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The flow over a cambered NACA 65(1)—412 airfoil at Re = 2 x 10* is described based
on a high-order direct numerical simulation. Simulations are run over a range of angles
of attack, o, where a number of instabilities in the unsteady, three-dimensional flow field
are identified. The balance and competing effects of these instabilities are responsible
for significant and abrupt (with respect to «) changes in flow regime, with measurable
consequences in time-averaged, integrated force coefficients, and in the far-wake footprint.
At low «, the flow is strongly influenced by vortex roll-up from the pressure side at the
trailing edge. The interaction of this large-scale structure with shear and three-dimensional
modal instabilities in the separated shear layer and associated wake region on the suction
side, explains the transitions and bifurcations of the the flow states as « increases. The
transition from a separation at low o to reattachment and establishment of a laminar
separation bubble at the trailing edge at critical « is driven by instabilities within the
separated shear layer that are absent at lower angles. Instabilities of different wavelengths
are then shown to pave the path to turbulence in the near wake.

Key words: separated flows, boundary layer separation

1. Introduction

The most common domain for practical aeronautics is at a chordwise Reynolds number
(Re = Uc/v, where U is a flight speed, ¢ is a chord length and v is the kinematic
viscosity) of 10° or more, and classical inviscid theories and numerical procedures
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yield satisfactory estimates of lift. Drag is more difficult to account for but there
are a number of standard methods for making reasonable estimates, even on complex
geometries (e.g. Destarac & van der Vooren 2004; Anderson 2010). However, there is
a growing number of cases (turbine blade elements at altitude, wind turbines, small-
scale autonomous aircraft) where Re is not necessarily large. In particular there is a
range 10* < Re < 10° (which we denote as moderate Reynolds number) where Re is
small enough so that the viscous boundary layer almost never remains attached, and large
enough so the resulting shear layer can readily destabilise and generate complex flows,
even leading to turbulence. In that case, as long ago noted by Lissaman (1983), airfoil
and wing performance is almost entirely dictated by the propensity for separation of the
initially laminar boundary layer.

1.1. Separation, reattachment and instabilities

Because airfoils have a suction and a pressure side, the boundary layers on the upper and
lower surfaces are governed by different forces and dynamics. In the moderate Re regime,
the boundary layer on the pressure side of the airfoil commonly remains laminar and does
not separate upstream of the trailing edge. On the suction side, the loss of momentum
through viscous effects and an adverse pressure gradient downstream of the suction peak
forces the laminar boundary layer to separate from the airfoil. Flow reattachment then
occurs if the separated shear layer transitions to turbulence far enough upstream from the
trailing edge so the momentum from the outer flow can be transported to the surface,
re-energising the now-turbulent boundary layer which is well known to be more resistant
to adverse pressure gradients (Schlichting & Gersten 1999). The region of recirculating
flow between the separation and the reattachment points is called a laminar separation
bubble (LSB) and has been a subject of research for many years in experiment, theory and
computation (e.g. Horton 1968; Stewartson 1970; Smith 1979; Alam & Sandham 2000;
Burgmann, Dannemann & Schroder 2008; Burgmann & Schroder 2008; Jones, Sandberg
& Sandham 2008; Scheichel, Braun & Kluwick 2008).

Although the LSB appears well defined in a time-averaged sense, the physical
mechanisms for reattachment are complex, three-dimensional and highly unsteady. The
relevant instabilities are both two- and three-dimensional. Two-dimensional instabilities
include the shedding of vortices behind the airfoil, similar to those seen in bluff body
wakes (Wei & Smith 1986; Williamson 1996a), together with Kelvin—Helmholtz (KH)
instabilities and the formation of vortices within the separated shear layer itself.

The two-dimensional vortices themselves then are subject to three-dimensional modes
that drive the transition in the near wake of the body. In the wake behind a circular cylinder,
an instability mode with a large spanwise wavelength of 3—4 diameters of the primary
vortex core has been identified at lower Reynolds number (Re ~ 190) and a higher-
frequency mode with a wavelength of approximately 1 diameter was found at Re ~ 240
(Williamson 1996b). These instabilities are termed mode A and mode B and have been
associated with an elliptic instability of the vortex core (mode A) (Williamson 1996b;
Kerswell 2002) and an instability within the hyperbolic flow along the braid shear layer
between successive spanwise vortices (mode B) (Leweke & Williamson 1998b). A mode C
instability with a spanwise wavelength of approximately two cylinder diameters was later
observed by Zhang et al. (1995) who placed a thin wire in the vicinity of the cylinder to
suppress the other faster-growing modes. Once a vortex deforms, the braid loop generation
is self-sustaining and the deformed vortex induces a velocity perturbation in other nearby
vortices, as described by Williamson (1996b) and Leweke & Williamson (1998b).

The stability of the near-wake dynamics behind airfoils at low Reynolds number has
been investigated through Floquet analysis by Deng, Sun & Shao (2017), Meneghini et al.
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(2011) and Gupta et al. (2022). The Floquet analysis by Gupta et al. (2022) showed that
the shorter-wavelength instability mode C is the fastest-growing mode for various angles
of attack, which differs to the cylinder wake transitions where the longer-wavelength
instability (mode A) emerges first. The structure of mode C, however, shares similarities
with both mode A and mode B: in the near wake, high perturbations are detected within the
the braid region (mode B) while the far wake shows a higher concentration in the spanwise
cores. It has further been shown that mode A has a period equal to the base flow shedding,
while mode C is subharmonic with a period of twice the base flow shedding (Deng ef al.
2017). In addition to modes A and C, other subharmonic and quasi-periodic modes have
been identified, but found to play a secondary role in the wake transition behind the airfoil.

Besides the elliptic instability of the vortex cores itself (mode A), deformations
of vortices can also be attributed to long-wave Crow instabilities that occur in co-
and counter-rotating vortex pairs. The mechanism behind the Crow instability is a
displacement of the vortices as a whole caused by the induction of the strain field from
the neighbouring vortex (Crow 1970; Leweke, Le Dizes & Williamson 2016). Crow
instabilities are typically found in the tip vortices behind aeroplanes, but can occur in
any vortex pair under the proper conditions or even in the interaction of a single vortex
with a wall (Leweke et al. 2016). In the interaction of vortex pairs, Crow and elliptic
instabilities are often observed combined when the cores are pushed together by the Crow
instability (Leweke & Williamson 1998a; Laporte & Corjon 2000). Secondary vortices are
then induced in the nonlinear stage of the elliptic instability that accelerate the breakdown
to turbulence of the vortex system.

Jones et al. (2008) investigated the extent to which a combination of elliptic (mode A)
and hyperbolic instabilities (mode B) can drive self-sustained turbulence in the LSB on
a NACA 0012 at Re = 5 x 10*. Inside an LSB, the mean flow at the surface is reversed,
and the magnitude of the reverse flow can be used as an indicator of stability in the
bubble. Although the study found reverse-flow levels of 15.3 %, thought to be at the lower
limit of 15 % —20 % required for an absolute instability in an LSB (Alam & Sandham
2000), linear stability analysis on the time-averaged flow profile did not yield an absolute
instability, and three-dimensional modes cannot be overlooked. The possible significance
of three-dimensional instability modes agrees with the observation by Theofilis (2011),
who reports that reverse-flow levels of O(10%) are sufficient to sustain it. Marxen,
Lang & Rist (2013) elaborate on the instabilities in LSBs and argue that the elliptic and
hyperbolic instabilities may both occur at fundamental and subharmonic frequencies of
the vortex shedding and that the simultaneous occurrence of several instabilities results
in the rapid disintegration of the spanwise vortices. In a contrasting study, Rodriguez,
Gennaro & Juniper (2013) demonstrate that a three-dimensional instability of the LSB can
be active for reversed flows of only 7 %, arguing that this three-dimensional (3-D) mode
itself accounts for the bubble instability. The location of an inflectional velocity profile
is critical and can trigger absolute instabilities at reverse-flow magnitudes significantly
lower than commonly quoted values (Avanci et al. 2019; Rodriguez, Gennaro & Souza
2021). The interaction of Karman and LSB vortices in the wake of the SD 7003 airfoil
was investigated by Ducoin, Loiseau & Robinet (2016), who showed that the frequencies
of the Kdrman vortices and the shedding from a suction-side LSB are locked in and the
LSB shedding occurs at a subharmonic frequency.

The interlocking of instability modes from pressure and suction sides of an airfoil has
been an important element in understanding the generation of tonal noise in moderate-
Reynolds-number airfoils at small «, and Desquesnes, Terracol & Sagaut (2007) showed
how the most amplified frequencies in the pressure-side separated region close to the
trailing edge corresponded to the frequencies observed in upstream propagation of acoustic
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tones. The acoustic waves then modify upstream conditions in both pressure and suction-
side boundary layers. The source of tone noise has also been investigated in time-resolved
Particle Image Velocimetry (PIV) experiments (Probsting, Serpieri & Scarano 2014)
and with detailed acoustic surveys (Probsting, Scarano & Morris 2015; Probsting &
Yarusevych 2015) and the acoustic sensitivity has been exploited in studies of external
forcing with tonal and broadband noise (Kurelek, Kotsonis & Yarusevych 2018). Stability
analysis of computed or measured flows can be performed on time-averaged boundary-
layer profiles (Desquesnes et al. 2007; Probsting et al. 2014, 2015) and a global mode anal-
ysis (de Pando, Schmid & Sipp 2014) shows the importance of the primary (least-stable)
global modes which accord with the discrete peaks in acoustic spectra. Although wind
tunnel flows are necessarily three-dimensional, the simulations and stability calculations
have all been on 2-D configurations. The role of 3-D perturbations to the 2-D base flow,
and of strongly 3-D modes themselves in setting the stability and frequency of strongly
interacting vortical flows from both pressure and suction surfaces has yet to be investigated.

The comparative fragility of the laminar boundary layer and the numerous 2-D and
3-D instability modes, and their interactions, leads to significant challenges in flow
measurement, prediction and control, with great sensitivity to both environmental and
surface geometry details. This highly sensitive nature of the transitional flows in and
around the LSB is first associated with the receptivity of the separated shear layer in an
adverse pressure gradient to instabilities, external disturbances and feedback mechanisms
(Jones et al. 2008, 2010). Although they present challenges, the exquisite sensitivities
can also be an opportunity in flow control strategies that deliberately exploit them, for
example through synthetic jets (Glezer & Amitay 2002; Suzuki, Colonius & Pirozzoli
2004; Visbal 2011; Bhattacharjee et al. 2020) or through acoustic excitation (Yang &
Spedding 2013a, 2014; Kurelek et al. 2018). Because such devices can be coupled with the
inherent instabilities of the base flow to achieve global modifications of the flow structure
(Glezer & Amitay 2002), even with low-amplitude input energies, an understanding of the
naturally occurring instabilities behind the flow transition is of practical importance. For a
more comprehensive review on control of low-Reynolds-number flows, we refer the reader
to the review by Cattafesta & Sheplak (2011).

