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Galois Representations with
Non-Surjective Traces
Chantal David, Hershy Kisilevsky and Francesco Pappalardi

Abstract. Let E be an elliptic curve over Q , and let r be an integer. According to the Lang-Trotter conjecture,
the number of primes p such that ap(E) = r is either finite, or is asymptotic to CE,r

√
x/log x where CE,r is

a non-zero constant. A typical example of the former is the case of rational `-torsion, where ap(E) = r is
impossible if r ≡ 1 (mod `). We prove in this paper that, when E has a rational `-isogeny and ` 6= 11, the
number of primes p such that ap(E) ≡ r (mod `) is finite (for some r modulo `) if and only if E has rational
`-torsion over the cyclotomic field Q(ζ`). The case ` = 11 is special, and is also treated in the paper. We also
classify all those occurences.

1 Introduction

Let E be an elliptic curve defined over Q and let NE denote its conductor. For any prime
p - NE, let Ep be the elliptic curve over Fp obtained by reducing E modulo p. Let ap(E)
be the trace of the Frobenius morphism of Ep/Fp. Then, #Ep(Fp) = p + 1 − ap(E), and
|ap(E)| ≤ 2

√
p. If p > 3, the case ap(E) = 0 corresponds to supersingular reduction

mod p.
For a fixed r ∈ Z, let

πE,r(x) = #{p ≤ x, p - NE : ap(E) = r}.

If E has complex multiplication, Deuring [6] showed that πE,0(x) ∼ 1
2π(x), as the supersin-

gular primes are exactly the primes which are inert in the field of complex multiplication.
This is the only (non trivial) case where the asymptotic behavior of πE,r(x) is known. In all
other cases, for E an elliptic curve over Q , and r ∈ Z, Lang and Trotter [9] conjectured that
there exists a constant CE,r such that

πE,r(x) ∼ CE,r

√
x

log x
as x→∞.(1)

Lang and Trotter define CE,r “explicitly” for any E and r. When the constant is 0, the
asymptotic relation is interpreted to mean that there is only a finite number of primes such
that ap(E) = r. We want to classify the cases where CE,r = 0, i.e., the cases where the
Lang-Trotter conjecture predicts only a finite number of primes p with ap(E) = r. It will
be clear from the explicit formula for the constants CE,r that CE,r = 0 implies that πE,r(x) is
bounded.
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The Lang-Trotter constant is defined from the distributions of the traces ap(E) modulo
m, for m a positive integer. Let ρE,m be the Galois representation

ρE,m : Gal(Q/Q)→ Aut(E[m])

where E[m] is the subgroup of m-torsion points of E(Q). Since E[m] ' (Z/mZ)2, after
choosing a basis for E[m], we can identify Aut(E[m]) with GL2(Z/mZ). Let G(m) be the
image of ρE,m in GL2(Z/mZ), and for any subgroup G of GL2(Z/mZ), let Gr be the subset
of elements of G of trace r modulo m.

Let E be an elliptic curve without complex multiplication. Serre proved in [15] that the
image of the Galois representation on the full torsion subgroup of E(Q) is an open sub-
group of GL2(Ẑ). It follows that there exists an integer M = ME such that ρE,` is surjective
for all primes ` not dividing M, and such that the image in GL2(Ẑ) of the Galois represen-
tation on the torsion subgroup of E(Q) is the full inverse image of G(M). The Lang-Trotter
constant CE,r is then defined as

CE,r =
2

π

M|G(M)r|

|G(M)|

∏
`-M

`|GL2(F`)r|

|GL2(F`)|
.

For the details, we refer the reader to [9], and to [5] for evidence supporting the conjectural
value of the constant CE,r . It follows from the definition of the constant that CE,r = 0 if and
only if |G(M)r| = 0 as the infinite product converges to a positive number. In that case,
ap(E) 6≡ r (mod M) for all p - MNE. The Lang-Trotter conjecture then severely restricts
the behavior of πE,r(x): if πE,r(x) is finite for some r ∈ Z, then there is a positive integer
M such that πE,s(x) is finite for all s ≡ r (mod M). To our knowledge, the only cases of
CE,r = 0 presented in the literature are the curves with rational `-torsion [9, p. 37].

For E/Q an elliptic curve and ` a prime, let S`(E) be the complement of the set of traces
of E modulo `, i.e.,

S`(E) = F` \ {a ∈ F` : ap(E) ≡ a (mod `) for some p - `NE}.

