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1. Recently a number of functions have been shown to satisfy relations on 
polytopes similar to the classic Euler relation. Much of this work has been done 
by Shephard, and an excellent summary of results of this type may be found 
in [11]. For such functions, only continuity (with respect to the Hausdorff 
metric) is required to assure that it is a valuation, and the relationship between 
these two concepts was explored in [8]. It is our aim in this paper to extend the 
results obtained there to illustrate the relationship between valuations and the 
Euler relation on cell complexes. 

To fix our notions, we will suppose that everything takes place in a given 
finite-dimensional Euclidean space X. 

A poly tope is the convex hull of a finite set of points and will be referred to as a 
d-polytope if it has dimension d. Polytopes have faces of all dimensions from 0 to 
d — 1 and each of these is in turn a polytope. A ^-dimensional face will be 
termed simply a &-face. (For details in these matters, see [2].) The class of all 
polytopes will be denoted by £P. 

A {polyhedral) cell complex, C, is a finite union of polytopes (cells) together 
with all of their faces, such that two cells meet only on a face of each. A maximal 
cell of C is a cell which is properly contained in no other and the dimension of 
C, d(C), is the maximal dimension of a cell of C. We denote the set of all points 
belonging to some cell of C by \C\. A cell F Ç C is an interior cell if 
rel mt(F) C int(|C|). Otherwise, we say that F is a boundary cell of C. 

On any class stf of subsets of X, we say that a function <p is a valuation on s/ 
if 

(1.1) cp(A \JB)+ <p(A r\B) = <p(A) + <p(B) 

whenever A, B, A VJ B, and A r\ B all belong to s/. For convenience, we set 
ç>(&) = 0. Valuations, especially motion-invariant valuations, have also been 
extensively considered by Hadwiger. See in particular [3, pp. 236-243; 4], 

We say that a function cp defined on 0* satisfies an Euler relation E(e) on a 
d-polytope P if 

(i.2) E (-i)iY,<pçpt) = «p(P), 
i=0 

where the inner summation on the left is taken over all i-faces of P . We will 
often denote the left-hand side of (1.2) by <p*(P). 
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In considering how to extend such relations to (polyhedral) cell complexes, 
we were led to a more abstract point of view and obtained somewhat more 
general results than needed. However, from a geometric viewpoint, our most 
interesting theorems are probably the following. 

THEOREM 1.1. Let <p be any valuation on &\ Then we may extend <p in a unique 
way to a valuation ç>~ on %, the class of finite unions of poly topes. 

THEOREM 1.2. Suppose that ç is a valuation satisfying an Euler relation E(e) 
on & and that <p~ is its extension to °k'.IfC is any cell complex with maximal cells 
of dimension d, then 

(1.3) £ (-i)T*(c f) = ^-(|c|), 
d-1 bd 

(i.4) Z ( - D T # f ) = (e-(-m<p-(\c\), 
d int 

(i.5) E (-D'E *>(£') = (-i)V(iq). 
The inner summations on the left-hand side of (1.3)-(1.5) are taken over all i-cells, 
boundary i-cells, and interior i-cells, respectively. 

Theorem 1.1 is proved in § 2 by means of a lemma which may be useful in 
other problems of this type. In § 3 we prove Theorem 1.2, while § 4 is devoted 
to applications of the theorem to some specific cases. 

2. Extending valuations. Before stating our principal lemma, which general­
izes a result of Klee [5, p. 123, (1.7)], it is useful to introduce some additional 
notation. We let N = {1, . . . , n), and let S^(N) be the collection of all non­
empty subsets of N. If N and M are sets of integers, then N X M is the usual 
set of ordered pairs which we will identify in an obvious way w4th {1, . . . , mn). 
In addition, we define projections, wi(n, m) = n and 7r2(w, m) = m. 

For each v G S^(N), let \v\ be the cardinality of v. If Xi, . . . , Xn is an 
indexed family of sets, and v = (ily . . . , if) G 5^{N), we let X(v) denote 
Xix C\ . . . C\ Xij. We will sometimes write <p(X\, . . . , Xn) in place of 

E (-DN|-VX(,)). 

Finally, &~ is an inter sectional family of sets if F, G G &~ implies F C\ G G J r . 

LEMMA 2.1. Let Ĵ ~ be an inter sectional family of sets, V&~ the family of all 
finite unions of members of ^ , and <p a function on 3^. Then the following state­
ments are equivalent: 

(i) If F = Fi U . . . U Fn, where Fl9 . . . , Fn and F G êf, then 

<p(Flt . . . , Fn) = <p(F); 
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(ii) We may extend <p to a valuation <p~ on FJF~, where 

<p-(F1U...KJFn) = ^Fl9 . . . , Fn); 

(iii) If Fx, . . . , Vn € K T , /&** * r (F l f . . . , Vn) = * r ( 7 i U . . . U 7 , ) . 