1.2. Challenges in experiment and computation

The rich set of dynamics available within one chord length of airfoils and wings at
moderate Re leads, infer alia, to a broad range of conflicting results for ostensibly similar
conditions. In Selig ef al. (1995) the discrepancies that emerged for Re < 10° between
lift-drag polars of the Eppler 387 airfoil measured at different facilities was a clear sign
that not all aspects of the flows were equivalent (see also Yang & Spedding 2013b) and
Tank, Smith & Spedding (2017) showed that similar discrepancies could be found in the
existing literature for the NACA 0012 airfoil. The sensitive dynamics of the LSB and its
evolution was at the heart of some (but not all) of these differences, and it was clear
that a repeatable result could come only from more precise conditions. The extreme
sensitivity to LSB dynamics was not restricted to a small class of specialised airfoils
and will be found over most airfoil geometries with greater than 10 % thickness at these
Re. In comparing experiment with available computational results, it was also clear that
the extreme computational effort required to capture the flow dynamics was not widely
available, and a parametric study, achievable for example in experiment (Simoni et al.
2007; Dellacasagrande et al. 2020), has not hitherto been practical in fully resolved direct
numerical simulation.

The existing high-fidelity simulations of airfoil flows have been primarily carried out
on the canonical, symmetric NACA 0012 or on the thin, cambered SD 7003, which is a
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popular profile for low-Reynolds-number operations as it allows for a thin and stable LSB
over a range of « (Selig, Donovan & Fraser 1989). Even when direct numerical simulation
(DNS) with no modelling coefficients is feasible, there remain issues concerning the 2-D
vs. 3-D domain, the time resolution and length of simulation, and then extrapolation from
limited and specific .

Shan, Jiang & Chaoqun (2005) computed the flow about a NACA 0012 for « = 4° and
Re = 10° using a finite difference scheme that was second-order accurate in time, and
sixth order in space. The spanwise extent of the computational domain, b, was 0.1c¢, and
Mach number, M = 0.2. Three-dimensional modes were found to grow rapidly, originating
from the trailing edge but affecting the otherwise 2-D KH modes near separation. The
upstream propagation of the downstream modes was conjectured to be possible through
pressure waves. Jones et al. (2008) performed a DNS (fourth order in space and time) on
the NACA 0012 for @ = 5° and Re = 5 x 10° (with b = 0.2¢, M = 0.4), using a volume
forcing to promote transition to turbulence, which was then found to be self-sustaining.
The time-averaged flow field was not absolutely unstable but amplification of 3-D modes
in the large-scale 2-D shed vortices could be convected upstream through high levels of
locally reversed flow. Jones, Sandberg & Sandham (2010) made similar computations at
a = 0° and Re = 10*, M = 0.2 in addition to those at Re = 5 x 10, @ = 5°, M =
0.4, and found that global instability could be maintained through an acoustic feedback
loop emanating from trailing-edge tonal noise. The trailing-edge characteristics could thus
determine the frequency selection of upstream instabilities through an acoustic feedback
loop. Jones & Sandberg (2011) performed 2-D simulations for Re = 10° and o = [0,
0.5, 1, 2°], M = 0.4 to investigate the possible effect of tonal noise originating at the
trailing edge whose frequency selection is most sharp at low «. Although the resulting
acoustic forcing frequencies were significantly lower than the estimated most unstable
boundary-layer modes, the tonal forcing could sustain and drive upstream instabilities.

Given the computational cost of DNS, there have been a number of studies using some
flow modelling strategy. Large eddy simulation (LES) for the same airfoil was presented by
Almutairi, Jones & Sandham (2010), who determined the spanwise domain size required
resolution of LSB bursting, and by Lee ef al. (2015), who compared the results of
simulations based on different numerical schemes and experiments. The effect of varying
LES modelling approaches has also been investigated by Cadieux & Domaradzki (2016),
showing that a truncated Navier—Stokes solution with periodic filtering could succeed in
greatly decreasing computational cost with reasonable solution accuracy for an LSB over
a flat plate. Galbraith & Visbal (2010), Visbal (2011), Uranga et al. (2011) and Beck et al.
(2014) have all presented simulation results of the low-Reynolds-number flow over a SD
7003 through implicit LES. Ducoin et al. (2016) have investigated the flow transition of the
same geometry at several Re through DNS and reported a partial lock-in of the shedding
from the LSB and the Kdrmén vortices. The studies show how the location and size of the
LSB changes with Re and o through various flow instabilities that result in considerable
changes of the integrated forces over the airfoil.

Lower-fidelity methods, such as Reynolds-averaged Navier—Stokes or integral
boundary-layer methods (e.g. XFoil (Drela 1989)), often fail to accurately predict the
transition and the aerodynamic forces (Uranga et al. 2011), because the solution is neither
time nor completely space resolved and depends on empiricism and the choice of turbulent
closure models (Durbin 2018).

1.3. Airfoil shapes and applications

Given the known sensitivities to airfoil geometry, the target should be selected with
care, either to make practical application more straightforward, or to assure a degree of
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Figure 1. Pressure coefficients (black) for inviscid flow over airfoils (grey) at « = 0°. NACA 0012 (a), SD 7003
(b) and NACA 65(1)-412 (¢) (Drela 1989). The locations of maximum thickness are at 0.3¢, 0.25¢ and 0.4c,
respectively.

generalisation of the findings. The NACA 0012 and SD 7003 are often used; the first
because it has established itself as a canonical textbook symmetric airfoil, and the second
because the thin section with comparatively sharp leading-edge geometry leads to the
reliable formation of a stable LSB over the forward section. Although the formation and
stability of the LSB in these two cases differ (e.g. for the NACA 0012 (Jones et al. 2008;
Tank et al. 2017), and for the SD 7003 (Burgmann et al. 2008; Burgmann & Schroder
2008)) there are characteristics of both 2-D and 3-D instabilities that are general, and
one aims to understand such dynamics so it may be applied to various specific shapes
and/or pressure gradient profiles. Here, we target a profile from the NACA-65 series of
airfoils used in axial flow compressors and with a particular geometry with maximum
profile thickness at 40 % chord, thus assuring that the maximum suction peak occurs well
downstream of the leading edge. Figure 1 shows how the different streamwise locations
of the maximum profile thickness lead to different profiles of C,(x/c). The change in
sign of dC), /dx and comparatively steep reduction in thickness of the airfoil can lead to a
region after x /c = 0.5 where the dynamics of the separated flow will exert great influence
over the overall aerodynamic performance. This is especially true at lower Re, and in
some respects the airfoil acts as a sensitive test bed for the influence of instabilities of the
separating shear layer and of the wake itself.

1.4. Objectives

The goal of this paper is to provide a comprehensive and detailed description of the flow
topology over a cambered NACA 65(1)—412 airfoil at Re = 2 x 10* for o from 0° to 10°
through highly resolved DNS. At this specific Reynolds number, the flow is particularly
sensitive to the transition dynamics and features entirely laminar states across the airfoil
with a transitional wake, turbulent reattachment and the formation of separation bubbles
of various sizes and locations within a narrow range of incidence angles. The simulations
are conducted with a high-order, compressible, discontinuous Galerkin spectral element
method (DGSEM) using a large span (0.5¢) and large domain length and height (30c) to
accurately capture the instabilities without altering the separation and transition dynamics
through domain blockage. We set out to identify 3-D instabilities and show how they are
connected to the formation of 3-D tubular structures and very large regions of turbulent
coherence (‘puffs’). For selected o, we analyse the interaction of Karméan vortices, which
originate from the pressure-side shear layer at the trailing edge of the airfoil, and the
suction-side shear layer with its associated KH instabilities. It will be shown that 3-D
instabilities of the near-wake region have an upstream influence on the evolution of the
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LSB and the complex dynamics of its time-averaged reattachment, for which there are
significant improvements in performance, as measured by L/D.

2. Computational formulation
2.1. Conservation laws

We compute solutions to the compressible Navier—Stokes equations, which can be written
in non-dimensional form as

%U+V-F=0, 2.1
where U represents the vector of the conserved variables

U=[p pu pv pw pel’, (2.2)

where p is the density and u, v and w are the velocity components. The specific total
energy is pe = p/(y — 1)+ (1/2)pu? + v> + w?) and the system is closed by the
equation of state
pT
P=""3 (2.3)

2,
ny

where p, T and y are the pressure, temperature and the ratio of specific heats, respectively,
and My is the reference Mach number. The flux vector F comprises an advective
(superscript a) and a viscous part (superscript v)

1
V.anxF“+ayG“+azH“—R—ef(axF”+ayG”+azH"), (2.4)
where
) T
F“z[/m p+pu” puv  puw u(pe+p)] ,
T
Ga=[pv pvu  p+pv: pow v(pe—i—p)] )
T
B =[pw pwu pwv p+pw’ wipetp) | . 2.5)
- T
K
F'=|0 Tex  Tyx  Txx MTxx—f—UTyx—i-wfzx‘i‘me} s
- T
K
G'=|0 1 T Tyy UTxy FUTyy +wTy + ————— T, ,
xy  Tyy  Tzy xy yy zy (y—l)PrM]% yi|
- T
K
H'=|0 1 T T,r UTx; +UTy, +WTy + ————— T, . 2.6
XZ yz 2z X2z yz 22 ()/—1) P}’MJ% Z} ( )

Here, Re is the reference Reynolds number, Pr the Prandtl number and the stress tensor
is 7jj = 2u(S;j — Smmdij/3) with the strain rate tensor S;;. The viscosity p is calculated
following Sutherland’s law

_ (4 Rp)T?

2.7
T + Rt @7
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where R7 denotes the ratio of the Sutherland constant S to the reference temperature
Ty. All quantities are non-dimensionalised with respect to the airfoil chord length ¢, the
free-stream velocity Uso, density poo and temperature 7.

2.2. Boundary-layer relations

The boundary-layer velocity profile is extracted from DNS data according to the methods
described by Alam & Sandham (2000) and Uranga et al. (2011), who use a pseudo-velocity
profile inside the rotational boundary-layer flow based on the spanwise vorticity

n
u(s, ) =/0 w(s, 1) x n(s) d, (2.8)

where s and 7 refer to the wall-tangential and normal coordinates, respectively, and n(s)
is the wall-normal unit vector. The boundary-layer edge 7, is located at a distance where
the vorticity magnitude and gradient are below a certain threshold and the flow is assumed
to be irrotational (Uranga et al. 2011). The displacement thickness §* and momentum
thickness 6 are computed by integrating the velocity profile across the boundary layer

5 (s) = /ne (1 _ G, '7)) dn, (2.9)
0 Ue(s)
6(s) :/‘Tle ug(s, n) <1 _ us (s, 77)) dn. (2.10)
0 ue(s) ue(s)

Here, ug is the local, tangential velocity component and u, the velocity magnitude
evaluated at the boundary-layer edge n.. The shape factor is defined as the ratio of
displacement to momentum thickness, H = §*/6.

The exact locations of flow separation and reattachment are based on the zero crossings
of the time- and space-averaged skin-friction coefficient according to theory by Haller
(2004). In accordance with Uranga et al. (2011), the transition point indicates the location
of a local maximum in the shape factor. We note, however, that the definition of the
transition point is not unique; Alam & Sandham (2000), for example, use the point of
maximum negative skin friction.