Serre proved in [15] that if ` ≥ 5 and ρE,` is not surjective, then G(`) is contained
either in a Borel subgroup or in the normalizer of a Cartan subgroup of GL2(F`). This is
an exceptional situation and for “most” elliptic curves E/Q , ρE,` is surjective for all primes.
Precise estimates can be found in [7], [8]. We classify in this paper all elliptic curves E/Q for
which G(`) is contained in a Borel subgroup of GL2(F`), and S`(E) 6= ∅. G(`) is contained
in a Borel subgroup if and only if E has a rational `-isogeny. By the work of Mazur [10],
[11], this can happen only for finitely many values of `. This is not a complete classification
of all cases where CE,r = 0, as one should also look at exceptional Cartan primes (which are
much more difficult since there is no analogue to Mazur’s Theorem in that case) and one
should also consider the image of ρE,m for all positive integers m.

Theorem 1.1 Let ` 6= 11 be a prime, and let E be an elliptic curve over Q with a rational
`-isogeny. Then the following are equivalent:

(i) S`(E) 6= ∅;
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(ii) E has non-trivial Q(ζ`)-rational `-torsion.

That (ii) implies (i) is straightforward (see Section 3); we prove in this paper that (i)
implies (ii). We can also rephrase (ii) in terms of congruences for the ap(E)’s, which gives
the following corollary.

Corollary 1.2 Let ` 6= 11 be a prime, and let E be an elliptic curve over Q with a rational
`-isogeny, and such that S`(E) 6= ∅. Then, there is an integer a with 1 ≤ a ≤ `− 1 such that

ap(E) ≡ pa + p`−a (mod `).

The case ` = 11 is different, and does not fit Theorem 1.1. The following theorem will
be proven in Section 8.

Theorem 1.3 Let E be an elliptic curve over Q with a rational 11-isogeny, and such that
S11(E) 6= ∅. Then, E is isogenous to a twist of an elliptic curve with a Q(ζ11)-rational 11-
torsion point.

We now use Theorems 1.1 and 1.3 to classify all possible curves E/Q with a rational
`-isogeny such that S`(E) 6= ∅. This classification is summarized in the following theorem.
Our proof of the non-existence of elliptic curves for which S13(E) 6= ∅ is conditional to
the Birch and Swinnerton-Dyer conjecture for abelian varieties over number fields (see
Proposition 6.1).

Theorem 1.4 Let ` be a prime, and let E be an elliptic curve over Q with a rational `-isogeny,
and such that S`(E) 6= ∅. Let a be as in Corollary 1.2. Then, all possible values of `, S`(E) and
a are described in the following table. The last column gives a curve with minimal conductor
for which S`(E) is as prescribed, in the notation of Cremona’s tables [4].

` S`(E) a E/Q ` S`(E) a E/Q

2 {1} 1 E14A 11 {3, 4, 6, 7} 2 E121A
(F∗` )2 3 E121B

3 {1} 1 E14A {3, 4, 5, 7, 10} 4 E121C
{4, 7} – E1089F

5 {1} 1 E11A
{3, 4} 3 E50A 19 (F∗` )2 5 E361A

43 (F∗` )2 11 E1849A
7 {1} 1 E26B 67 (F∗` )2 17 E4489A
{4, 6} 3 E294A 163 (F∗` )2 41 E26569
{3, 5, 6} 5 E49A

One notices that all the examples in the table of Theorem 1.4 which do not arise from
rational `-torsion over Q are non semistable elliptic curves. In fact, if E is a semistable
elliptic curve over Q , and if the image of the Galois representation ρE,` is not surjective,
then it is essentially because E has a Q-rational `-torsion point [15, Proposition 21].
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2 Some Lemmas

Let E be an elliptic curve over Q , ` a prime, and suppose that E has a rational `-isogeny.
Then, the Galois representation ρE,` has the form

ρE,` ∼

(
χ1 ∗
0 χ2

)
(2)

where χ1, χ2 are characters of G(`) = Gal
(

Q(E[`])/Q
)

taking values in F∗` . For i = 1, 2,
let ni be the order of χi , and let Ni = ker(χi). Ni is a normal subgroup of G(`), and we
denote by Ki the fixed field of Ni . Then for i = 1, 2,

Gal(Ki/Q) ' G(`)/Ni

is a cyclic group of order ni . The character groups of the Galois groups of K1,K2 and K1K2

are respectively:

̂Gal(K1/Q) = 〈χ1〉;
̂Gal(K2/Q) = 〈χ2〉;
̂Gal(K1K2/Q) = 〈χ1, χ2〉.

