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Injective modules and soluble groups
satisfying the minimal condition
for normal subgroups

B. Hartley and D. McDougall

Iet p be a prime and let @ be a centre-by-finite p'-group.
It is shown that the Z@-modules which satisfy the minimal
condition on submodules and have p-groups as their underlying
additive groups can be classified in terms of the irreducible

ZpQ-modules. If such a Z@-module V 1is indecomposable it is

either the Z@-injective hull ¥’ of an irreducible ZpQ—module

(viewed as a Z@-module) or is the submodule W[bn] of such a

W consisting of the elements w € W which satisfy pnw =0 .
This classification is used to classify certain
abelian-by-nilpotent groups which satisfy Min-n , the minimal
condition on normal subgroups. Among the groups to which our
classification applies are all quasi-radicable metabelian groups
with Min-n , and all metabelian groups which satisfy Min-n

and have abelian Sylow p-subgroups for all p .

It is also shown that if & 1is any countable locally finite
p'—group and V is a Z@-module whose additive group is a
p-group, then V can be embedded in a ZQ@-module V whose
additive group is a minimal divisible group containing that of

V . Some applications of this result are given.
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1. Introduction

A group G is said to be quasi-radicable if, for each integer
n>0, G is generated by the n-th powers of its elements. One of the
main purposes of this paper is to classify quasi-radicable metabelian
groups satisfying Min-n , the minimal condition on normal subgroups.
However it turns out to be equally convenient to work with a somewhat
larger class, namely the class Z of all abelian-by-nilpotent groups

which satisfy Min-n and in addition satisfy the condition

(z2) If G €Z and P is a p-subgroup of G then Anp s
contained in the centre of P .

Here Gl denotes the uniquely determined normal subgroup K of G which
is minimal subject to the condition that G/K is nilpotent; its
existence is assured by Min-n . By a theorem of Baer [4] soluble groups

satisfying Min-n , and hence Z-groups, are locally finite; another

theorem of Baer [3] states that nilpotent groups with Min-n are
centre-by-finite, so that Z-groups are metabelian-by-finite. Z contains
all metabelian groups which satisfy Min-n and have abelian Sylow
p-subgroups for all primes p ; hence ([74], Corollary 3.3) it contains

" all quasi-radicable metabelian groups with Min-n .

let G €2 and let X GE . Then G splits over K (Lemma L4.1)

G

KA, KnA=1.

Here, by the remarks above, A is nilpotent and centre-by-finite; the
results of Baer (3] also show that A satisfies Min , the minimal
condition on subgroups. Now the condition (2) ensures that the Sylow

p-subgroup of A centralizes the Sylow p-subgroup Kp of K ; hence
Kp is effectively a module for Ap' , the Sylow p'-subgroup of 4 ,
satisfying the minimal condition on submodules.

Our problem is thus closely related to that of classifying those
modules over the integral group ring Z§ of a centre-by-finite p'—group
@ which satisfy Min-@ , the minimal condition on @-submodules, and have
p-groups as their underlying additive groups. Modules with the latter
property will be called p-modules. We shall deal with this problem in
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§2. Strictly speaking our results simply reduce the classification

problem to that of classifying the irreducible ZpQ-modules; in the case

when @ 1is abelian this can be done quite easily (Lemma 2.5). We shall
see that the indecomposable p-modules over 2@ with Min-@ arise
naturally from the injective hulls of the irreducible ones, and our
results in §2 lean heavily on the properties of the injective hull of a
module as defined by Eckmann and Schopf [8] (see also [7], p. 384 et seq.,
or [151).

A problem which arises naturally from the work in §2 is the

following: Let V be a ZG-module, where G 1is any group, and let v
. cot s - e +
be a minimal divisible group containing the additive group V of V , or

+
in other words a Z-injective hull of V . Under what conditions can the

IG-structure of V be extended to V ?

This cannot invariably be done; for example, since a group of type

C » hasno automorphism of order p if p 1is odd, it cannot be done if
p

V 1is a cyclic group of order p2 which is a non-trivial module for a
cyelic group of odd prime order p . In §3 we deduce easily fram the
results of §2 that the extension can be carried out provided V is a
p-module and G 1is a countable locally finite p'-group (Theorem Bl).
This result is used to construct examples of soluble groups of any given
derived length which satisfy Min-n and have a series of finite length in
which all the factors are divisible abelian groups (Lemma 3.4). These

groups are eQ-groups in the sense of [13].

Finally in §4 we deduce our classification of Z-groups from the

results of §2.

We are indebted to Dr M.C.R. Butler who suggested the possibility of
applying the theory of injective modules to the problems described above;

this resulted in a considerable simplification of our previous work.

