 =75.8333.... Thus, S > 76.

Next, take any rational tangent Ly. Every special tangent line intersects L in one
of its ten Fg-points. Since % > Z—g > 7, there exists Py € Lo(IF;) such that there are at
least 8 special tangent lines that pass through Py. By looking at the ten IFy-lines passing
through Py, we can estimate #C(Fy) as follows. Each of the 8 special tangents will
contribute at most 1 rational point, while the remaining (at most 2) rational tangents
will contribute at most 5 rational points. Thus, one gets #C(IFy) < 8 +2-5 = 18.

Consider the incidence correspondence
d= { (P,L): Lisaspecial tangentand P € (Cn L)(]Fg)}

By (i) above, every special tangent contains exactly one Fg-point of C, so that #J = S.
As aresult,
S=#]-= Z #{special tangents passing through P}.
PeC(Fy)

Since
S 76

> — >

#C(Fy) ~ 18
there exists a point P € C(Fy) such that at least 5 special tangents pass through P.
Consider the corresponding line P* in the dual space (P?)*, which consists of all
lines passing through P. Let us look at the intersection of the line P* and the dual
curve C* inside (IP?)*. The intersection has all the ten Fo-points of P*, since all the
Fo-lines are tangent to C. However, each of the special tangents is bitangent to C, so it

>
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isanode in C*, and hence will contribute 2 to the intersection. It follows that P* n C*
has at least 5- 2 + 5 = 15 intersections, contradicting the fact that deg(C*) =14. ®

Remark 3.1 As we saw above, the hardest part of the proof is the case p = 3. This
answers a question of Felipe Voloch, who asked, in a private communication, whether
or not there exists a transverse line for a degree 7 smooth non-reflexive curve defined
over Fg. The small primes still persist when we try to extend Theorem 1.3 to non-
reflexive curves of degree 3p + 1. Indeed, if C is a smooth non-reflexive curve of
degree 3p + 1, then

deg(C") = (3p +;)(3p)

for p > 11; the usual argument shows that (C*)(F,) # (P?)*(F,), implying that good
lines exist for p > 11. However, the main difficulty lies with the primes p = 3,5,7.

=9p+3sp2§q

4 Connection to Frobenius Non-classical Curves

In this section, we observe the implications of a Bertini-type theorem for a special
class of non-reflexive curves, known as Frobenius non-classical curves.

Definition 4.1  Let C ¢ P? be a smooth plane curve defined over IF;. Then C is called
Frobenius non-classical if ®(P) € Tp(C) for every P, where Tp(C) is the tangent line
to C at the point P, and ®:P? — P? is the g-th power Frobenius map.

We should remark that the usual definition of Frobenius non-classical is stated
differently (by looking at the order sequence of C), but the definition given above is
equivalent in the case of smooth plane curves [4, Proposition 1].

Example  Let C be the curve defined over IF 2 by the equation
x T4 a4 20t 2,
It can be checked that C is a smooth Frobenius non-classical curve for IF .

If C is a smooth Frobenius non-classical plane curve of degree d defined over I,
where g = p”, then it is known that C is non-reflexive [4, Proposition 1] and /g +1 <

d < ;,—111, where g’ is the generic order of contact of the curve with a tangent line

[4, Propositions 5 and 6]. In particular, deg(C) < g — 1 always holds. So Question 1.3
is equivalent to the following.

Question 4.2 If C is a smooth Frobenius non-classical plane curve defined over IF,
does there exist an I ;-line L such that L intersects C transversely?

The existence of such a line L can be verified for the curve x9*! + y*! 4 z4*1 = ,
and more generally, for the curve given by the equation

n-1 n-1 n—1
xq + +q+1+yq + +q+1+zq + +q+1:0

>
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where n > 2. These curves are indeed smooth and Frobenius non-classical with re-
spect to the field Fy» [4, Theorem 2].

If the Question 4.2 has an affirmative answer, then it implies that there is a line L
defined over IF; such that Ln C consists of d = deg(C) distinct IF;-rational points. In-
deed, if L contains a non-IF;-point Q, then we observe that Q, ®(Q) € To(C) (since
C is Frobenius non-classical) and Q, ®(Q) € L (as L is defined over F,), implying
that L = Tq(C) is a tangent line. Thus, any good (transverse) line L intersects C at
deg(C) distinct Fy-points. This allows us to reformulate Question 4.2 as follows.

Question 4.3  If C is a smooth Frobenius non-classical plane curve defined over IF,
then does C have d = deg(C) many IF4-rational points on a line?

Question 4.3 is motivated by the fact that Frobenius non-classical curves have
many IF,-points. In fact, the IF;-points on these curves have been used in [2, 3] to
construct certain complete arcs in the plane. Moreover, the following theorem due
to Hefez and Voloch [4, Theorem 1] gives the exact the number of F,-points on any
smooth Frobenius non-classical plane curve.

Theorem 4.4 (Hefez-Voloch) If C € P? is a smooth Frobenius non-classical curve of
degree d defined over Iy, then #C(IFy) = d(q —d +2).

We can apply Theorem 4.4 directly to get an estimate on the number of collinear
points of C. Consider the incidence correspondence {(P, L) : L € (P?)*(F,) and P ¢
(LN C)(F4)}. Since each IF4-point P is contained in g + 1 lines,

#C(Fg)(q+1) = 2 (q+1) = #(LnC)(Fy).
PeC(F,) L
The sum on the right runs over all g% + g +1lines. Thus, an F,-line on average contains
#C(F 1 - -
(Fla D) _dlg=d=2)(qe1)  dlg=d+2) 0 d )

P +qg+1 P +q+1 q+1 q+1

IF,-points of C. As g gets larger, this number approaches d. This heuristic suggests
that Question 4.3 may have an affirmative answer.
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