By the Weil pairing, χ1χ2 = ω` the cyclotomic character, and therefore ̂Gal
(

Q(ζ`)/Q
)
=

〈ω`〉 ⊆ ̂Gal(K1K2/Q), or equivalently Q(ζ`) ⊆ K1K2.
The following lemma will allow us to reformulate Theorem 1.1 in terms of characters.

Lemma 2.1 Let ` be a prime, and let E/Q be an elliptic curve with a rational `-isogeny. The
following are equivalent:

(i) E has a non-trivial Q(ζ`)-rational `-torsion point;
(ii) E is isogenous to a curve with a non-trivial Q(ζ`)-rational `-torsion point;
(iii) K1K2 = Q(ζ`);
(iv) 〈χ1, χ2〉 = 〈ω`〉.

Proof The equivalence of (iii) and (iv) follows from general properties of characters of
Galois groups: let L1, L2 be abelian extensions of a field k, contained in some field K. Then,

L1 ⊆ L2 ⇐⇒ ̂Gal(L1/k) ⊆ ̂Gal(L2/k). It is also clear that (iii) implies (i): we then have
K1 ⊆ Q(ζ`), and K1 = Q(P1) where P1 is the `-torsion point corresponding to χ1. For
(i) implies (iv), let P be the Q(ζ`)-rational `-torsion point on E. Then, either 〈P〉 is Galois
stable, or Q(E[`]) ⊆ Q(ζ`). In either cases,

ρE,` ∼

(
χ1 ∗
0 χ2

)
,

with χ1 ∈ 〈ω`〉, which gives 〈χ1, χ2〉 = 〈ω`〉. Finally, we have to show that (ii) implies (i):
Let φ : E ′ → E be the isogeny where E ′ has Q(ζ`)-rational `-torsion. Let P1, P2 be a basis
for E ′[`] giving the representation

ρE ′,` ∼

(
χ1 ∗
0 χ2

)
, with χ1, χ2 ∈ 〈ω`〉.(3)
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If E ′[`] 6⊆ kerφ, then Q1 = φ(P1), or Q2 = φ(P2) if Q1 = 0, is a non-trivial Q(ζ`)-rational
`-torsion point on E. If E ′[`] ⊆ kerφ, let a be the largest integer such that E ′[`a] ⊆ kerφ.
Since

E ′[`a+1]/E ′[`a] and E ′[`]

are isomorphic F`[G]-modules, let P ′1 and P ′2 be a basis for E ′[`a+1]/E ′[`a] giving the rep-
resentation (3). Then, either Q ′1 = φ(P ′1), or Q ′2 = φ(P ′2) if Q ′1 = 0, is a non-trivial
Q(ζ`)-rational `-torsion point on E.

If E and E ′ are isogenous curves, then ap(E) = ap(E ′) for all p - `NE. We will then
classify up to isogeny the curves missing a trace modulo `. The following lemmas describe
the Galois representations of isogenous and twisted curves.

Lemma 2.2 Let E be an elliptic curve over Q with a rational `-isogeny. Choose P1 ∈ E[`]
such that Pσ1 = χ1(σ)P1 for all σ ∈ G(`). Let E ′ be the isogenous curve E ′ = E/〈P1〉. Then,

ρE ′,` ∼

(
χ2 ∗
0 χ1

)
.

Proof Let φ denote the rational `-isogeny between E and E ′, and let P1, P2 be a basis for
E[`] giving the representation ρE,`. We denote by ξ the cocycle in the upper right corner of
ρE,`. Then, φ(P2) is a `-torsion point on E ′, and for p - `NE,

φ(P2)σp = φ(P
σp

2 ) = φ
(
ξ(σp)P1 + χ2(σp)P2

)
= χ2(σp)φ(P2).

Since the determinant of ρE ′,` is the cyclotomic character, this proves the lemma.

Lemma 2.3 Let E be an elliptic curve over Q with a rational `-isogeny. Let D ∈ Z, and let
ED be the twist of E by D. Then

ρED,` ∼

((
D
.

)
χ1 ∗

0
(

D
.

)
χ2

)
.