2. Injective p-modules for centre-by-finite p'-groups

We begin by recalling the basic facts about injective modules which
we shall need (ef. [7], p. 384 et seq., or [15]). Let R be a ring with

1 . By an R-module we shall always understand a right AR-module on which
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1 acts as the identity map. An ZA-module X is called injective if
whenever U =< W are H-submodules then every AR-homomorphism of U into
X can be extended to ¥ . This is equivalent (but not immediately) to the
requirement that X be a direct. summand of every A-module which contains
it., If V is an arbitrary R-module then an injective hull of V (in the

category of R-modules) is an R-module v satisfying:-
(i) 7V is injective, and either
(ii) no proper submodule of v containing V 1is injective, or
(ii)' V is an essential extension of V .

Here a module W 1is said to be an essential (or related) extension of a
submodule U 1if every non~trivial submodule of ¥ meets U
non-trivially. It was shown by Eckmann and Schopf [8] that every R-module
V has an injective hull V which is unique in the sense that if V* is
another injective hull of V then there is an isomorphism from V to V2

extending the identity map on V.
We shall need the following fact:

LEMMA 2.1. Let R be a ring with 1, let V be an R-module and

let V be an injective hull of V . Suppose V= @ vy where each v,
Ae

ig8 an R-submodule of V . If either
(z) A <Zs finite, or

(i1) R satisfies the maximal condition on right ideals,

then V=@ V/\ , where VA 18 an injective hull of vy -
A€

Proof. We can embed V in a module W = & W)\ , where each W is
Aeh

an injective hull of V)\ 3 it will suffice to show that W is an

injective hull of V . Now W is injective ([15], Theorems 5 and 6) and
so we need only show that F¥ 1is an essential extension of V¥V . If this is
not the case then there is a non-zero element w of ¥ such that
whenever r € R and wr € V then wr = 0 . We may express w in the
form w=w>\l+...+w>\k (O#w)\iew}‘i, A # A g i #j) end

suppose k is minimal with respect to w having the desired property.
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Now O # Wy, r € VA for some r € R . Consider &”‘wx ]r . If it is zero
1 1 1

then wr = wklr » 8 non-zero element of V¥ . Hence (w-wA )P # 0 , and by
1

the minimality of k we have 0 # (w—w)\l)rs € V for some s € R . Hence

0 # wrs = @d—wxl)rs +wy re € V , which is a contradiction.

1
Notice that Lemma 2.1 holds in particular when A 1is the integral
group ring of a finite group.

Now it is not difficult to see that every injective R-module U is
divisible in the sense that Ud = U for every element d of R which is

not a zero-divisor (ef. [71], Theorem 3.1). We shall call an FR-module V

I-divisible if the additive group ' of V is a divisible group. We

then have immediately
LEMMA 2.2. Every injective 1G-module is Z-divisible.

We shall now see that under certain circumstances the converse is

true, and that sometimes the injective hull V of a ZG-module V has for

its additive group a minimal divisible group containing Al . This cannot
happen when V 1is cyclic of order p2 and G 1is cyclic of odd prime
order p , as we have already remarked. Furthermore if G is any infinite
group, D 1is any non-trivial divisible group, D 1is the base-group of the
restricted wreath product D wr G , and V = [D, G] , then V is
Z-divisible but is not ZG-injective since it is not complemented by a

ZG-submodule of D . Thus in this case the injective hull of V does not
+
have for its additive group a minimal divisible group containing V .
If p denotes a prime (as it always will) and V is any abelian

group we denote by V[pk] the set of elements v € V satisfying pkv =0

(where k > 0 is an integer). If V is in addition an R-module then
V[pk] will be an R-submodule of V .

LEMMA 2.3. Let Q@ be a centre-by-finite p'-group and let V be a
p-module over 1@ . Suppose that either

(1) Q 1is finite, or

(i2) V satisfies Min-@ .
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Let V be an injective hull of V . Then
(a) V is a p-module and Vip] = Vp] ,
(b) V is injective if and only if V <8 I-divisible.

For the proof we shall require the following lemma, which is a
straightforward consequence of a result of Kovadcs and Newman [12]. We
shall call a module monolithic if the intersection of its non-zero

submodules is again non-zero.

LEMMA 2.4. Let @ be a centre-by-finite p'-group, let V be a
2@-module and let W be a submodule of V . Suppose that W 1is a
p-module and is the direct swm of finitely many monolithic submodules, and
suppose further that W is a direct swmmand of V as an additive group.

Then W 1is a direct swmmand of V as a I@-module.

Proof of Lemma 2.3 (a). In case (Z) it is clear that every element
of V[p] 1lies in a finite submodule of V[p] . It then follows by
Maschke's Theorem that V[p] is generated by its irreducible submodules
and so is the direct sum of a selection of them. In case (7Z) we find that
if V # 0 then V[p] contains an irreducible submodule, and this is a
direct summand of V[p] by Lemma 2.4, By applying this argument to a
complementary submodule and continuing in the same way, we find that V([p]
is in this case the direct sum of finitely many irreducible submodules.
Now V is clearly an injective hull of V[p] and so in either case Lemma

2.1 allows us to assume that V is irreducible.