Proof (i) => (ii). Let <p~~ be the function denned in (ii) above. We will first 
show that it is well-defined on V^ and then that it is a valuation there. 

Suppose that U = F1 U . . . U ̂  = d U . . . U Gm, where ^ , G, G F . W e 
have: 

£ (-i) l%(f(«))= 2: (-D""-1! Z ( -D '^V^Wncw)} 
w€^(A0 u^(N) \v£Sf(M) J 

= E (-D'^JE (-l)'%(F(«)nG(.))} 

= E (-D,,,-V(G(i')), 

where the first and last equalities follow from (i). Thus cp~ is well-defined. 
To see that <p~ is a valuation on V&~, let 5 = F\\J . . .\J Fn and 

2" = Gi W . . . \J Gm. Then we have: 

<P~(S)= E (-i)'"'-V(f(«)); 

(2.1) 

«r(r) = E (-Dlc|-V(G(f;); 
v£ST{M) 

<p-(syjT)= D (-o""-V(^)) + E (-i)'"-V(G(»)) 

+ E E (-i)w+"hV(F(«)nGW); 

<p-(sr\T)= £ (-i)w-V(^(^i(w))nG(7r2(w))). 

This last equality arises as follows. Note that S f~\ T = {J i U j (Ft Pi Gj), 
and hence 

«r(snr) = E (-i)lw|-V(ffM), 

where H „ = Ft Pi G> But if w = fe j i ) W . . . U (4, j») G ̂  (M X N), then 

ff(w) = F4I r\... n F«» n cft n . . . n cft = ^Mw)) n G(T2(«O). 

From (2.1) we see then that <p~ satisfies the valuation property if and only if 

(2.2) E ( - l ) W "V(F(7r 1 (w) )nG(7r 2 ( W ) ) ) 

= Y, H (-1)'* I+I ,VWAG«). 

This in turn reduces to showing that for all u £ S^(N), v G S?(M), 

(2.3) E ( - l ) 1 " 1 " ^ ( -1) , M , + , ' ,
I 

we^(u,v,MXN) 
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where ff {u, v, M X N) denotes all w G y (M X N) such that TI(W) = u, 
W2(w) = v. But this identity has been verified by Klee (see [5, p. 123, proof 
of (1.7)]). 

(ii) => (i). Suppose that F±, . . . , Fn and F are as in (i). Since <p~ is a valua­
tion on K "̂", the result follows for n = 2. Then it is easily verified for larger 
values of n by induction. 

(i) and (ii) => (iii). Let ^ = 7 ^ and let ^ = <p~ on ^ . Assume that 
Gi U . . . U G„ = G, where Gi, . . . , Gn, G (z &. Then by (i) and (ii), 
^(Gi, . . . , G„) = ^(G) if and only if ^~ is a valuation on 7 ^ . But 7 ^ = 7^~ 
and on 7 ^ " we know that \f/~~ = <p~ which is assumed to be a valuation. Hence 
yjr is a valuation on V&, and the desired result follows. 

That (iii) => (i) is immediate. 
We observe that <p~~ is the only valuation on 7^~ which extends <p. 

LEMMA 2.2. Let ^ be an inter sectional family and let £, \p be two valuations on 
7 ^ " which are equal on &~. Then £ = \js. 

Proof. Let 7^ W . . . VJ Fn = U be a typical member of 7^" . 
Then by Lemma 2.1 (iii), 

and similarly for \p(U). But since^~is an intersectional family, JF(^) Ç J^"and 
thus £(F(u)) = \p(F(u)) for all w G Sf(N). Since the sums are equal term by 
term, £(Î7) = ^(U). Our principal lemma will now be used to prove 
Theorem 1.1. All that is necessary to do is to verify that Lemma 2.1 (i) holds 
for valuations on SP. 

LEMMA 2.3. Suppose that <p is a valuation on SP, the class of poly topes, and that 
P = PX\J . . . W Pn, where Plt . . . , Pn and P £ &. Then 

<p(P) = v(Pl9...,Pn). 

The proof of this assertion is exactly the same as the corresponding statement 
for Steiner points which is proved in [7, p. 78]. 

Proof of Theorem 1.1. By Lemma 2.2, any valuation cp on £P satisfies 
Lemma 2.1 (i). Hence çr is a valuation on °ll = V&\ and by Lemma 2.2, ç>~ is 
the only valuation on U which agrees with <p on 8P. 

3. Proof of Theorem 1.2. We begin by recalling the definition 

i=0 

where P is a d-polytope and the inner summation on the right is taken over all 
i-faces of P. It may be shown [8, (4.2)] that <p* is a valuation if and only if ^ is a 
valuation. 