Proof Let P1, P2 be a basis of E[`] giving the representation (2), and let φ be the Q(
√

D)-
isomorphism between E and ED. Then, φ(P1) and φ(P2) form a basis for the `-torsion on
ED. For p - `NE,

φ(P1)σp = φσp (P
σp

1 ) = φσp
(
χ1(σp)P1

)
=

(
D

p

)
χ1(σp)φ(P1).

Since the determinant of ρED,` is the cyclotomic character, this proves the lemma.

Lemma 2.4 Let E be an elliptic curve over Q . Let D 6= 1 be a squarefree integer with
(D, `NE) = 1, and let ED be the twist of E by D. Then, S`(ED) = S`(E) ∩ −S`(E).
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Proof As (D, `NE) = 1, the field extensions K` = Q(E[`]) and KD = Q(
√

D) are disjoint
[16, Proposition VII.4.1]. Let K`,D = K`KD. Then,

Gal(K`,D/Q) = Gal(K`/Q)× Gal(KD/Q).

Let b = ±1, and let a be a trace of E modulo `, i.e., ap(E) ≡ a (mod `) for some p - `NE.
Then, by the Chebotarev Density Theorem, there is a positive proportion of primes p such

that
(

D
p

)
= b and ap(E) ≡ a (mod `). As

ap(ED) =

(
D

p

)
ap(E),

a and−a are traces of ED modulo `. This proves the result.

3 Mazur’s Theorem

We begin by proving the the easy side of Theorem 1.1. Corollary 1.2 also follows from the
same arguments.

Proof of Theorem 1.1 (ii) ⇒ (i) By Lemma 2.1, the hypothesis can be rewritten as
〈χ1, χ2〉 = 〈ω`〉. Then, χ1 = ω

a
` and χ2 = ω

`−a
` for some integer 1 ≤ a ≤ ` − 1.

Then, for all p - `NE,

ap(E) ≡ ωa
` (σp) + ω`−a

` (σp) ≡ pa + p`−a (mod `).(4)

But this takes at most `−1 values modulo `, as p takes exactly all non-zero values modulo `.

Assuming Theorem 1.1, the same argument also proves Corollary 1.2.
We then have to prove the other implication of Theorem 1.1. By Mazur’s Theorem [10],

[11], there are only finitely many values of ` for which there is an elliptic curve E/Q with a
rational `-isogeny. More precisely, we reproduce here the table of [11] listing the only cases
where X0(`) has noncuspidal rational points:

` = 2, 3, 5, 7, 13 and X0(`) has genus 0;
` = 11, 17, 37 and #Y0(`)(Q) = 3, 2, 2 respectively;
` = 19, 43, 67, 163 and #Y0(`)(Q) = 1 corresponding to the curve E/Q with complex
multiplication by Q(

√
−`).

The noncuspidal rational points on those modular curves correspond to j-invariants
(or equivalently isomorphism classes) of elliptic curves over Q with a rational `-isogeny.
For ` = 11 or ` ≥ 17, there are only finitely many possible j-invariants. We treat those
separately in Sections 7 and 8.

We then concentrate on ` = 2, 3, 5, 7, 13. Since X0(`) has genus 0, they are infinitely
many isomorphism classes of curves with a rational `-isogeny for those `. We consider
two cases, depending if n1 and n2 are coprime or not. As χ1χ2 is the cyclotomic character,
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it is necessary to have lcm(n1, n2) = ` − 1. If n1 and n2 are coprime, there are at most
`− 1 possible traces χ1(σp) +χ2(σp). This generalizes the case of rational `-torsion, where
n1 = 1 and n2 = `− 1. This case is done in Section 4.

If n1 and n2 are not coprime, one expects that S`(E) = ∅ when there is no “relation”
between χ1 and χ2. This is proven in Section 5. The final cases are classified in Section 6.

4 Coprime Orders

Let E be an elliptic curve over Q with rational `-torsion. Then, the Galois representation
ρE,` has the form

ρE,` ∼

(
1 ∗
0 ω`

)
,(5)

and for p - `NE

ap(E) ≡ 1 + ω`(σp) ≡ p + 1 (mod `).

Then, from Dirichlet’s Theorem, S`(E) = {1} when E has rational `-torsion. This is a
particular case of the following lemma.

Lemma 4.1 Let ` be an odd prime, and let E/Q be an elliptic curve with a rational `-isogeny.
Suppose also that (n1, n2) = 1. Then K1 is a subfield of the cyclotomic field Q(ζ`).