We then have V = V[p] . Since V is certainly a direct summand of
the additive group of V[p] , Lemma 2.4 shows that V is a direct summand
of the Z@-module V[p] . But V is an essential extension of ¥ and so
v ="Vp] .

It follows that the submodule Vp formed by the p-elements of 7

is monolithic with V as its unique minimal submodule. Now by Lemma 2.2

Vp is Z-divisible and so it is a direct summand of the additive group of
V. Consequently, by Lemma 2.4 again, -V_p is a direct summand of V as

Z@-module. It then follows that Vp =V , completing the proof.

(b) If V is injective then it is Z-divisible by Lemma 2.2.
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Conversely suppose that V is Z-divisible, and let V be an injective
hull of V . By (a) the additive group of V is a minimal divisible group

containing that of V¥V , and so V = V . Hence V is injective.

We conclude this section by describing the structure of p-modules
with Min-@ over 2@ , where & is a centre-by-finite p'-group. Let

{VA : A € A} be a complete set of representatives for the isomorphism

y @s 1@-modules and

. Let Vk(n) denote the

types of irreducible ZpQ-modules. We view the V

denote by 7& a Z@-injective hull of VA

submodule of 7& formed by the elements v satisfying pnv =0
{(n=0,1, ...) , and put Vx(m) = V& . Then VA(n) is determined up to
isomorphism by A and »n ; notice also that by Lemma 2.3

Vx(n+l)/VA(n) = VA = VA(l) , which is irreducible. It follows from this

that the Vx(n) (n =0, 1, ..., ®») are the only submodules of Vx(m)

THEOREM A. Let Q be a centre-by-finite p'-group and let V be a
p-module over 18 . Then V satisfies Min-Q <if and only if V 1is a

direct sum of finitely many submodules each isomorphic to some Vx(n)
(1 =n=<w),

If V satisfies Min-Q and V 1is expressed in two ways as the
direet swn of indecomposable submodules, then there is an automorphism of
V mapping the first decomposition onto the second.

Since Vx(n) is isomorphic to Vu(m) if and only if A = and

m =n it follows that the p-modules over 1@ with Min-Q are classified
by the functions of finite support from the set of pairs (A, n)

(A €A, 1=sn=w® to the non-negative integers.

Proof of Theorem A. From our remarks preceding the statement of

Theorem A it follows that each Vx(n) satisfies Min-@ ; hence any finite
direct sum of such modules also satisfies Min-@ .

Conversely suppose that V satisfies Min-@ . If V is not
expressible as stated then among the submodules of V which are not so

expressible there is a minimal one. It thus suffices for the proof to
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assume that, while every proper submodule of V is expressible in the
manner stated, V itself is not, and to obtain a contradiction. This

assumption implies that V is indecomposable.

Let W be the maximal divisible subgroup of V and suppose first
that ¥ # 0 . Then W 1is a submodule of V , and it follows from Lemma
2.3 that ¥ 1is injective. Consequently W is a direct summand of V
and so V =W . However Lemma 2.4 shows that W[p] is the direct sum of
finitely many irreducibles, and Lemma 2.1 then shows that W is the direct
sum of the injective hulls of these irreducibles. Therefore V is a

direct sum of submodules of type VX(M) , which is a contradiction. We
therefore have that W =0 .

By the minimal condition the chain V = pV = p2V > ... must become

stationary after finitely many steps. Since V contains no non-trivial
divisible subgroup it follows that an = 0 for some n , which we suppose

chosen as small as possible. Then pn-lV # 0 and so pn—lV contains an

irreducible submodule U . There is an isomorphism of U onto some Vx ,
and this may be extended to a homomorphism ¢ of V into the injective

module V,(®) . Now pn_l(V¢) = fpn—lV)d) #0 , and so V¢ has exponent

pn precisely. Hence V¢ = VA(n) . Let KX be the kernel of ¢ . Then
V/K , as an additive group, is the direct sum of cyclic groups of the same
order pn . Such a group is free in the category of abelian groups of

exponent dividing pn ; hence K 1is a direct summand of V as an
additive group. Also, by the minimality of V , K is the direct sum of

finitely many submodules of the type VA(n) . Since these are all

monolithic, Lemma 2.4 shows that X 1is a direct summand of V as a
module. This contradicts the indecomposability of V and establishes the

result.

To establish the final statement if suffices, by a well-known version
of the Krull-Schmidt Theorem due to Azumaya [1], to show that in the

endomorphism ring of each VA(n) s m =1, the sum of two non-units is a

non-unit. Since Vk(n) has no proper submodule isomorphic to itself,
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every such non-unit has a non-trivial kernel, which must contain the unique

minimal submodule of VA(n) . This makes it clear that the sum of two such
non-units is a non-unit, as claimed.
As we have remarked, the irreducible ZpQ—modules are quite readily

obtained when @& 1is abelian. In fact let ¢ be any periodic abelian
group, which need not even be a p'—group for these purposes, and let k

be an algebraic closure of Zp . Let O Dbe a homomorphism of ¢ into the

multiplicative group K* of non-zero elements of k . Then since the
elements of @0 are all roots of unity, it follows that the additive group

Le generated by @6 is in fact a field. Let Ke be the ZpQ-module

vhose underlying vector space is ’Le with the ¢@-action given by

vg=v.99 (vev, geg).