3. Set-up

The flow over a cambered NACA 65(1)-412 airfoil is simulated in two and three
dimensions at a chord-based Reynolds number of Re, = 2 x 10* and a free-stream
Mach number of M = 0.3. At this Mach number, the compressibility effect in terms
of the pressure coefficient deviations are expected to be of the order of 5% in relation
to incompressible flow, according to the Prandtl-Glauert correction C, p/Cpi =

1/+/1 — M?2. While the Mach number in comparable wind tunnel experiments is usually
closer to 0.1, the stiffness of the explicitly time-integrated system of ordinary differential
equations that remains after the spatial discretisation, results in time step sizes of the order
of O(10~°) that result in an excessive computational cost for 3-D simulations with only
minor impact on the aerodynamics. Many of the incompressible results reported use this
weakly compressible model to relax the time step restriction and to determine the nearly
incompressible aerodynamics (Jones et al. 2008; Uranga et al. 2011). The Prandtl number
is set to Pr = 0.72. The Sutherland constant Ry = S/ Ty = 110/200 and ratio of specific
heats y = 1.4 are chosen in accordance with Nelson (2015).

The Navier—Stokes equations (2.1) are discretised with a DGSEM. The method and
code are extensively discussed, tested and used for DNS in previous work (Kopriva 2009;
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Figure 2. (a) A C-type computational domain with general parameters. Elements of 2-D computational
meshes for grid 1 (b) and grid 2 (c) around the airfoil. Only elements without interior Gauss nodes are shown.

Klose, Jacobs & Kopriva 2020 and references therein). The DGSEM approximates the
conservative variables (2.2) spatially through a Nth-order polynomial basis (collocated
on quadrature nodes of Legendre polynomials) and on non-overlapping elements. The
elements are connected weakly and conservatively on the fluxes. The Roe scheme is used
to determine the advective interface fluxes and a Bassi—-Rebay formulation determines the
viscous fluxes. A fourth-order explicit Runge—Kutta scheme is used for time integration.
Time step sizes are in the range 2.3 x 107> < At < 8.4 x 107, depending on the element
size and the polynomial order.

Free-stream conditions are enforced weakly on the fluxes at the outer boundaries of the
domain using approximate Riemann solvers. Spurious oscillations from exiting vortices
are decreased through grid coarsening towards the outflow, as well as a damping layer
on the energy term to reduce the reflected pressure waves (Jacobs, Kopriva & Mashayek
2003). The surface of the airfoil is treated as no-slip adiabatic wall and, to account for its
curvature, we fit the neighbouring boundary elements to a spline representing the profile
of the airfoil according to Nelson, Jacobs & Kopriva (2016). For 3-D simulations, the mesh
is extruded in the spanwise direction and the boundaries are set to be periodic to model an
infinite wing.

The simulations are run until the flow has fully transitioned to a 3-D state and the
solution has reached quasi-steady state with the lift and drag coefficients fluctuating
around a mean. Flow statistics are recorded subsequently, with the integration times given
in table 2.

3.1. Domain size

The size of the computational domain can affect the numerical solution through blockage
and spurious reflections from the outer boundaries. A compromise has to be made between
a domain large enough to minimise such boundary effects and the available computational
resources that necessarily limit the number of grid points.
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Source R/c W/e L;/c
Deng et al. (2007) 4 3 0.1
Jones et al. (2008) 7.3 5 0.2
Uranga et al. (2011) 6 6.4 0.2
Visbal (2011) 100 100 0.1-0.8
Beck et al. (2014) 100 100 0.2
Lee et al. (2015) 25 25 0.2
Zhang et al. (2015) 6 10 0.1-0.8
Balakumar (2017) 15 15 0.2
Serson et al. (2017) 15 10 0.5-2.0
Present 30 30 0.5

Table 1. Domain sizes of selected airfoil studies.

For the C-type computational domain that is used and schematically shown in figure 2,
the domain size is defined entirely by the radius R and the wake length W, which are both
set to 30c. This value is greater than in most comparable studies, as collated in table 1, that
report on domain radii ranging from 4c¢ (Deng, Jiang & Liu 2007) to 100c (Visbal 2011;
Beck et al. 2014) and wake lengths from 3¢ to 100c. The large domain size was found to
be necessary to minimise spurious reflections from the outflow boundaries or changes in
the separation bubble shape (Beck et al. 2014). The C-mesh is extruded in the z-direction
by L; = 0.5¢, following the recommendations by Almutairi et al. (2010) in their LES of
the NACA 0012 airfoil aerodynamics with periodic boundary conditions in the spanwise
direction.

3.2. Direct numerical simulation resolution

For a numerical Navier—Stokes solution to be called a DNS, i.e. a true solution to
the Navier—Stokes equations, all relevant scales need to be resolved by the numerical
discretisation. In marginally grid-resolved and under-resolved Navier—Stokes solutions,
the subgrid-scale stresses may be implicitly modelled through the inherent dissipation of a
numerical scheme (implicit LES (Grinstein, Margolin & Rider 2007; de Wiart et al. 2015))
or explicitly modelled by a numerical filter (explicitly filtered LES, or EFLES (Gassner
& Beck 2013; Ghiasi et al. 2019)). The inherent numerical dissipation and dispersion
characteristics determine the deviation of a marginally resolved Navier—Stokes solution
from DNS. The numerical dissipation is closely related to the dispersion relation, which
varies per numerical scheme, and can be assessed through numerical analysis Gassner &
Kopriva (2011). High-order spectral methods have a distinct advantage over lower-order
finite volume or finite difference schemes as they require far fewer points per wavelength
to resolve a flow feature and by concentrating the dissipation at the highest wavenumbers
(Gassner & Kopriva 2011; de Wiart et al. 2014). Jacobs, Kopriva & Mashayek (2005), for
example, showed that a spectral element method with polynomial order of N = 13 requires
only 3 points per wave.

The grid independency of the numerical solution for the large computational domain is
assessed by comparing simulation results for two C-meshes that are based upon the known
grid-resolved meshes for smaller computational domains from previous studies. The two
meshes include grid 1 consisting of 3 366 quadrilateral elements in the x-y plane, which
is extruded by 10 elements along the span for 3-D simulations (see figure 2b) and grid
2, which is refined by 23400 elements in the x-y plane and by 50 elements in spanwise
direction (see figure 2¢). In Klose er al. (2020), we assessed the impact of underresolution
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for the DGSEM and showed that the kinetic-energy-preserving formulation of the method
predicts Navier—Stokes solutions for the NACA 65-412 at o« = 4° well at a marginal
resolution within 2 %.

At angles of attack o < 6°, the flow is characterised by a laminar separation, and
instabilities occur downstream of the airfoil in the wake area. Commensurate with this
flow characterisation, a coarse grid and a high-order approximation suffice for a grid-
resolved solution up to the wake. In the near wake, where nonlinear instabilities eventually
lead to a transition to turbulence, the normalised element size (i.e. divided by N + 1)
is approximately < 3.87, where 7 is the Kolmogorov scale n = (v3/&)!/% and & the
dissipation of the turbulent kinetic energy. This value is taken at the location of maximum
dissipation ¢ (just downstream of the trailing edge with n/c = 0.001), which is computed
from the time-averaged flow field. This is well within the reported requirement for the
ratio of the smallest grid spacing to the Kolmogorov scale, Ax/n < 12, to resolve the
peak dissipation or Ax/n < 4 to resolve the bulk of the turbulent dissipation (Pope
2000; Frohlich et al. 2005), which assumes that two points are required to resolve a
flow feature. We also note that the grid spacing estimate based on the normalisation with
the polynomial order N is a conservative estimate given that at high polynomial orders
significantly fewer grid points are necessary to resolve a wave compared with lower-
order schemes. For Re = 2 x 10* and o« = 4°, Nelson et al. (2016) and Klose et al.
(2020) have reported a grid-converged solution at a polynomial of N = 12 for a mesh
nearly identical to grid 1, but limited to R = 5¢ and W = 15c¢. Klose et al. (2020)
show that to prevent numerical instabilities related to marginal resolution at « = 10 °,
the kinetic energy conserving formulation is required as it enhances numerical stability
of DGSEM. While the coarse grid is grid converged at N = 12 for the smooth flows at
lower angles of attack (o = 0°, 4°), the refined grid 2 with lower orders of N = 4-6 for
computations is used at higher ¢ = 6°, 7° and 8°, because the flow instabilities occur
upstream of the trailing edge and an increased near-wall resolution of the fine grid adds
resolution in the boundary-layer region. This is more suited to wall-bounded turbulent
flow and the accompanying increase in wall shear stress. At o = 6°, the flow is still
laminar over the entire airfoil and transition occurs along the separated shear layer and
within the near wake at the trailing edge. Here, the normalised grid spacing does not
exceed 2.2n. At = 7°, the normalised non-dimensional cell spacings at the turbulent
transition peak (x/c = 0.7) in the streamwise, wall-normal and spanwise directions are
€T =10, n* < 1, ¢* = 5. The normalised grid spacing at the dissipation peak above
the wall (x/c = 0.7, n/c = 0.0008) is Ax/n ~ 4.0. For « = 8°, the normalised non-
dimensional cell spacings at the turbulent transition peak (x/c = 0.4) are £ = 8, n*
< 1, ¢t = 4. These values are well within the limits accepted for wall-resolved DNS
(Georgiadis, Rizzetta & Fureby 2010). The normalised grid spacing at the dissipation peak
above the wall (x/c = 0.4, n/c = 0.0007) is Ax/n =~ 4.7. While this value is slightly above
4, we note that for « = 8° we use a polynomial order of N = 6, which yields a seventh-
order accurate scheme in space and hence allows for fewer grid points per wavelength.

For @ = 10°, the smallest scales of turbulence are marginally resolved, and the kinetic
energy preserving scheme has to be employed. Because the flow is past the critical
transition angle (7°-8°), a computationally more efficient set-up resolves the flow on grid 1
with twelfth-order polynomials in the near field, with reduced order elements in the outer
field. A weak spectral filter reduces spurious oscillations arising from the decreasing order
(p-coarsening) away from the airfoil. It is not appropriate to classify this simulation as
DNS, and EFLES is more appropriate.

The test matrix of 3-D simulations is collated in table 2 for different meshes, polynomial
orders and refinements.
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Re o Mesh R/c  Scheme  N;(N,) Tinis Trin Tstar DOF (x10%)
2x10* 0°  Grid1 30 GL-SF 12 04 432 10.1 74.0
2x10*  4°  Gridl 30 GL-SF 12 04 467 102 74.0
2x10* 6  Grid2 30 G 4 0b 200 134 146.3
2x10*  7°  Grid2 30 G 4 0b 233 145 146.3
2%x10* 8  Grid2 30 G 6 258  39.0 8.2 401.3
2x10*  10° Gridl 30 GL-SF 12(1) 156 361 159 30.7

Table 2. Overview of 3-D simulations. Here, Re = free-stream Reynolds number, @ = angle of attack, R/c
= domain radius, G = standard Gauss DGSEM (x = with spectral filter), GL-SF = split form DGSEM
with Gauss-Lobatto nodes, T;;/Tfi, = initial/final convective time of run, ¢ = initialised with uniform
velocity field, b — initialised with 2-D result, Ty = integration time of statistics, (2x) = h-refined, N;(N,) =
polynomial order inner (outer) region, DOF = degrees of freedom (number of high-order nodes).