Proof Let
G` = Gal

(
Q(E[`])/Q(ζ`)

)
= {g ∈ G(`) : det g = 1}.

As (n1, n2) = 1,

G` =

{
g ∈ G(`) : g =

(
1 a
0 1

)}
.

Then, either G` is trivial, or G` ' F`. Let G(`) ′ be the commutator of G(`). Clearly,
G(`) ′ ⊆ G`. If G` is trivial, then G(`)′ = G`. If not, let A =

(
1 a
0 1

)
∈ G` with a 6= 0 and

B =
(
β1 b
0 β2

)
∈ G(`) with β1 6= β2. Then, AB 6= BA, so that G(`)′ 6= {1} which proves that

G(`)′ = G`. Then, as K1/Q is abelian,

Gal
(

Q(E[`])/Q(ζ`)
)
= G` = G(`)′ ⊆ Gal

(
Q(E[`])/K1

)
,

i.e., K1 ⊆ Q(ζ`).

This proves Theorem 1.1 in the case where n1 and n2 are coprime. Using Mazur’s The-
orem, we now list all cases of elliptic curves with a rational `-isogeny for ` = 2, 3, 5, 7, 13
and with (n1, n2) = 1. There is only one case other than rational torsion.

Theorem 4.2 Let ` = 2, 3, 5, 7, 13, and let E/Q be an elliptic curve with a rational `-
isogeny. Suppose also that (n1, n2) = 1. Then, either ` = 2, 3, 5, 7 and E is isogenous to a
curve with rational `-torsion, or E is isogenous to a curve with Q(

√
−7)-rational 7-torsion.

More precisely, the possible values of `, S`(E) and a are described in the following table. The
last column gives a curve with minimal conductor for which S`(E) is as prescribed.
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` S`(E) a E/Q
2 {1} 1 E14A
3 {1} 1 E14A
5 {1} 1 E11A
7 {1} 1 E26B
{4, 6} 3 E294A

Proof of Theorem 4.2 Using Lemma 2.2, we can always exchange χ1 and χ2, then n1 and
n2, by an isogeny.
` = 2: The only possibility is n1 = n2 = 1, i.e., E has rational torsion of order 2.
` = 3: The only possibility is n1 = 1 and n2 = 2, i.e., E has rational torsion of order 3.
` = 5: The only possibility is n1 = 1 and n2 = 4, E has rational torsion of order 5.
` = 7: If n1 = 1 and n2 = 6, then E has rational torsion of order 7. If n1 = 2 and

n2 = 3, then by Lemma 4.1, K1 = Q(
√
−7) and χ1 =

(
−7
·

)
. As χ1χ2 = ω7, we have

ρE,7 ∼

((
−7
·

)
∗

0
(
−7
·

)
ω7

)
=

(
ω3

7 ∗
0 ω4

7

)
.(6)

Since K1 = Q(
√
−7), E has rational torsion over Q(

√
−7). Equivalently, E is a twist by−7

of a curve with rational 7-torsion. Indeed, let E ′ be the twist by −7 of E. It is clear that E ′

has rational 7-torsion. Then, if n1 = 2 and n2 = 3, ρE,7 is given by (6),

ap(E) ≡ ω3
7(σp) + ω4

7(σp) ≡ p3 + p4 (mod `),

and S`(E) = {4, 6}. This gives one of the cases of the classification of Theorem 1.4. As
X1(7) has genus 0, there are infinitely many isomorphism classes of elliptic curves over Q
such that ρE,7 is given by (6). By inspection of Cremona’s tables [4], one finds that such a
curve with minimal conductor is E = E294A2 of conductor NE = 2 · 3 · 72. E is the twist by
−7 of the curve E ′ = E294B2 of conductor NE ′ = 2 · 3 · 72, and E ′ has rational 7-torsion.
The curves E and E ′ have minimal equations

E = E294A2 : y2 + xy + y = x3 + x2 − 6910x− 232261;

E ′ = E294B2 : y2 + xy = x3 − 141x + 657.