Since &0 generates Le additively any g-submodule of Ke is

invariant under multiplication by any element of L9 ; consequently Ke

is irreducible. We have the following result, which is no doubt well

known.

LEMMA 2.5. With the above notation
(i) every irreducible ZpQ—moduZe is isomorphic to some K ;

(i) K, =K  if and only if Ly=1L and © = ¢p for some element

¢
p of the Galois group of L

¢

g over Zp .

Proof (7). Let V be an irreducible ZpQ—module and let E = EndQV ,
which is a division algebra over Zp by Schur's Lemma. Since ¢ 1is
abelian, if g € @ the map gT given by

vigt) =vg (v € V)

is an element of £ and T maps € homomorphically into the centre 2
of F , which is a field. Let L be the additive subgroup of FE
generated by @t . Then since the elements of QT are roots of unity 7L

is a subring of Z which is algebraic over Zp , and so it is a field.
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is an L-module and since T < L we must have dimLV =1. So V=vL

for some v € V . Choose a monomorphism $ of L into k and define

(v =19 (1 eL).

This gives a well-defined additive isomorphism of ¥V onto the field LE .

let 6 =1) . Then 6 maps ¢ homomorphically into the multiplicative
group k* and La is additively generated by @0 . We now verify that

the map ¢ is an isomorphism of V onto Ke . In fact if w € V and
g € & we have u = vl for some uniquely determined 17 € L , and
(ughp = [L(gT)]y = (Z.gT)¢ = W.gt¥ = up.gb ,

as required.

L¢ and 6 = ¢p with p an element of

the Galois group of Le over Zp . Then p 1is an additive automorphism

(Z7) Suppose first that Ly

of L, , and if x € L

6 and g € § we have

8
(x.g¢)p = zp.gdp = zp.gb

so that p maps K¢ isomorphically onto Ke .
Suppose conversely that K¢ 2 Ke . Then since the kernel of ¢ is

the kernel of the representation of @ determined by K¢ we must have

that © and ¢ have the same kernel. Therefore 6 = @¢ . Now k* is a
direct product of groups of type C _ , one for each prime q # p ; it

follows that no two distinct subgroups of k* are isomorphic. Hence

@0 = @¢ and so Le = L¢ . Let p Dbe any isomorphism of K¢

Then p 1is an additive automorphism of Le and, since multiplication by

onto KG

any non-zero element of Le determines an automorphism of X we may

e 3

choose p so that 1p =1 . Then for x ¢ K¢ and g € g we have

(x.gd)p = xp.go .
Putting x =1 gives ¢p =6 and so (x.gdlp = xp.gdpp , or

(x.y)p = xp.yp for =z € Le and y € @6 . Since @0 generates Le

additively it follows that p preserves multiplication, and so belongs to
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the Galois group of Le over Zp .

3. Embedding in Z-divisible modules

It follows in particular from the existence of the injective hull,
that every R-module can be embedded in an injective HA-module. 1In fact

this was first proved by Baer [2]. Lemma 2.2 then gives

LEMMA 3.1. Every IG-module can be embedded in a I-divisible
1G-module.

It is natural to ask under what circumstances a ZG-module V may be
embedded in & Z-divisible ZG-module V whose additive group is a minimal
divisible group containing that of V . This is not always possible, as we

remarked in §1. Now the following facts are immediate from Lemma 2.3:

LEMMA 3.2. Let & be a centre-by-finite p'-group and let V be a
p-module over 19 . Let V be a minimal divisible group containing the

additive group of V , and suppose that either
(i) @ 1is finite, or
(1) V satisfies Min-@ .
Then
(a) V adnits a IQ-module structure extending that on V ;

(b) if Vi, Vo are I@-modules containing V in such a manner that
their additive groups are minimal divisible groups containing
that of V , then the identity map on V extends to an

isomorphism of V) onto V, .
We shall now show that (a) holds in considerably greater generality:

THEOREM Bl1. Let @ be a countable locally finite p'-group, let V
be a p-module over 1Q , and let V be a minimal divisible group
containing the additive group of V . Then V admits a I@-module
structure extending that of V .

In this generality, however, (b) of Lemma 3.2 may break down, and the
resulting Z@-module V is not always even determined up to isomorphism
by V . We shall not pursue this point at present, but hope to return to

it in a later publication. We have no idea whether the restriction of
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countability is necessary.

o0
Proof. Write @ = U Qi ,» where
1=0
= < <
1 QO = Ql = ...
is a tower of finite subgroups of @ . We shall construct for each n = 0

a map fn : V ox ZQn + 7V which makes V into a ZQn-module and is such

that
(1) (v, r)fn =vr (VeV, rce¢ ZQn) .
We shall also arrange that each fn+l extends fn . These maps will then

determine a map from V x @ to 7V which makes V into a [@-module in

the required manner.