(a) , (b)

a (%)
—F— Exp (USC) —— Xfoil (fw) : L L . . "
—I— Exp (SDSU) Xfoil (bw) -4 2 0 2 4 6 8 10 12
{ DNS(3D) ----2nc a(®)
DNS (2D)

Figure 3. Lift (a) and drag (b) coefficients obtained from wind tunnel experiments at The University of
Southern California (USC) and San Diego State University (SDSU), DNS data (two- and three-dimensional)

and Xfoil data (forward and backward sweep, N,y =9) for a NACA 65(1)—412 at Re, = 2x 10*. Error bars
come from standard deviation of DNS time series and the grey area identifies the total lift and drag range of the
parametric 2-D study given by the averaged coefficient +/- standard deviation. The error bars in experiments
come from the standard deviation of time averages obtained from separate, repeated experiments.

4. Results and discussion
4.1. A time-averaged view of the forces and flow fields

4.1.1. Integrated forces on the foil
Figure 3 compiles data from 3-D and 2-D DNS together with measurements from two
different wind tunnel experiments (Choi 2020; Tank et al. 2021). Also included are
calculations from the panel code Xfoil (Drela 1989) which uses a boundary integral
method to estimate separation locations. In Xfoil a tuneable parameter, N, sets a
transition threshold. It is set to its default value of 9.

All computations and experiments show a sudden and significant increase in C; at a crit-
ical angle of attack, o,i;. The 3-D DNS result shows that C; nearly doubles at oy = 7°.
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Figure 4. Time- and spanwise-averaged pressure (upper and lower side) and skin-friction (upper side)
coefficients for o = 0°, 4°, 6° (top row), 7°, and 8° (bottom row).

The increases in C; is accompanied by a decrease in C4. These changes in forcings
coefficients are associated with an intricate interaction between 2-D and 3-D instabilities
in the shear layer that develops in the lee of what may now be termed a closed LSB. These
interactions will be discussed in detail below.

For o < ¢, experiments and 3-D DNS follow the same nonlinear curve of Cj(w).
The 2-D DNS values occupy an envelope lying above the experiment-DNS line. At ai,
both 2-D and 3-D DNS rise at the same point. Experiments follow after, either at o« = 8°
(UCSD) or at 9° (USC). Once a4 has been reached, the peak C; estimates are within
uncertainties.

There is a larger variation in Cy, in all estimates, particularly close to o, but the
various estimates do not differ beyond uncertainty. Both 3-D DNS and the SDSU data
show a drop in C; at o = 8°, which is beyond ¢, in the DNS.

It is remarkable that the inviscid panel code Xfoil shares all the basic features of figure 3.
Xfoil uses a boundary-layer model to include viscous effects, and then transition at some
N¢ris. The boundary-layer dynamics is always strongly influential at such low Re.. The
consistently lower C; from Xfoil arises because the unsteady motions close to the trailing
edge affect the upstream curvature of the laminar boundary layer. As a reference and
reminder of how far away we are from design Re., the thin airfoil C; =2m o curve is
shown with C; = 0.4 at « = 0°. Here, at « =0°, C; < 0.

The time-averaged profiles of the pressure and skin-friction coefficients for « = 0°,
4°, 6°, 7° and 8° are shown in figure 4. At lower angles (¢ < 6°), the suction peak
and the resulting adverse pressure gradient are small and the skin-friction coefficient
gradually decreases until it becomes negative at the fixed separation point, as identified
at the time-averaged zero-skin-friction point in Haller (2004), at x5 00 = 0.6 and x; 40
= 0.49 (figure 4b). Downstream of the separation location, the surface pressure remains
constant and does not recover the free-stream value at the trailing edge. At higher o > 7°,

the suction peak increases from C, = —0.6 at @ = 4° to C), = —2.5 at 7° and 8° and
steepens the adverse pressure gradient and promotes flow separation further upstream at
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Figure 5. Time- and space-averaged streamlines for « from 0° (a) to 10° (f). Recirculating flow in blue. Here,
S, T and R indicate the mean locations of separation, transition and reattachment.

xg,70 = 0.26 and x4 go = 0.02. The skin-friction coefficient at 8° shows a shape typical for
LSBs (cf. Jones et al. 2008) with a pronounced negative peak around the transition point.
At o = 7°, the LSB is located at the trailing edge and the skin-friction profile indicates
that the wall shear stress remains near zero over two thirds of the airfoil until the flow
transitions at x; 70 /¢ = 0.62 and transports momentum to the surface that results in a peak
of the shear stress at x/c = 0.75.

4.1.2. The time-averaged flow field

A comparison of the time- and space-averaged streamline patterns in figure 5 demonstrates
the change in flow topology from a region of separated, recirculating flow at the trailing
edge into a LSB and its swift shift (within one degree o) towards the leading edge. Because
the maximum height of the airfoil is at x/c = 0.4, the LSB is either formed upstream or
downstream of that point and not at mid-chord.

In general, three regimes may be identified from figure 5. In the low-oa regime there
is laminar separation without reattachment. The large recirculating zone increases in
size with low-speed fluid attached to an increasingly large extent of the suction surface.
The outer flow streamlines do not follow the airfoil contour but trace the outline of the
separated region. The separated region closes only aft of the trailing edge. This low-o
regime has been termed SI by Yang & Spedding (2013a), as one of two stable states (the
other being SII at high «), with a sharp transient regime between.

At o.rir, the separated region suddenly collapses as the separation point moves upstream
and transition occurs before reattachment just before the trailing edge. The outer flow
streamlines also meet before the trailing edge and the effective airfoil shape (geometry plus
boundary-layer displacement thickness) is one with increased camber. These transitions
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are responsible for the jump in C; and decrease in Cy. In this time-averaged view, the LSB
has a positive effect, increasing lift and decreasing drag.

In the third stage (high-o, or SII), the separation point has moved to just behind the
leading edge, transition occurs before mid-chord, and the flow reattaches to form a thin
bubble, which gradually grows in thickness with increasing ¢, while shrinking in x.

This kind of development of a LSB is quite well-known in the literature (e.g. Galbraith
& Visbal 2010), although its effect on C; and Cy is not so clear as it depends on Re. The
account is self-consistent and describes the phenomenology satisfactorily. However, the
mechanisms for these various flow transitions are not necessarily evident, and in practice,
the flow over the airfoil and in the near wake is always unsteady and three-dimensional.
It is the purpose of the remainder of the paper to investigate the complex flows that are
responsible for the simplified picture of figure 5. In so doing, we exploit the fact that
simulations are quite dense in « and the developments with « and with time show the
routes through which a number of instabilities develop and interact to yield the turbulent
flows that at high o cover much of the suction surface.

4.2. The three-dimensional, unsteady flow

4.2.1. The vorticity field
Figure 6 shows iso-surfaces of the instantaneous vorticity magnitude |w| =

[w? —l—a)% + w? coloured by the spanwise vorticity component w; to indicate the

rotational direction of the vortical structures. The vorticity is computed as the curl of the
velocity vector @ = V x u and normalised by the advective frequency Uy /c.

The case of SI - separation without reattachment Laminar separation without reattachment
is observed at « from 0° to 6° (i.e. open separation). The separation point S is defined as
the time-averaged location of zero skin friction, and is located at x; 00 /c = 0.6, X540/ ¢
= 0.49 and x4 6 /c = 0.4, as shown in figure 6(a)—(c). For o = 0° and 4°, the flow over
the airfoil is quasi-two dimensional and 3-D structures develop only at the trailing edge
and in the wake. The wake roll-up itself is strongly influenced by the positive, counter-
clockwise vortex shed at the trailing edge and originating on the pressure-side boundary
layer (coloured red in figure 6(a)—(c). Although the wake flow is initially quite uniform
in the spanwise direction, there is a regular variation in z as streamwise vortices develop
on the primary wake mode. The closure of the wake seen in the time averages of figure 5
(a)-(b) comes as the suction surface shear layer wraps over the coherent trailing-edge
vortex from the pressure side.

At o = 6°, a KH instability leads to the development of spanwise vortices within the
separated, upper shear layer with undulations appearing upstream of the trailing edge
(figure 6¢). The postulated KH instability can be supported by observations in the vertical
velocity (v) field along the separated shear layer on the suction side as follows: figure 7
shows its space—time diagram on the left and the corresponding power spectral density
(PSD) (Welch’s estimate) is given on the right for two locations (identified by the two
dashed lines in the space—time diagram). In the figure, the top row shows the suction
side and bottom row the pressure-side shear layer. On the suction side, major frequency
peaks in the spectra occur at fc/uso = 2.2 and fc/uso = 4.5 and the streaks in the
space—time diagram have a positive inclination that indicates downstream movement (and
amplification) of the perturbation waves. On the pressure side, a single peak occurs at
fc/ux = 2.2 and the streaks in the space—time diagram have a negative slope — a
footprint of the upstream-travelling pressure waves generated by the trailing-edge vortex
shedding.
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Figure 6. Iso-vorticity surfaces for o from 0° (a) to 10° (f). Here, S, T and R indicate the mean locations of
separation, transition and reattachment.

By calculating the Strouhal number based on the momentum thickness of the shear
layer at the separation point 6sp = 0.0035¢ and the maximum velocity magnitude on
the upper side of the separated shear layer ||u|l., a Strouhal number of Stxy = fxuOsp/
lulle = 0.006 is found for the mode at fc/uo = 2.2 and Stgy = 0.013 is found for the
mode at the second peak fc/us = 4.5. These values agree well with compiled data by
McAuliffe & Yara (2009) for KH instabilities showing a range of 0.005 < Stgy <0.016.
Hence, we conclude this higher-frequency mode is a KH instability occurring only within
the separated shear layer while the lower-frequency peaks at fc/us = 2.2, which occur
on both suction and pressure sides, are footprints of the vortex shedding at the trailing
edge.

At lower incidence (o = 4°), the space—time diagram shows distinct peaks at Strouhal
numbers fc/us = 2.8 on both the suction side and the pressure side (figure 8). The
inclination of the streaks along the suction-side shear layer is, however, negative for
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Figure 7. Space-time diagram of the vertical velocity component (v) along the shear layer (left) for @ = 6°.
The PSD at two locations (indicated by dashed lines) on the right. Top: suction side, bottom: pressure side.

x/c < 0.8, indicating that this mode does not travel downstream, as it did for the
o = 6° case, but travels upstream on both sides of the airfoil. This suggests that the shear
layer in this case is not subject to a growing KH instability, but is affected by perturbation
waves from the trailing-edge shedding of the pressure-side shear layer.

Now there is a regular modulation of the suction-side shear layer, with a spanwise
wavelength similar to the streamwise braids that develop in the near wake. The growth of
the instability is, however, not fast enough to cause the flow to reattach and the separated
shear layer encloses a large recirculation region between the separation point and the
trailing edge for o from 0° to 6°.

The special case at o - the flow reattaches At o = 7°, the flow separates at x; 70 /c = 0.26
and a KH instability drives the formation of large, spanwise vortices along the separated
shear layer in the region 0.5 < x/c < 0.6. Upon their generation, these vortices are quasi-
two-dimensional but lose their coherence as they roll over the airfoil surface and transition
into turbulence at x; 70 /c = 0.62 (marked as 7 in figure 6). The structure of the turbulent
reattachment is of course complicated, but traces of the spanwise structures observed at
lower « can be still be seen at this angle of attack.