` = 13: As there are no elliptic curves over Q with rational 13-torsion [11, Theorem 2],
the only possible case is n1 = 4 and n2 = 3. By Lemma 4.1, K1 is contained in the cy-
clotomic field Q(ζ13), which implies that K = Q(

√
13) ⊆ K1. Let GK = Gal(K/K), and

consider E as an elliptic curve over K. Then

ρE,13|GK ∼

(
χ1|GK ∗

0 χ2|GK

)

whereχ1|GK is the character of order 2 associated with the quadratic extension K1/K. Twist-
ing by χ1|GK , we get a curve E ′ over K = Q(

√
13) with a K-rational 13-torsion point. This

is impossible by a result of Momose [13, p. 157].
This completes the proof of Theorem 4.2.
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5 Non Coprime Orders

We will prove in this section the following theorem:

Theorem 5.1 Let ` = 2, 3, 5, 7, 13, and let E/Q be an elliptic curve with a rational `-isogeny
for which S`(E) 6= ∅. Suppose also that (n1, n2) > 1. Then, K2 ⊆ K1 or K1 ⊆ K2.

In the next four lemmas, K1 and K2 are any cyclic extensions of Q of degree n1 and n2,
and character groups 〈χ1〉 and 〈χ2〉 respectively. Let K0 = K1 ∩ K2 and s = [K0 : Q].

Lemma 5.2 Suppose that K0 = Q . Then, for any a1 ∈ Im(χ1) and a2 ∈ Im(χ2), there is a
positive proportion of primes p such that

χ1(σp) = a1 and χ2(σp) = a2.

Proof Since K0 = Q , we have

Gal(K1K2/Q) ' Gal(K1/Q)× Gal(K2/Q).

Let g be an element of Gal(K1K2/Q) such that χ1(g) = a1 and χ2(g) = a2. By the Cheb-
otarev Density Theorem, there is a positive proportion of primes p such that σp = g.

Lemma 5.3 Suppose that (s, n2/s) = 1. Then,

̂Gal(K1K2/Q) = 〈χ1〉 × 〈χ
s
2〉.

Proof Let L be the unique subfield of degree n2/s of K2. As s and n2/s are coprime, L and
K0 are disjoint, and K1K2 = K1L with K1 ∩ L = Q . Then,

Gal(K1K2/Q) = Gal(K1L/Q) ' Gal(K1/Q)× Gal(L/Q),

and as ̂Gal(L/Q) = 〈χs
2〉, this proves the lemma.

Lemma 5.4 If s = 2, and 2n2 divides n1 + n2, then χ1χ2 has order dividing n1/2.

Proof As s = 2,
̂Gal(K0/Q) = 〈χn1/2

1 〉 = 〈χn2/2
2 〉,

and χn1/2
1 = χ

n2/2
2 . Then, (χ1χ2)n1/2 = χ

(n1+n2)/2
2 , which proves the result.

Lemma 5.5 If n1 = n2 = 12, and s = 4 or s = 6, then χ1χ2 has order 6.

Proof Similar to the previous lemma.

Proof of Theorem 5.1 There are only finitely many tuples (`, n1, n2, s) where ` = 2, 3,
5, 7, 13, lcm(n1, n2) = ` − 1, (n1, n2) > 1 and s | (n1, n2). We have to show that there
are no such tuples associated to the Galois representation of an elliptic curve E/Q with a
rational `-isogeny for which S`(E) 6= ∅, K1 6⊆ K2 and K2 6⊆ K1. Because we can exchange
χ1 and χ2 by an isogeny, we may suppose that n1 ≥ n2. The tuples (`, n1, n2, n2) would
correspond to representations with K2 ⊆ K1, and the tuples (`, n1, n2, 1) would correspond
to representations for which S`(E) = ∅ by Lemma 5.2 as Im(χ1) + Im(χ2) = F` in each
case. Under those restrictions, the possible tuples (`, n1, n2, s) are:
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` = 5: (5,4,4,2);
` = 7: (7,6,6,2), (7,6,6,3);
` = 13: (13,12,12,2), (13,12,12,3), (13,12,12,4), (13,12,12,6), (13,12,6,2), (13,12,6,3),

(13,12,4,2), (13,6,4,2).