Now fo can certainly be obtained (and is in fact uniquely
determined). Suppose that for some n =0 , fn has been constructed.
It follows from Lemma 3.2 that there is a Z-divisible ZQm_l-module W

containing the restricted module VQ in such a manner that the
n+l
additive group of W is a minimal divisible group containing the additive

group of VQ (or the additive group of V , which is the same thing).
n+l

It further follows from Lemma 3.2 that the identity map on V can be
extended to a ZQn—isomorphism ¢ of the ZQn—module v, fn) onto

WQ .  The mapping fn+l : Vox Zle + V defined by

n

(v, »)f,,, = (vb.r)¢t wev, re 29,,,)

then makes V into a ZQn+l-module, extends fn , and satisfies (1) with
n replaced by n + 1 . Thus the maps fn can be constructed and the
result is established.

THEOREM B2. Let @ be a countable locally finite p'-group and let
V be a p-module over 1Q .satisfying Min-@ . Then V can be embedded
in a I-divisible p-module over 1Q which satisfies Min-Q .
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Proof. Let 7V be a ZQ-module containing V in such a manner that
the additive group of V is a minimal divisible group containing that of
V . The existence of such a V is given by Theorem Bl. Then

V[p] = V[p] and Theorem B2 follows from the following lemma:

LEMMA 3.3. Let V be an abelian p-group admitting a set Q of
distributive operators. Then V satisfies Min-Q , the minimal condition

on Q-subgroups, if and only if V[p] satisfies Min-Q .

Proof. It is clear that if V satisfies Min-Q so does V[p]

Conversely assume that V[p] satisfies Min-Q and let

VizVy, =2 ...
be a descending chain of {-subgroups of V . Consider the §-subgroups
- m+1 . o
Ui’m-p[ViﬂVL—p ]] (7’_1’ 2, «v. 3 m=0, 1, ...)
2 >
of Vipl] . Clearly Ui > Ui+l,m and Ui o= Ui,m+l . Therefore

>
UymZ Y5 0

can choose 7 and m so that

if j =21 and n=2m , and since V[p] satisfies Min-Q we

(2) Uu. =1U. for j =21 and nzm.
i.m J.n

-+
Now the map v pkv determines an embedding of V[pk l] /V[pk] in

V{p] and so each V[pk+l]/V[pk] satisfies Min-Q . Therefore V[pk]

satisfies Min-Q and we may suppose % chosen in (2) so that in addition

m+1

V. n Vip. ] = Vj n V[per] whenever § = ¢ .

We now show by induction on .n that

n ” A
(3) VinV[p]=VJ.nV[p:| for all j =7 and n=m+ 1.
+
Indeed suppose (3) holds for some n = m+ 1 and let v € Vi n V[pn l] .
n - n.o_.n
Then by (2) pv € Ui,n Uj,n and so p v = p w for some

+
w € Vj n V[pn l] . Therefore p*(v-w) = 0 and

v-weEV,n v[p"] = Vj nv[p"l . Hence v € Vj ; as required.
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It follows from (3), and the fact that V= U V[p"] , that
nzm+1l
Vi = Vj for all J = 7 , whence we have that V has Min-Q .

In [73] a group possessing a series of finite length in which the
factors are periodic divisible abelian groups was called a pQ-group. We

extend Example 4 of [14] as follows:-

LEMMA 3.4. The class of rQ-groups satisfying Min-n contains
groups of any prescribed derived length.

Proof. The construction is similar to that of [14]. Suppose that we

have constructed, for scme integer n =2 1 , a pPQ-group Gn which

satisfies Min~n , is a w-group for some finite set 7 of primes, and is
in addition monolithic with monolith M . As (G; we may take a group of

type C _ , where g 1is & prime. Let x be an element of prime order
q
p ¢ T, and let X Dbe the . base group of (x) wr Gn = W . There is a chief

series of W through X . If M centralized every factor below X in
this series it would centralize X itself since X is a p-group and

P ¢ 7 . Consequently M fails to centralize some such factor, which then
furnishes a faithful irreducible p-module V for Gn . It follows from
Theorem Bl and Lemma 3.3 that there is a p-module V for Gn which
satisfies Min—Gn and is such that V = th] . Let Gn+l be the
semidirect product Vbn . Then Gn+l is a pQ group with Min-n and is

monolithic with monolith V . It follows easily that Gn+l has derived

length n + 1 exactly.