As is well known, the turbulent fluid motion transports momentum from the mean
flow towards the airfoil surface and re-energises the boundary layer, resulting in the
reattachment of the flow at x,70/c = 0.93 (see figure 6d). The turbulent reattachment
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Figure 8. Space-time diagram of the lateral velocity component (v) along the shear layer (left) for o« = 4°.
The PSD at two locations (indicated by dashed lines) on the right. Top: suction side, bottom: pressure side.

at the trailing-edge results in a slender LSB that has a maximum wall-normal height of
hrsp = 3.3 % of the chord length and stretches over 67 % of the airfoil.

The case of SII - thin bubble with reattachment With an increase of the angle of attack
beyond o = 7° the LSB abruptly shifts from the trailing edge of the airfoil to the leading
edge with the flow separating at x; go /c = 0.014 and reattaching at mid-chord ( x,g°/c =
0.48) (see figure 6e for @ = 8°). The proportions of the LSB are similar to those at « = 7°,
with the bubble height measuring /753 = 2.5 % of the chord length and the ratios of LSB
height to length being 0.054 (8°) and 0.052 (7°). At @ = 8°, the flow is laminar for the first
two thirds of the bubble length at which point (x; go/c = 0.32) the separated shear layer
transitions. The topology downstream of the transition point is characterised by hairpin
vortices and the break up of the laminar, spanwise vortices that shed off the LSB shear
layer. Horseshoe, hairpin or loop vortices all describe vortex tubes that, starting from a
cross-stream alignment, bend upwards away from the wall and stretch in the streamwise
direction as the upper portion (head) is subjected to the higher velocity in the boundary
layer (Robinson 1991). As the bubble trailing edge shifts from x, 70 /c = 0.93 at @ = 7°
to x.go/c = 0.48 at @ = 8°, the turbulent boundary layer occupies the remainder of the
suction surface, advecting into the wake as fine-scale structures with little obvious regular
pattern. A similar flow state is found at « = 10°, where the LSB has slightly changed in
size with an earlier transition point (x; 10o/c = 0.23), marginally shorter bubble length
(x5,100/c = 0.012, x, 100 /c = 0.46) and increased height i7sp/c = 3.9 %. The height-to-
length ratio consequently increases to 0.087, which is more than 60 % greater than the
values found at @ = 7° and 8°.
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Figure 9. Trailing-edge view of iso-Q surfaces for « = 0° (a), 4° (b) and 6° (¢). Colouring is by spanwise
vorticity w;.

4.3. Flow structure and instability

In the specific context of LSBs and their dynamics, the studies by Jones et al. (2008)
and later by Marxen et al. (2013) describe self-sustained turbulence in an LSB being
driven by a combination of elliptic instability within the KH vortices and hyperbolic shear
instabilities between them. While the flow over the NACA 65(1)-412 certainly shares
some similarities, its transition from an open separation at low « to reattachment and
establishment of an LSB first at the trailing edge and then at the leading edge at high o
yields a much larger variety of different vortex dynamics and 3-D instability mechanisms,
which we will discuss in the following paragraphs.

4.3.1. The case of SI and low o

Figure 9 visualises vortical structures at the trailing edge for « = 0°, 4°, and 6° through
iso-surface plots of Q = (”,'2,1' —u; ju;j;)/2 (Jeong & Hussain 1995), coloured according
to the spanwise vorticity component w,.

Figure 9 shows the emergence of a series of streamwise loop vortices that originate from
the vortex roll-up at the trailing edge and, as the flow angle increases from 0° to 4° and 6°,
combine into clusters of longitudinal coherent vortex structures with a tubular shape. The
wake structure and its development is especially clear for the « = 0° case in figure 9(a). A
first vortex forms from the positive spanwise rolled up sheet originating from the pressure-
side trailing edge. On this sheet and vortex, approximately four spanwise modulations
can already be identified. The same spanwise wavelength modulations can be seen in
the opposite-signed roll-up from the suction-side shear layer. Immediately behind the
clockwise roller, the original modulations in the counter-clockwise counterpart become
clear and are associated with thin, streamwise vortices that connect successive spanwise
structures. The same basic structure is observed as « increases to 4° (figure 9b) although
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Figure 10. Streamlines of the pressure-side (orange) and suction-side (blue) vortices for « = 0° (a), 4° (b) and
6° (c). Streamlines are generated by subtracting the velocity at the respective vortex centres. Colouring is by
spanwise vorticity w;.

the filaments or braids have moved upstream onto the airfoil surface. At o« = 6° (figure 9¢)
the first vortex is now the clockwise vortex from the suction-side shear layer and the near
wake has become more chaotic with longer-wavelength modes that appear to be mixed in
with the streamwise braids. In the following, we quantify the scales of the flow structures,
i.e. the vortex cores and the braid, within the near wake.

As pointed out by Deng et al. (2017), basing the characteristic length on the projected
frontal height of the airfoil (c - sin ) rather then on the chord length ¢ results in very
similar values for the critical Reynolds numbers to those found in bluff body wakes.
Williamson (1996b) and later Jones et al. (2008) based their scaling on the diameter of
the vortices themselves. If we assume that the vortices shed at the airfoil’s trailing edge
also scale with the projected frontal area, both approaches should deliver similar values for
the characteristic spanwise wavelengths of the vortex instabilities. We therefore also use
the vortex diameter in the following as a characteristic length scale, but for completeness
we note that the projected frontal height of the NACA 65(1)—412 ranges from 0.12¢ («
= 0°) to 0.15¢ (¢ = 6°). The average diameter of the near-wake Kdrmdan vortices, as
measured by the minor axis diameter d,,,, of the elliptical streamline passing through the
maximum circumferential velocity of the vortex (following the lines of Williamson 1996b),
is approximately d o = 0.04c-0.06c. We note that the same diameters are also obtained
by measuring the region of positive Q. A more detailed study on the vortex diameter is
provided later in § 4.3.3. The vortex diameter measures are given in figure 10, where the
velocity at each measured vortex core is subtracted from the field to produce the plotted
streamline pattern. The values closely match the vortex diameter of 0.05¢ reported for the
LSB shedding over the NACA 0012 at a Reynolds number of 5 x 10* (Jones ez al. 2008).

For the wake transition behind a circular cylinder of diameter D, the elliptic mode
A instability is expected to lead to modes with wavelengths of 3D—-4D, where the
vortex cores were estimated to scale as dqore =~ D (Leweke & Williamson 1998b). Other
values of A, = 2d;,, (with the diameter of the invariant streamtube d;,,) have, however,
been found by theoretical predictions and were confirmed by experiment (Leweke &
Williamson 1998a) and simulation (Laporte & Corjon 2000). We therefore expect the
elliptic instability to induce perturbations with a spanwise wavelength in the range 0.08¢
< A; <£0.18¢, or 3—-6 waves per span. Accordingly, the hyperbolic mode B instability would
be expected to lead to 12-24 waves per span (assuming quadrupling). The occurrence of
a true mode B instability is, however, unlikely if we follow the Floquet analysis of low-
Reynolds-number airfoil wakes (Meneghini et al. 2011; Deng et al. 2017; Gupta et al.
2022) and the high-wavenumber instability is more likely to be of mode C type (which
shares similarities with modes A and B) and was found to grow fastest for NACA airfoils
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Figure 11. The PSD of the spanwise vorticity @, along the span for the vortex cores and the braid region
located downstream of evaluated core. Bottom row: snapshots of spanwise-averaged w, contours with vortex
cores (white x) and braid location (black ).

at low Reynolds number. The Floquet analysis by Gupta et al. (2022) revealed a ratio of
spanwise wavelengths between mode A and mode C of approximately Apode A/ AMode ¢ =
3, which is 9-18 waves per span for the current flow.

We quantify the spanwise wavenumbers by extracting a PSD estimate of the streamwise
vorticity w, along the span in the near-wake (x > 1.05) vortex cores and braid regions
in figure 11. The primary vortex cores from the Strouhal shedding with w, < 0 (suction-
side (SS) shear layer roll-up) are identified by the blue filled circles and the cores with
w; > 0 (pressure-side (PS) shear layer roll-up) by orange filled circles. It is consistently
observed for angles (0° < « < 6°) that the amplitude of the spanwise mode within the
SS cores is approximately half the values found along the PS cores. The figures show that
the vortex cores are subject to lower wavenumber perturbations than the braid region, as
indicated by a shift in the peaks in figure 11. Specifically, the spectrum indicates that 6—8
(first and second peak) braid loop pairs are present over the span (0.5¢) at o« = 0°, while
the PS vortex has 4-6 perturbation waves and the SS vortex has a peak at only 2 waves
per span (note that the discrete values of k,c/2m in the figure give the number of waves
over one chord length, or twice the span). The perturbation wavenumbers at o« = 4° show
peaks for the Strouhal vortices of 4 (SS) and 5 (PS) waves per span and 6-9 braid loop
pairs. At o = 6°, the spectrum is broader compared with the lower angles caused by the
wake transition, which is already strongly disturbing the 2-D flow at the trailing edge.
Nevertheless, peaks in the spectrum indicate dominant modes at 2 and 4 waves per span
within the Strouhal vortex cores and 4 waves within the braid region. The range of 2—6
waves per span (0.5¢) for the dominant modes in the spectra (figure 11) match very well
with the expected spanwise wavelength of mode A (3—6 waves). The secondary peaks that
exist at the higher wavenumbers with 8-9 waves per span point to an additional instability
matching the predicted wavelengths of mode C.

While the original streamwise vortices are rather evenly distributed at 0°, they begin
to cluster at 4° and most notably at 6°, while the primary Kdrman vortices increasingly
deform compared with the topology at 0° (see figure 9). This clustering of braids and
deformation of the spanwise vortex tubes implies a nonlinear interaction between the
secondary braid loops and other modes at different wavelengths (e.g. mode C and mode A
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Figure 12. Left: temporal growth rate of w,,,y for @ = 4°. Top right: iso-w, surfaces for wavenumbers 4 (a),
8 (b) and 12 (c¢) at t = 1.0. Bottom right: corresponding contours of w.

within the vortex cores). This observation is supported by the plots in figure 11, where
the streamwise vorticity component within the cores shows a tendency towards lower
wavenumbers than in the braid region.

4.3.2. Perturbation analysis at low «

To elaborate on the observations made in the previous paragraphs regarding the dominant
modes in the near wake, we track the development of spanwise perturbations with different
wavelengths (4 < k;c/2m < 14) made to an initially 2-D flow field through a set of low-
cost simulations with a reduced spanwise resolutions of n; = 39 (¢ = 4°) and n; = 40
(a = 6°), similar to Jones et al. (2008). The perturbation (wpert = 103) is introduced at
the airfoil’s trailing edge through a smooth Gaussian distribution function so as to only
locally perturb the near wake. The simulations are run for one convective time unit and
the growth of the perturbation velocity component w is tracked over time by recording
its maximum within the near wake (1 < x/c < 1.4), fitting to an exponential function
Coe®" and estimating the associated growth rate o (w4, ) (shown on the left in figures 12
and 13). Details on the extraction of the growth rate are given in Appendix B.

The fastest growth occurs at the higher perturbation wavenumbers with a peak at
k;c/2m = 12 for both o = 4° and 6°. This is consistent with the results shown in the
previous section, where these modes are also found to dominate the developed flow field.
The contour plots of w, particularly in figure 12, further show that the perturbation at the
higher wavenumber (k;c/2mw = 12) acts strongly at the edges of the vortices and induces
a point-symmetric perturbation within the core (which drives the spanwise bending of the
vortex core), while the perturbation is rather uniformly distributed at k;c/27 = 4 and
shows a symmetric pattern.