Now suppose that Cis a cell complex with n maximal cells, Qi, . . . , Qn. Then 
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by Theorem 1.1 and Lemma 2.1, we extend <p* to °tt to see that 

(3.i) <P*(\C\)= E (-i)'"~V(Q(iO) 

dim(QO)) 

= E (-D1*1-1 E (-D' ,E *(0. 
v^(N) i=0 C'CC(Î) 

Then for a fixed i-cell, C*, <p(C*) has as a coefficient 

(3.2) ( - i r E M C * ) , 

where the prime denotes that the summation is taken over all v G Sf (N) such 
that C* C <2(z0- Without loss of generality, suppose that Ci is contained only 
in Qi, . . . , <2r- Then (3.2) equals 

(3.3) (-!)'{ E B ( - 1 ) - ' } =(-!)'{([) - ( 0 + . - + ("IK;) } 
= ( - 1 ) ' . 

Thus, rearranging (3.1) shows that 

(3.4) **(|C|)= E (-1)'E*'(C'). 

Since <p* = e<p on ^ , (1.3) follows immediately. 
In order to prove (1.4), we define a function \(/ on °tt as follows. Let 

Z7 G ^ , and let C be a cell complex such that U = |C|. Then set 

<Z bd 

(3.5) HU)= E (-i)T^(c () . 
t=0 

^ is well-defined since the boundary cells of C form a complex to which we may 
apply (1.3). Moreover, \p is a valuation on ^ . For let U, V Ç ^ , and let £ be 
a complex such that |E| = U \J V, and which contains subcomplexes E±, E2 

with |Ei| = U, \E2\ = V. Then for each i, 

bd(#) bd(#i) bd(^2) bd(#in#2) 

(3.6) E *(£*) = E *>(£*) + E «>(£') - E HE*). 
Summing (3.6) with alternating signs yields the valuation property. However, 
on &, yp = <p* — ( — 1)V = (€ ~~ (~ l ) d )^ - Extending the valuation on the 
right to °U yields (1.4). 

Finally, (1.5) follows by subtracting (1.4) from (1.3). This completes the 
proof. 

We observe that we have actually proved the following result. 

THEOREM 3.1. Suppose that <p is a valuation on 0* and that \p = (<p*)~ is the 
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extension of <p* to °U'. Then for any cell complex C such that d(c) = d, we have: 

(3.8) £ (-1)T^(0= H\C\), 

a bd 

(3.9) £ (-D'XXO = H\c\) - (-DV(|c|), 
d int 

(3.io) £ (-D'XXO = (-DV(|C|). 
i=0 

The inner summations are taken over all i-cells, boundary i-cells, and interior 
i-cells, respectively. 

4. Applications. A number of valuations are known to satisfy an Euler 
relation on &, and thus fulfill the assumptions of Theorem 1.2. The best 
known of these is, of course, the identity function which gives rise to the usual 
Euler relation. There are also references to the mean width [10], the Steiner 
point [8; 9], and mixed volumes [11] in the literature. Thus we may state the 
following corollary to Theorem 1.2. 

COROLLARY 4.1. Let <p be any of the valuations (a), (b), (c) on SP and <p~ the 
extension of <p to °U'. If Cis any polyhedral cell complex, then relations (1.3)-(1.5) 
hold for <p. 

(a) V(P) - 1. 
(b) <p(P) = mean width of P. 
(c) (p(P) = Steiner point of P. 

The corollary above seems to be new in the case of mean widths. For the 
identity function we obtain the well-known Euler-Poincaré formula [1, p. 214], 
while the assertion for the Steiner point was first made by Shephard (private 
communication). 

The disadvantage of Corollary 4.1 is having to use the extension of <p to <p~. 
For, while some valuations extend nicely to % (see [7, p. 81, 6] for equivalent 
definitions extending the notion of the Steiner point to %), others lose all 
geometric significance. A case-in-point is mean widths. Examples may be given 
of non-convex sets having arbitrarily small diameters and arbitrarily large 
"mean widths". (For instance, consider a "fan" consisting of many short line 
segments joined at a common point.) Such problems may be avoided if \C\, the 
space underlying a complex C, is convex; that is, if Cis a cellular decomposition 
of a polytope. Then we have the following result. 

THEOREM 4.2. Let Cbe a cell complex such that \ C\ is convex of dimension d and 
let ip denote any one of the following valuations on £P : 

(a) <p(P) = 1; 
(b) <p(P) — mean width of P; 
(c) <p(P) = Steiner point of P. 
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Then 

(4.D é (-D iz^(c i) = ̂ (ici), 
i=0 

d-1 

(4.2) £ ( - l ) T * (C) = (e - ( - 1 ) % ( | C | ) , 
*=0 

(4.3) E (-D'Z«'(C,)= (-DV(ICI), 

ze^ere the inner summations on the left are taken over all i-cells, boundary i-cells, 
and interior i-cells, respectively. 
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