4. Classification of Z-groups

Our aim in this section is to classify, up to isomorphism, groups in
the class % , the class introduced in §1. We shall classify these groups
in terms of nilpotent centre-by-finite groups with Min and irreducible
modules for such groups. A result which will be of fundamental importance

for our classification is the following:

LEMMA 4.1. Let G € Z . Then G splits over A and the
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complements to GE are conjugate in G . G/Gg is centre-by-finite.

Our proof of Lemma 4.1 will depend on properties of the class U
introduced in [9]. We recall that a locally finite group X belongs to U
if and only if X has a series of finite length with locally nilpotent
factors and every subgroup of X has conjugate Sylow (that is, maximal)

Ti-subgroups for all sets m of primes.

LEMMA 4.2, Let G be a soluble group satisfying Min-n . Suppose
that G contains a normal subgroup of finite index which is

‘nilpotent-by-locally nilpotent. Then G € U .

Proof. By Baer's Theorem [4] G is locally finite. Since the
condition Min-n 1is inherited by normal subgroups of finite index [716],
and since the class U is closed under extensions by finite soluble groups
([10], Lemma 6.6) we may assume that G contains a normal nilpotent
subgroup H such that G/H is locally nilpotent. Then G/H 1is a locally
nilpotent group satisfying Min-n . Such groups satisfy the minimal
condition on all subgroups ([6], Corollary 4.6) and so are countable and
abelian-by-finite. Therefore, arguing as before, we may suppose that G/H

is abelian.

Let X Ybe any subgroup of G and let K be the Sylow T7-subgroup
of H . Then XK/K
of X , the conjugacy of the Sylow Tmi-subgroups of XK/K implies the

112

X/XnK and, since X n X is a normal T-subgroup

conjugacy of those of X . We may therefore assume that K =1 .

Let § and T ©be Sylow m-subgroups of X . We shall now show that
S and T are conjugate in X by induction on the nilpotency class e
of H. If ¢=0 then H=1, X 1is abelian, and S =T . Assume
then that ¢ > 0 and let Z Dbe the centre of H . We may assume by

induction that X contains an element & such that <SxZ/Z, TZ/Z> is a

m-group, U/Z say. Now U/Z must be countable and so U = ZW for some
fi-subgroup W of U (see for instance [10], Lemma 2.1). Let L be any
subgroup of ¥ and let F be‘any finite subgroup of L . Then

CZ(F) =2Zn CG(HF) , which is normal in G since G/H is abelian.

Therefore by Min-n we ccn choose F so that CZ(F) is minimal among

the centralizers in Z of the finite subgroups of L . Then clearly

https://doi.org/10.1017/50004972700046335 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700046335

128 B. Hartley and D. McDougal |

CZ(F) = CZ(L) . It follows from Lemma 4.3 of [10] that every countable

subgroup of U containing ¥ has conjugate Sylow m-subgroups, and hence

from Theorem B of [10] that every countable subgroup whatsoever of U has

conjugate Sylow m-subgroups. Therefore Sx and T are conjugate in the

group they generate, which establishes the lemma.

Proof of Lemma 4.1. We have by Lemma 4.2 that G € U . Let K be
the uniquely determined normal subgroup of G which is minimal subject to
the condition that G/K 1is locally nilpotent. Then K is abelian. By
[9], Theorem k.12, G splits over K and the complements to K in &

are conjugate - in fact they are the basis normalizers of G . We shall

show that X = GE . Now it is clear from (Z) (in §1) that every
p-subgroup of (G 1is nilpotent. Since G/K satisfies Min , as we have
seen, and is therefore countable, every p-subgroup of G/K 1is the image
of a p-subgroup of G ([10], Lemma 2.1). Therefore the Sylow
p-subgroups of G/K are nilpotent and so G/K is nilpotent. Hence

K=&,

Finally, since it is a nilpotent group satisfying Min-n , G/K is

centre-by-finite by a theorem of Baer [3].

Lemmas 4.1 and 4.2 are generalizations of Theorem 3.5 and 5.6 of

[14].

Now it follows from Lemma L4.1 that in trying to classify groups in

the class Z 1it is sufficient to restrict ourselves to considering those

groups G € Z such that G/GE is isomorphic to a given nilpotent

centre-by-finite group A satisfying the minimal condition.
Let Ap’ be the Sylow p'-subgroup of A and let {VA 3 A€ Ap}

be a complete set of representatives for the isomorphism classes of
non-trivial irreducible ZpAp,—modules. We assume the sets Ap to be
pairwise disjoint, as we may. Notice that if A 1is actually abelian then
the VA may be constructed by the method of Lemma 2.5. For

n=1,2, ..., ®» let VA(H) denote the Ap,-module obtained from VA as

described before Theorem A, and view each VA(n) as an A-module by
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allowing Ap to act trivially. Let A =U Ap and let X = X(4) denote
p

the set of all external direct sums of finitely many modules Vx(n)

(n=1,2, .c., 3 XA €A). We admit a zero module to X as the direct
sum of the empty set. '

An equivalence relation is introduced on X as follows. First, if

X € X and o € Autd , let x* be the A-module which has X as its
underlying additive group and which has the A-action defined by

(zy, a) »z(an) (®€X, acd).
Now if X and Y are elements of X we define X v Y +to mean that

X 2 Y* for some o € Autd ; we shall say that X is an automorphism
eonjugate of Y . The relation of automorphism conjugacy is easily seen

to be an equivalence relation on X .