The spatio-temporal development of the perturbation is given in figure 14 for o =
4°, where slices of the perturbation vorticity (w,) are plotted for different perturbation
wavenumbers at two instances in time, separated by one shedding period 7. At
k;c/2m = 8 and 12, the vorticity changes its sign within the braids over one period, further
corroborating the existence of a mode C (Gupta et al. 2022). This change in the sign of w,
does not occur at k,c/2w = 4. Therefore, it closely fits the shape of a mode A instability,
which occurs at a lower growth rate (see figure 12).

At o = 6° (figure 15), the wake pattern is not quite symmetric over one shedding period,
but a change in the sign of the perturbation vorticity w, within the braids occurs at all
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Figure 15. Contours of perturbation vorticity w,. Here, @ = 6°.

shown perturbation wavenumbers 4 < k,c/2m <12, supporting the mode C instability,
although being less distinct than at the lower angle of attack at o = 4°.

4.3.3. Development of instabilities at ot

The flow at angles of attack greater than the critical angle, «;, is characterised by the
formation of a closed and thin LSB and subsequent transition to turbulence. Assessing the
natural development of 3-D flow structures from an initially 2-D state (i.e. without external
forcing or perturbations to accelerate transition) enables us to pinpoint the instability
mechanism directly. The development of 3-D instabilities is visualised in the series of
snapshots from ¢ = 7.8 to ¢ = 8.8 in figure 16, where iso-surfaces of Q coloured by the
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Figure 16. First two columns: iso-surfaces of Q-criterion (level: 100) coloured by streamwise vorticity from ¢
= 7.8 to t = 8.8. Instantaneous streamlines in black. Third column: contours of streamwise vorticity w, at z/c
=0.25. Here, a = 7°.

streamwise vorticity component w, show the emergence of 3-D modes within the vortices.
Note that no perturbation or forcing is added to the flow and the transition occurs naturally.
The flow is initially quasi-two-dimensional and characterised by the formation of spanwise
KH vortices from the separating shear layer at mid-chord, which shed off the trailing
edge and thereby form a pair of counter-rotating vortices. A well-defined low-frequency
perturbation mode along the vortex at the trailing edge, as well as within the advected
vortex pair downstream in the near wake, is made visible by the w,-velocity colouring at
t = 7.8. The smaller of the two downstream vortices has attained noticeable bends with a
wavelength of A;/c = 0.25 whereas the larger tube is only weakly bulging along the span.
This process repeats but with a phase-shifted spanwise modulation by A,/2. This is also
visible in the contour plots in the third column of figure 16, where the sign of w, within the
enveloping changes at a period of two times the vortex shedding period, proving that the
naturally developing 3-D instability is the subharmonic mode C (Deng et al. 2017; Gupta
et al. 2022).
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Figure 17. (a) Top view (x-z) of Q-criterion isosurfaces coloured by streamwise vorticity with highlighted
vortex pair in near wake. (b) Side view (x-y) of spanwise vorticity contours of the highlighted vortex pair.
Dashed lines indicated spanwise-averaged iso-Q contours. (c—d) Front view (z—y) of a slice through the vortex
pair (¢) w; < 0, (d) w, > 0. Dashed lines are spanwise-averaged iso-lines of Q (level: 8). Here, « = 7° at
t =178

In addition to the mode C instability, the development of 3-D structures can also be
traced to the interaction of counter-rotating vortex pairs in the near wake. Consider the
vortex pair highlighted at r = 7.8 in figures 17(a)—17(b): the two vortices are isolated and of
unequal strength with significant bending (of sinusoidal shape) of the weaker vortex while
the larger, stronger vortex remains relatively unperturbed. Vortex displacements modes
of this form can also be observed in a Crow instability for counter-rotating vortex pairs of
unequal strength (Leweke et al. 2016), where the vortices deform through mutual induction
of their strain fields (and hence show different amplitudes of deformation). The bulging
of the larger vortex, however, points towards the existence of an elliptic instability of the
vortex core itself.

Crow instabilities are generally considered vortex pair instabilities with the longest
wavelengths and their growth rate depends on the ratio of circulation A = I'1/I> (I
being the weaker vortex), the spacing between the cores b and the vortex radius a. The
circulation is computed as

F=/a)dS. “4.1)
N

The determination of the vortex radius is, however, not straight forward, as there are
different measures used in the literature. In the original works by Leweke & Williamson
(1998a) on instabilities of vortex pairs, the axial (spanwise in our case) perturbation
wavelength of the vortex is mainly scaled with the diameter of the invariant streamtube
diny. The fastest-growing wavelength of an elliptic instability, for example, was found
to be Ade ~ 4.0d;,, (Leweke & Williamson 1998a). Following Laporte & Corjon (2000),
the invariant streamtube diameter can also be calculated from the invariant tube of axial
vorticity, which is 40 % larger than d;,,. We apply this reasoning to the vortex pair in
figure 17, where panels (¢) and (d) show an axial slice of the two vortices. Iso-lines of
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the axial vorticity w, are given in grey and contours of the Q-criterion are in blue/red.
In addition, we also indicate the region where the spanwise-averaged value of Q is
positive (>8 here to avoid artefacts from noise) by dashed lines. The plots show that
spanwise-averaged Q provides a reasonable estimate of the invariant tube of axial vorticity,
i.e. it approximates the locations where the streamline remains unaffected by the inner
perturbation (Leweke & Williamson 1998a). In the following, we will scale the vortex
radius as a = rg~¢/1.4, where rg~ is the radius measured by the region Q > 0 shown in
figure 17.

The parameters of the vortex pair at + = 7.8 (figure 17) are thus A = —0.3,a_ =
0.03¢ (vortex with I' < 0), ay = 0.02¢ (vortex with I > 0), a+/b = 0.21, k,a_ =
0.75, k;a; = 0.5 and A;/b = 2.6. The wavenumber is k, = 27 /1,. We note that near
identical values can be calculated for the following vortex pair visible from ¢ = 8.0
to 8.4 in figure 16. While the Crow instability in vortex pairs of equal strength grows
for spanwise perturbations of wavelengths in the range 6b < A, < 10b, the wavelength
can be as low as A, &~ b for pairs of unequal strength (Leweke et al. 2016). For such
unequal-strength vortices, as is the case here, So, Ryan & Sheard (2011) reported peaks in
the growth rate of the Crow instability between k,a = 0.1(A = —0.9) and k,a = 1 for
A = —0.3. Similar values are reported by Ryan, Butler & Sheard (2012), who reported a
critical wavenumber of k;a = 0.75 for A = —0.5. These values match our measurements
of 0.5 < k;a < 0.75 well and we conclude that the Crow instability mechanism plays a
crucial role in the initial development of the instabilities and the transition in this flow.

While the sinusoidal shape of the weaker vortex and its scalings point to a Crow-
type instability, the initial bulging of the stronger vortex, as well as the internal shape
of the streamtube pattern givenin figure 17(c) match the form of an elliptic instability
well (Laporte & Corjon 2000). As noted by many authors (Leweke & Williamson 1998a;
Laporte & Corjon 2000; Ryan et al. 2012; Leweke et al. 2016), elliptic and Crow
instabilities often occur together and result in the emergence of secondary vortices and
an increased breakdown rate. The non-dimensional wavenumber of the stronger vortex
k,a_ = 0.75 is, however, significantly smaller than the predicted value of k,a = 1.6 (or
A; = 2diy,) for an elliptic instability (Leweke & Williamson 1998a; Laporte & Corjon
2000), although values of A, =~ 3D = 3d_,. have also been reported by the authors
(Leweke & Williamson 1998b) for the wake transition behind a cylinder of diameter D.
If we scale the spanwise wavelength with the diameter measure by dg~¢ (see figure 17¢),
a very similar value of A;/dg-o = 3.1 can be obtained. It is therefore likely that both
elliptic and Crow instability mechanisms are combined here (with the elliptic instability
likely occurring first and inducing the initial perturbation) and result in the spanwise vortex
deformations and later the emergence of secondary braids and §2-loops that transition the
flow to turbulence.

As the time series in figure 16 shows, the flow perturbations are gradually established
over the airfoil’s suction side and notably deform the KH vortices upstream of the trailing
edge at ¢ = 8.8. To monitor the development of the 3-D instability over the airfoil surface,
we consider a time series of streamwise vorticity iso-surfaces |w,| = 1 in figure 18. The
vortical structures identified in this way only relate to rotating fluid along the streamwise
axis and hence detect 3-D flow patterns without being obscured by the dominating 2-D
topology. The w, surfaces in figure 18 are flat layers that are stacked on the airfoil surface
and lifted off by passing spanwise vortices. A similar topology of streamwise vorticity
surfaces has been reported by Jones et al. (2008) for the LSB shedding over a NACA 0012
and by Sakai, Diamessis & Jacobs (2020) for the instability of a LSB under a solitary wave.

The time series in figure 18 illustrates that streamwise vorticity is present within a thin
layer at the trailing edge in a slender region of recirculating fluid (bubble height = 0.026¢).
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Figure 18. Iso-surfaces of the streamwise vorticity +w, (red) and —w, (blue) for a level |w, | = 1. Rear section
of the airfoil shown between x/c = 0.4 and x/c = 1.1 for t = 8.7 (a) to t = 9.2 (f). Instantaneous streamlines
in black. Here, o = 7°.
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Figure 19. Iso-Q surfaces fora = 7° at t = 16.3 (a), 16.5 (b), 16.7 (c) and 16.9 (d). Colouring by spanwise
vorticity w;.

As the next vortex forms, it is bent by the existing rotating flow near the airfoil surface
and, as the vortex line tilts, induces streamwise vorticity itself, thereby amplifying the
spanwise velocity component. The cycle repeats until the bending of the spanwise vortices
towards the trailing edge at a location where patches of positive and negative w, induce a
wall-normal upwelling fluid movement (see figure 18f). The iso-surfaces of O shown in
figure 19(b)—(c) indicate that this asymmetric bending is associated with the generation of
loop vortices that eventually grow into the enveloping braids at later times.

Crow-KH interactions Low-frequency spanwise modes within the KH vortices are also
present at later times and drive the formation of large-scale turbulent structures. At ¢
~ 16, the bending of spanwise vortices results in a horseshoe-type vortex structure that
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Figure 20. Iso-Q surfaces for @ = 8° (a) and 10°. Colouring by spanwise vorticity w,.

extends over the span of the airfoil and bursts into a turbulent cloud or ‘puff’. The process
is outlined in figure 19 and starts with the bending of the KH vortex along the span in
streamwise direction (figure 19a).

While the nominally 2-D flow structure breaks down and forms smaller-scale loop
vortices (figure 19b), a large-scale coherent horseshoe-shaped vortex system develops
(figure 19¢), which then bursts and sheds off at the trailing edge (figure 19d). Because
the wavelength of this mode (1, = 0.5¢) is twice the expected wavelength of an elliptic
instability for the given vortex diameter (d.. = 0.06), the large-scale deformation of the
KH vortex in figure 19(a) is at least partly the result of the interaction with downstream
vortices through induction of velocity in the upstream vortices (Crow-type instability). The
series in figure 19(a—d) shows how the interplay of 3-D large-scale instability modes and
the small-scale loop vortices results in the formation and bursting of such large coherent
turbulent structures.