Finally for each X € X let XA denote the semidirect product of X
by A , that is the group consisting of all pairs (x, a) , where z € X ,
a € A , with the mltiplication (x, a)(z', a') = (x+x’a_l, aa') . When
appropriate we shall identify X with a subgroup of X4 in the usual

manner. We now have

THEQOREM C. With the above notation, if X € X then H = XA ¢

i

B =% and H/Hg 2A. If Gez and G/GE £ A then G = X4 for some
XeX. If X,Y€X then XA= YA if and only if X VY .

Thus there is a natural one-to-one correspondence between the

isomorphism classes of groups G in Z with G/Gg =4, and the
automorphism conjugacy classes of elements of X . We shall have more to

say about the relation of automorphism conjugacy after proving Theorem C.

Notice that, with the notation of Theorem C, H will be
quasi-radicable if and only if A is quasi-radicable. For if A is
quasi-radicable and »n > 1 then the subgroup generated by the n-th powers

of elements of H contains A and so, being normal in H , contains

[x, 4] = E&E, A] =B = X . Since A is in any case centre-by-finite it
follows that H 1is quasi-radicable if and only if A4 is abelian and

radicable (that is, every element has an n-th root for all = > 1).
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Proof of Theorem C. If VA is any irreducible module in X then

since VA is non-trivial and irreducible the submodule [VA’ A]
additively generated by the elements v - va (v € VA s, a € A) must be

VA if

we

the whole of V, . It then follows easily, since VA(n+l)/VA(n)
n is finite, that [Vx(m), A] = Vx(m) for any m=1, 2, ..., © ., Hence
[X, Al = X for any X € X . Since XA/X £ A , which is nilpotent, this
means that X = (XA)l .

Now let G € Z and suppose that G/Gy= 4. 1t A =1 then ¢=4
and taking X to be the zero module there is nothing to prove. Thus we
may assume that Gg # 1 . Then by Lemma 4.1 we have, if X = Gg
(%) G=KAi, Knd=1

for some A=A ., G is locally finite and the condition (Z) ensures that

the Sylow p-subgroup Z% of 4 centralizes the Sylow p-subgroup K?

of the abelian group K . Therefore if we view Kp as an Zé,—module in
the natural way it satisfies Min—Z?, . By Lemma 4.1 Z?. is
centre-by-finite and so by Theorem A Kb is a direct sum of finitely many
subm?dules of the type W(n) , where W is some irreducible ZpZ?,—module.
Now since K 1is a non-trivial abelian group it follows from (L) that

K = [K, 4] . Hence K, = [Kp, Zp,] and

(5) Wn) = W), 4]

Consequently W must not be a trivial module. Otherwise, since W
determines W(m) up to iscmorphism W(n) would be trivial, in

contradiction to (5).
Let a > a be an isomorphism of A onto A . Weview K as an
A-module by defining
—_] -
xa=a xa (t€ K, actdi4).

It now follows from the remarks Just made that K is isomorphic to some

module X € X . Let § be an A-isomorphism of X onto K . Then the
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map {(x, @) + xV.a maps XA isomorphically onto G .

Finally let X, Y € X . If X"V Y then X = ¥* for some « € Autd .

Let ¢ be an A-isomorphism of X onto ¥* . Then the map
(x, a) > (xy, a0) maps XA isomorphically onto YA . On the other hand
suppose that X4 = YA and let ¢ be an isomorphism of XA onto Y4 .

We have already seen that X = (XA)ﬁ» and Y = (YA)i and so ¢ maps X
onto Y . Since Y is abelian the complements to it in Y4 are conjugate
under the automorphism group of Y4 ; in fact in this case, by Lemma k.1,
they are conjugate in Y4 itself. We may therefore assume that ¢ maps
the elements of the form (O, a) in XA to the elements of similar form
in YA . Thus ¢ has the form (x, a) > (x¥, aa) where ¢ is an
additive isomorphism of X onto Y and o is a bijection of A onto

itself. It is then easy to verify that o € Aut4 and P determines an

isomorphism of X onto ¥* . Therefore X~ Y , which completes the

proof of Theorem C.

We notice, for example, that if A 1is a non-trivial locally cyclic
p'—group then there is, up to automorphism conjugacy, exactly one faithful

irreducible ZpA-module. For by Lemma 2.5 every such module has the form
Ke for some moncmorphism © of A into an algebraic closure k of

Zp . The existence of such a 06 follows since A4 1is a locally cyclic

=1
p'-group, and clearly K¢ = ng .

isomorphism, exactly one quasi-radicable metabelian group with Min-n of

Consequently there is, up to

the form N4 , where N is a normal p-subgroup faithfully and
irreducibly transformed by a given non-trivial radicable locally cyclic
p'-group A . Such groups were first comstructed by Carin [5].

Let VA(n)m denote that member of X which is given as the direct

sum of m copies of VA(n) (m =2 1) . Then, since each member X of X

is given together with a direct decomposition, X determines uniquely a

set
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m m
S(X)={V (n)l, R 7 n)k}
AT Ak(k

where k =z 0 and the pairs ()\7;, ni) are all distinct. ©Now if elements

X and Y of X are isomorphic then their p-components are isomorphic

as Ap,—modules for each prime p ; Theorem A then shows that this
happens if and only if S(X) = 5(¥)

LEMMA 4.3. Let X, Y € X and suppose
m m
1
S(X) = {VA (ﬂl) 3 cees V}\ (nk] k}
1 k
and

s(y)

1

t t
1 7
{Vu CORNRE NS }
Then X~ Y <if and only if
(<) k=1,
(11) there exists an automorphism o of A and a permutation o of

{1, 2, ..., k} such that V)‘i = Vﬁio s o Mp=s. s M= tio

for 1 =4 =k.

Proof. Suppose first that X~ Y . Then X = ¥* for some o € Autd

and, since (U ® W) =@ W for any A-modules U and W , we have

m m t t
©) ¥ ) H 60, ) ¥ 2 [Vul(sl)“] ‘o...6 [Vul(sz)“] L.

Since the modules V)\ (nz) and Vu (sj)a are indecomposable it follows
2 J

from Theorem A that there is a one-to-one correspondence between the

summands of this form on the two sides of (6) such that corresponding

summands are isomorphic. Now Vu (si)a = VU (sJ.)a if and only if Z = j ;
i J ¢

consequently to each % with 1 <7 < k there is a uniquely determined
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integer 10 with 1 < i0 < I. such that vy (n.) =v (s )a . It
g u. \Wio
1 10
then follows that n.=s. , m.=t. , k=1, and that ¢ is a
7 10 1 10
permutation of {1, 2, ..., k} . Clearly vy v
7 Yo

134

Conversely suppose that (<) and (77) hold. Then by Theorem A

Vu (sio)a must be isomorphic to some module of the form Vk(n) , and
10
consideration of the minimal submodules shows that the module required
must be V, (ni) . We then easily obtain (6) and hence that X = ¥* , as
7

required.

Let us call an abelian p-group homogeneous if it is either homocyclic

or divisible. As an application of Theorem C and Lemma 4.3 we prove
COROLLARY 4.4. rLet Gy and G, belong to Z . For i =1, 2 let
K, = (Gt]£=, let Ni be the product of the minimal normal subgroups of

G, contained in K, and let Ay be a complement for K, in G, -

Suppose that, for each prime p , the p-component of K, 18 homogeneous

n.(p)
of exponent p ¢ . Then Gy =G, if and only if

(1) nylp) = ny(p) for each prime p ,
(i1) NiAy = NoA, .
Proof. If Gy = G, then any isomorphism from G, to G, maps K,
onto K, , and as in the argument of Theorem C there exists an isomorphism

which maps A; onto A4, . Such an isomorphism maps #;4; isomorphically

onto Ny4; . Thus the necessity of the conditions is clear.

To see the sufficiency we notice first that by Theorem C the minimal

normal subgroups of (. in K. are non-central. Hence WN. = EN., A.] s
1 7 1 1 1

and so N, = (NiAi)g . Therefore it follows from (iZ) that 4,

10

45 .
Theorem C now allows us to assume that Gi = XiA , where 4 1is a

non-trivial nilpotent centre-by-finite group with Min and Xi € X = X(4)
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(¢ =1, 2) . Since the p-components of X, are homogeneous,
t t
. 1 k
sx,) = {VAl(sl) sy () }

where Al’ v Ak are all distinct and s, = nl(p) if in is a

p-module. The subgroup ~¥N;4; of &) corresponds naturally to Y4,

t t
where S(Y ) =4V, (1) l, ey V4 (1) k . Thus % 1is the number of
1 Al Ak

distinct isomorphism types of A-modules in Y; . It now follows from (77)
¥y “x
that S(Xz) = {Vul(ul) y eens Vuk(uk) } , where L, ..., W, are all

distinet. Since Yj4 = Y4 , Theorem C gives Y; "~ Y, . Hence by Lemma

4.3 there is an automorphism o of A and a permutation O of

{1, 2, ..., ¥k} such that vy, Va' and t, =w, . Now s, = nl(p)
7 10
and u; = nz(p) » where p is the prime such that both V, and ad
7 Hio
are p-modules. Hence by (7) s, =u,, . Lemma 4.3 now shows that

X, v X, , and Theorem C gives X4 = Xp4 , which completes the proof.
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