4.3.4. The case of SII - high o

As the impact of the elliptic instability grows with increasing o from 0° to 7°, the flow
structures are less distinct within the LSB located near the leading edge at o« = 8°.
Figure 20 shows a top (suction-side) view of the vortical structures at « = 8° and 10°.
It is observed that the separated laminar shear layer sheds KH vortices which break down
before mid-chord and loose their spatial coherence as the flow transitions to a turbulent
boundary layer. Non-zero spanwise velocity and 3-D vortex structures are also present
throughout the upstream, laminar section of the bubble and result in the non-uniform
generation of the KH vortices with vortex displacements and re-connections visible. Low-
frequency deformations of the KH vortices and the generation of hairpin loops within
the shear region point to the same instability mechanisms observed at lower «, but their
occurrence is less pronounced and masked by the rapid transition to turbulence.

4.3.5. The footprint of flow instabilities in unsteady forces

Figure 21 shows the time history of the lift and drag coefficients, as well as the
corresponding frequency spectrum for the flow at o = 0°, 4°, 7° and 8°. The time unit
is scaled with the free-stream velocity Uy, and the chord-length of the airfoil ¢, so the
corresponding frequency is a Strouhal number St = fc/Uxo.

At the lower o (0° and 4°), the oscillations of the forces are regular and driven by the
shedding of the Karmén vortices from the laminar shear layers at the trailing edge that
result in the narrow wakes presented in figure 22.

At o = 0°, the lift coefficient spectrum has a distinct, single peak at a Strouhal number
of St = 3.1, indicating that Kdrmén shedding determines the temporal flow development
and no secondary instabilities exist. The increasingly unstable separated shear layer at
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Figure 21. Lift (a) and drag (b) coefficients over time. (c¢) Frequency spectrum of the lift coefficient. For o =
0°, 4°,7° and 8°.
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Figure 22. Instantaneous snapshots of the vorticity w, (a) and the specific entropy s =
In(p/p¥)/(y(y — I)M%) (b) along a slice at z/c = 0.025 for o = 0°, 4°, 7° and 8° (top to bottom).

higher angles results in additional low-frequency content in the lift spectrum at o« = 4°,
which still shows a dominant peak (at St = 2.7), but at a reduced amplitude (by 15 %), an
indication that energy is transferred to modes with other frequencies.

At o = 7° and 8°, the force oscillations are irregular and strongly dependent on the
location of the LSB. If the LSB forms at the trailing edge of the airfoil (¢ = 7°), then
the interaction between instabilities on the suction side (KH shedding) and pressure side
(Karméan shedding) result in large-scale turbulent bursts and large-amplitude oscillations
of the aerodynamic forces (figure 21a,b). The corresponding lift spectrum shows a
dominant peak at St = 1.2 with an amplitude that is more than twice the amplitude as
compared with the maxima at @ = 0° or 4°. Moreover, low-frequency peaks are observable
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at St = 0.3 and 0.8 that also have greater or equal amplitudes as the peak at ¢ = 4°
(figure 21c¢). The high energy content of these fluctuations results from the interaction of
both Karman (pressure-side) and KH (suction-side) instabilities, whereas the shedding at
0° and 4° is mainly driven by the Karman instability induced by the roll-up of the pressure-
side shear layer. In the case of a leading-edge LSB (o = 8°), the time-averaged lift force
(C; = 1.03) is higher than at the other «, but the amplitude of the oscillations is reduced
(figure 21a). The lift spectrum (figure 21¢) does not show a dominant shedding frequency,
but has several low-frequency peaks at only a third of the amplitude computed for the other
cases. The low-amplitude oscillations are caused by the break up of the KH vortices and
the transition to a turbulent boundary layer at mid-chord, which increases the isotropy of
the flow structures on the suction side and interrupts the pressure-side shear layer from
rolling into a large vortex.

4.3.6. The footprint of flow instabilities upon the wake

The spatial development of the vortex street in the airfoil wake is visualised in figure 22 for
a =0°,4°,7° and 8°, where contours of the instantaneous, spanwise vorticity component
w, are plotted in (a) and contours of the specific entropy s in (b). Vorticity is generated at
the airfoil wall and transported downstream, where stretching of vortex filaments, mixing
and diffusion result in the decay of vorticity and the spreading of the street. We also
visualise this transport of fluid from the airfoil into the wake through contours of specific
entropy, s = In(p/p?)/(y (y — I)MJ%), which follows a scalar transport equation with a
production term for irreversible processes (Spurk & Aksel 2008; Chaudhuri et al. 2017).
Entropy is generated by viscous dissipation in the wall boundary layer (Chaudhuri et al.
2017), and then transported into the wake and consequently highlights the associated flow
topology.

At o = 0°, the Kdrman vortices remain aligned in a narrow vortex street throughout
the wake (figure 22a). The mixing rate with the surrounding fluid is low as the higher
levels of entropy generated in the shear layer around the airfoil remain confined to an area
of £0.25¢ until at least 5 chord lengths behind the airfoil (figure 22b). The low mixing
and spreading rates of the vortex street at « = 0° show how the flow topology in the far
wake is defined by the organised near-wake structures at the airfoil trailing edge shown in
figure 9(a).

At o = 4°, the vortex street in the airfoil wake spreads at a higher rate than at 0° and
the vorticity and entropy contours appear diffused two chord lengths downstream from
the trailing edge, marking the transition of the flow to turbulence and the accompanying
entrainment of surrounding fluid. As is the case at @« = 0°, the baseline topology in the
far wake is defined by the near-wake coherent structures (figure 9b), but the transition
and break up of the laminar vortex structures in the wake at 4° confirm the existence of
additional flow instabilities that are not strongly influential at 0°. As noted before, these
instabilities include a 3-D mode within the Kdrman vortices and KH instabilities within
the separated shear layer on the suction side. The transition of the wake flow can therefore
be attributed to a combination of these modes and their interaction with the pressure-
side Kdrmdn vortices. Following the terminology by Kurtulus (2016), the wake behind
the NACA 65(1)—412 at « = 0° and o = 4° can be categorised into an alternating vortex
shedding mode, which is characterised by equal velocity of the clockwise and counter-
clockwise vortices and constant longitudinal spacing.

With « increasing to 7° and 8°, the wake structures become more irregular as they are
governed by turbulent motion following the flow transition upstream of the trailing edge
and the development of wall-bounded turbulence. In case the LSB forms at the rear side
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of the airfoil (¢ = 7°), the interaction of suction-side (KH shedding) and pressure-side
(Karmén shedding) instabilities is most pronounced and results in a low-frequency vortex
street with the vortices forming large-scale turbulent puffs as they shed downstream into
the wake. The vertical momentum induced by the turbulent puffs increases the wake spread
and leads to regions of high vorticity followed by quiescent fluid in contrast to the more
uniform wake topology at lower o (0° and 4°). While the Kdrmdan vortices can still be
distinguished several chord lengths downstream from the trailing edge by local maxima in
the vorticity and entropy contours at 0° and 4°, the structures at 7° appear more diffused
and point to a fully turbulent wake. This wake shape can be assigned to the alternating
vortex pair shedding mode, where one vortex pair, consisting of clockwise and counter-
clockwise vortices, moves upwards (here termed puffs), while the others follow a more
uniform path (Kurtulus 2016).

At oo = 8°, the LSB is located at the leading edge and the KH vortices have transitioned
at mid-chord into a turbulent boundary layer (figure 20a). The turbulent breakdown of
the larger vortices into smaller structures results in a more isotropic flow over the suction
side than at 7° and leads to a narrower wake because the continuous shedding of vortices
disrupts the roll-up of the pressure-side shear layer into a large trailing-edge vortex.
Consequently, the wake topology is no longer governed by the large-scale puffs that exist
at o = 7°, but shows a turbulent vortex street, that, despite the shift in flow regimes, still
shows the footprint of the interaction of Karman and KH shedding but on a smaller scale.
This wake also can therefore no longer be classified by the shedding modes proposed by
Kurtulus (2016).

4.4. Self-sustaining turbulence

According to Alam & Sandham (2000) and Jones et al. (2008), LSBs require a reverse-
flow velocity Ug of 15 % to 20 % of the local boundary-layer edge velocity to develop an
absolute stability, while Theofilis (2011) found that lower levels of reverse flow of O(10 %)
are sufficient to sustain a 3-D instability mode, which is also confirmed by Marxen et al.
(2013). For the present airfoil flow at o« = 7°, the maximum level of the reverse velocity
component is Ug = uz/u, = 10.9 % (10.3 % at 8° and 11.5 % at 10°), i.e. the maximum
negative tangential velocity relative to the local velocity magnitude at the boundary-layer
edge. A 3-D modal instability in an LSB has been demonstrated by Rodriguez et al. (2021)
where it was shown to lead to absolute instability of the KH waves, triggering transition to
turbulence. This framework is quite consistent with observations here at high «, and the
rapid development of turbulence behind the short LSB near the leading edge. The temporal
and spatial growth of 3-D perturbations (figures 16 and 18) demonstrates that turbulence
is first induced through the amplification of the 3-D flow that is then amplified within the
braid shear layer through smaller-scale loop vortices.

5. Summary and conclusions

A comprehensive and detailed overview of the flow topology over a cambered NACA
65(1)—412 airfoil at Re = 2 x 10* is given for angles of attack from 0° to 10° using DNS.
The flow is very sensitive to small changes in o and multiple flow states emerge within
0° < o < 10°. The flow regime changes at a critical angle of attack, o,;; = 7° from laminar
separation without reattachment at o < 6° to a closed LSB at the leading edge for o >
8°. The transition of the flow regimes is governed by the interaction of several instabilities
that result in complex 3-D structures: Karméan vortices, that are driven by the roll-up of the
pressure side boundary layer at the trailing edge, and KH instabilities within the separated
shear layer on the suction side interact with 3-D instabilities within the vortex cores and
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in the braid region and result in 3-D tubular structures for o < 6° and large-scale turbulent
puffs at « = 7°. Through space—time analysis of the separated shear layer for o < 6°, we
show that KH instabilities emerge within the separated shear layer at @ = 6° and eventually
result in vortex formation at the trailing edge, but are absent at lower angles of attack.

A thorough analysis of the flow in the near wake reveals the instabilities within the
vortex cores and the braid region. Based on the vortex diameter length scale, we show that
the dominant spanwise wavelengths match a mode A instability within vortex cores and
a mode C instability within the braid region, based on the data available in the literature
on vortex pair dynamics and near-wake transitions behind bluff bodies and airfoils. The
initial transition of an unperturbed base flow to a fully developed 3-D flow at « = 7° is
shown to be governed by cooperative Crow-type and elliptic instabilities of vortex pairs.

The topology of the far-wake structures several chord lengths behind the airfoil is
governed by the near wake and the instabilities that transition the flow. While a narrow
vortex street governs the wake at o < 4° (alternating vortex shedding mode), the formation
of the LSB at « = 7° and the accompanying interaction of pressure- and suction-
side instabilities result in a low-frequency street with large-scale turbulent structures
(alternating vortex pair shedding mode). The shifting of the LSB to the leading edge at
o = 8° incidence narrows the wake again, as the wall-bounded turbulence over the airfoil
results in a more uniform shedding at the trailing edge compared with o = 7°.

The flow bifurcation is accompanied by a sudden increase of the lift force and decrease
in the drag, as shown by polars from DNS, wind tunnel experiments and even from Xfoil.
The under-prediction of the lift coefficient in Xfoil is related to a low-pressure region
at the trailing edge that is caused by vortex formation inside the LSB. These elaborate
flow structures and their interactions are more influential at lower Re, and further effort
could usefully be put into appropriate modelling strategies when and if simpler models are
required, for example in design.

It is the sensitivity and complexity of this flow that makes the comparison of
computations and experiments particularly challenging (Tank et al. 2019). With hindsight,
this sensitivity is unsurprising as the flow at any given o and Re has a different
balance of numerous instability mechanisms of the large-scale separation vortices, further
compounded in airfoil studies by the proximity to a (non-flat) wall, and in experiments
by the necessary presence of some kind of end-wall structure. It will be interesting to
investigate the role of end walls in stabilising, or destabilising, the structures reported here.
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Appendix A. Parameter study: 2-D simulations

Here, results of 2-D Navier—Stokes simulations are employed to assess the effects of
varying resolution, domain size and Mach number. Although the physical meaning of
these results is limited because vortex stretching is absent in the 2-D approximation, they
are relevant for assessing first-order trends in parametric studies.

A.l. Effect of Mach number

Although low-Reynolds-number flows also typically operate at low Mach numbers,
some applications (e.g. UAV at high altitude) may encounter compressibility effects
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M G Crp Ciy Cy Ca,p Ca.r
0.1 0.444 0.443 0.001 0.051 0.033 0.019
0.3 0.463 0.462 0.001 0.054 0.036 0.019

Table 3. Lift and drag forces for « = 4° and different Mach numbers.
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Figure 23. Lift and drag coefficients at & = 4° over time for different Mach numbers. Domain radius R = 30c.

\

0.2 0.4 0.6 0.8 1.0
x/c

Figure 24. Time-averaged pressure and skin-friction coefficients for M = 0.1 and M = 0.3 atoe =4°, R =
30c.

(Lissaman 1983). The Prandtl-Glauert correction rule to estimate the magnitude of
compressibility effects is C, p/Cpi = 1/+/1 — M?2. For Mach numbers M = 0.1 and
M = 0.3, the correction factors are Cp y—0.1/Cp,; = 1.005 and C), py—03/Cp,i = 1.048
respectively so deviations of around 4-5 % may be expected.

At 4° angle of attack, the lower compressibility at M = 0.1 results in a larger amplitude
of the lift and drag force oscillations, as well as an offset of the time-averaged values by
4% and 6 % respectively (see table 3). These values are in very good agreement with
the predicted deviations based on the Prandtl-Glauert correction. Time-averaged profiles
of the the pressure and skin-friction coefficients in figure 24 show that the differences in
compressibility effect mainly the pressure distribution on the suction side of the airfoil and
have a negligible impact on the skin-friction distribution.
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Figure 25. Time-averaged pressure and skin-friction coefficients for different Mach numbers at & = 8°,
R = 30c.

M Cy Cip Cuy Cy Ca,p Ca r
0.05 0.941 0.940 0.002 0.052 0.041 0.010
0.1 0.946 0.944 0.002 0.052 0.042 0.011
0.3 0.965 0.964 0.002 0.058 0.048 0.010

Table 4. Lift and drag forces for « = 8° and different Mach numbers.

At 8° incidence, a slender LSB stretches from the leading edge until x, g-/c = 0.45,
0.41 and 0.49 for M = 0.05, 0.1 and 0.3 respectively. The profiles of the pressure and skin-
friction coefficients are given in figure 25 and show that the higher compressibility in case
of M = 0.3 results in a more distinct pressure plateau and elongated separation bubble
with downstream reattachment compared to the lower-Mach-number cases. Streamlines of
the time-averaged recirculating flow within the LSB are plotted in figure 27 and illustrate
the difference in bubble sizes. The lift and drag coefficient averages differ by 2 % and 12 %
respectively (see table 4) and can be attributed to the modified pressure distribution caused
by the different LSB sizes.

In addition to assessing compressibility effects by computing the flow at different
Mach numbers with the compressible DGSEM solver, we also compare our results with
incompressible flow simulations performed with FLUENT. Transient, incompressible
computations are conducted with a pressure-based solver, second-order upwind for the
spatial discretisation, and second-order implicit time stepping. No turbulence model is
applied such that only source for artificial viscosity is through numerical dissipation from
the upwinding scheme. A C-type domain with radius and wake length of 30 chords and
consisting of 802300 quadrilateral elements is used. The outer boundaries treated as
velocity inflow (left, lower and upper) and pressure outflow conditions (right) and a no-slip
condition is applied at airfoil surface.

Figure 26 shows the history of the lift and drag coefficients obtained from compressible
DGSEM computations at a Mach number of M = 0.05 and sixth-order polynomial
representation and incompressible simulations with FLUENT. The results are in good
agreement and confirm that the solution to this particular flow has converged across
different numerical solvers. The case also shows that compressibility effects are not the
cause for the disagreement with the USC wind tunnel experiments at « = 8° as all
simulations show the transitioned state regardless of the Mach number.

A comparison of the streamlines inside the LSB (see figure 27) shows that the
bubble size in the FLUENT computations is nearly identical with the DGSEM results at
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Figure 26. Lift and drag coefficients at « = 8° over time DGSEM (M = 0.05) and FLUENT (incompressible)

computations.

— M=0.05
— M=03
—— FLUENT

Figure 27. Laminar separation bubble for M = 0.05 and M = 0.3 (DGSEM) and incompressible (FLUENT)
ata = 8°, R = 30c.

M = 0.3, but deviates from the topology found at M = 0.05. While the differences
between the DGSEM results are related to the compressibility effects, results from the
FLUENT simulation are also affected by the lower order accuracy of the spatial and
temporal discretisation and the increased numerical dissipation of the upwind scheme.

A.2. Domain size

We assess the effect of domain size, blockage and spurious boundary reflections on the
solution by comparing the aerodynamic forces, pressure and skin-friction coefficients for
different sizes of the computational domain for several angles of attack.

Figure 28 illustrates the lift and drag coefficient for the flow at 4° incidence and domain
radii from R = 3.5¢ to R = 50c¢. Corresponding pressure and skin-friction distributions
over the wing are plotted in figure 29 for R = 3.5¢ and 30c. The free-stream boundaries
show a strong impact on the pressure coefficient at the leading edge, which is significantly
lower for the larger domain and indicates that the proximity of the boundaries for R =
3.5¢ forces the flow in this region. The pressure deviation is reflected in the trend of
the lifting force with deviations of the time-averaged solution of 6 % between small and
large domains (see table 5). As the discrepancies are mainly caused by the differences in
the pressure distribution, the drag force shows only minor variations between the cases
and converges more quickly. The strongly sinusoidal time dependency of the forces is
maintained for all domain radii.

Because the magnitude of the pressure and friction forces increases with the flow angle,
the influence of the free-stream boundaries also becomes more distinct. For 7° incidence,
the separated boundary layer reattaches at the rear of the airfoil and forms a local LSB.
Streamlines of the time-averaged solution within the separation bubble are plotted in
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Figure 28. Lift and drag coefficients over time for different computational domain sizes and @ = 4°, M = 0.3.
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Figure 29. Time-averaged pressure and skin-friction coefficients for R = 3.5¢ and R = 30c at o = 4°,
M =03.

Domain radius C; Crp Crr Cy Cap Car
3.5¢ 0.434 0.433 0.001 0.055 0.036 0.019
30c 0.463 0.462 0.001 0.054 0.036 0.019

Table 5. Lift and drag coefficients for « = 4° and different domain sizes.

— R=3.5¢c
—— R=30c

Figure 30. Laminar separation bubble for domain radii R = 3.5c and R =30c ata =7°, M = 0.3.

figure 30 for domain sizes of R = 3.5¢ and R = 30c. The LSB is significantly larger in the
smaller domain where the free-stream boundaries impact the solution stronger by forcing
the flow. The difference in LSB sizes is distinctly visible in the time-averaged profiles of
the surface pressure and skin-friction coefficients, where both, C}, and C ¢, show the shift
of the reattachment point of the LSB (see figure 31). Despite these significant differences
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Figure 31. Time-averaged pressure and skin-friction coefficients for R = 3.5¢ and R = 30c at o« = 7°,
M =0.3.

Domain radius Cy Cip Cir Cq Ca,p Car
3.5¢ 0.931 0.928 0.002 0.074 0.062 0.012
30c 0.946 0.944 0.002 0.052 0.041 0.011

Table 6. Lift and drag coefficients for « = 7° and different domain sizes.

— R=3.5¢
—— R=30c

Figure 32. Laminar separation bubble for domain radii R = 3.5¢ and R = 30c at « = 8°, M = 0.3.

in the flow topology, the time-averaged lift coefficient deviates only by 1.5 %, while the
drag force differs by more than 40 % (see table 6). Note that the magnitude of the drag is
only approximately 5 % of the lift force and hence is more susceptible to such changes.

The effect of free-stream boundaries on the flow topology is even more pronounced at 8°
incidence, where the location of the LSB completely shifts between the front and the rear
side of the airfoil (see figure 32). This, again, is reflected in the surface pressure and the
skin-friction coefficient (see figure 33), but curiously does not translate into a significant
change in the integrated lift or the drag force, as summarised in table 7. The reason is
that the bubble height is small and hence only slightly changes the pressure distribution,
which remains approximately constant throughout separated flow regions. Given that both
lift and drag coefficients are dominated by the pressure force (see table 7), the location of
the LSB has only a limited affect on the lift as long as the bubble remains slender.

The parametric study of 2-D Navier—Stokes simulations show that, although the LSB
location can be notably affected by changes in domain size, resolution and Mach number,
the results do not indicate that any of the tested parameters move the critical angle of
attack to higher values. Particularly, the good agreement between DGSEM and FLUENT
simulations confirm that the flow at 8° incidence has converged to a reasonable level across
different numerical solvers.
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Figure 33. Time-averaged pressure and skin-friction coefficients for R = 3.5¢ and R = 30c at « = §°,
M =023.

Domain radius Cy Crp Crr Cyq Cap Car
3.5¢ 0.989 0.987 0.002 0.064 0.053 0.011
30c 0.962 0.961 0.002 0.058 0.047 0.010

Table 7. Lift and drag coefficients for « = 8° and different domain sizes.
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Figure 34. Growth of the perturbation velocity w over time for different perturbation wavenumbers at o« = 4°.

Appendix B. Extraction of perturbation growth rate

We extracted the growth of an initial perturbation within the near wake by perturbing a
2-D initial condition with a perturbation of the form

w = 10—5 Sin(27tkzz/c) . e—((x/c—l.O)2+(y/C—O.05)2)/0.025' (Bl)

The maxima of the perturbation velocity w are then tracked over time within the near wake
(I < x/c < 1.4) and fitted to a function Cpe®’ via nonlinear regression. The results are
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Figure 35. Growth of the perturbation velocity w over time for different perturbation wavenumbers at @ = 6°.

given in figure 34 for « = 4° and figure 35 for @ = 6°. The black dots indicate which data
points contribute to the exponential growth fit.
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