By Lemmas 5.4 and 5.5, the tuples

(5, 4, 4, 2), (7, 6, 6, 2), (13, 12, 12, 2), (13, 12, 4, 2), (13, 12, 12, 4), (13, 12, 12, 6)

cannot be associated with the Galois representation ρE,` of an elliptic curve with a rational
`-isogeny. We also prove that the tuple (13, 6, 4, 2) cannot occur. After an isogeny, we
consider (13, 4, 6, 2). We have [K1K2 : Q] = 12, which implies that K1K2 = Q(ζ13). There
is then a unique quadratic subfield of K1K2, namely K = Q(

√
13). We consider E as an

elliptic curve over K. Then χ1|K , χ2|K are characters on Gal(K/K) ⊆ Gal(Q/Q) of order 2
and 3 respectively. By twisting the representation by the quadratic character χ1|K , one gets
an elliptic curve over K with a K-rational 13 torsion point. This is impossible by the results
of Momose [13, p. 157].

The remaining tuples are:

` = 7: (7,6,6,3);
` = 13: (13,12,12,3), (13,12,6,2), (13,12,6,3).

We now show that if any of those tuples is associated to the Galois representation of an
elliptic curve E/Q with a rational `-isogeny, then S`(E) = ∅. Indeed, by Lemma 5.3,

̂Gal(K1K2/Q) = 〈χ1〉 × 〈χ
s
2〉

for all those tuples. Then, as χ2 ∈ ̂Gal(K2/Q) ⊆ ̂Gal(K1K2/Q), we can write

χ2 = χ
m
1 χ

ns
2

with 0 ≤ m < n1 and 0 ≤ n < (n2/s) in a unique way. There are of course only a few values
of m, n which are possible if χ1, χ2 are the diagonal characters of the Galois representation
ρE,`, with K2 6⊆ K1, or equivalently χ2 is not a power of χ1. In particular, m and n must be
such that χ2 and χ1χ2 have order n2 and ` − 1 respectively. We then compute all possible
tuples (m, n) under these conditions, and check that S`(E) = ∅ in each case.

For example, we do here the computations for the tuple (7, 6, 6, 3). By Lemma 5.3, we
know that

̂Gal(K1K2/Q) = 〈χ1〉 × 〈χ
3
2〉.

We can then write χ2 = χ
m
1 χ

3n
2 in a unique way for some 0 ≤ m ≤ 5 and 0 ≤ n ≤ 1.

Since χ2 is not a power of χ1, we have n = 1, and since χ1 and χ1χ2 have order 6, the only
possibilities are (m, n) = (1, 1) or (m, n) = (4, 1). If (m, n) = (1, 1), then χ2 = χ1χ

3
2 ⇐⇒

χ1 = χ
4
2 contrary to the hypothesis K1 6⊆ K2. We are then left with one possibility, namely

χ2 = χ
4
1χ

3
2, which could occur for the diagonal characters of an elliptic curve with a rational

7-isogeny described by the tuple (7, 6, 6, 3). Then, χ1 and χ3
2 are independent characters,
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i.e., for all a ∈ F∗7 and all b ∈ {±1} ⊆ F∗7 , there is a positive proportion of primes p such
that

χ1(σp) = a and χ3
2(σp) = b

by the Chebotarev Density Theorem. Then, the traces

χ1(σp) + χ2(σp) = χ1(σp) + χ4
1(σp)χ3

2(σp)

take all values a± a4 for all a ∈ F∗7 , and this last set is F7.
Treating similarly the remaining 3 tuples listed above, this completes the proof of Theo-

rem 5.1.

By the results of Lemma 4.1 and Theorem 5.1, we can prove Theorem 1.1 for ` =
2, 3, 5, 7, 13. Indeed, if K1 ⊆ K2

〈χ1〉 ⊆ 〈χ2〉 = 〈χ1, χ2〉 = 〈ω`〉.

Then K1 ⊆ Q(ζ`), and E has rational torsion over K1.

6 χ1 is a Power of χ2

Let E/Q be an elliptic curve with a rational `-isogeny such that (n1, n2) > 1 and S`(E) 6= ∅.
Then, by Theorem 5.1, K1 ⊆ K2 or K2 ⊆ K1. By exchanging E with an isogenous curve if
necessary, we assume in this section that K1 ⊆ K2. Then, K2 = Q(ζ`) and

χ1 = ω
`−a
` and χ2 = ω

a
`

with 1 < a < ` − 1 and (a, ` − 1) = 1. We treat each of the possible cases in turn. This
gives the final cases of Theorem 1.4 for ` = 2, 3, 5, 7, 13.
` = 5: a = 3 is the only possibility. In this case

χ1 = ω
2
5 =

(
5

·

)
and χ2 = ω

3
5 =

(
5

·

)
ω5,

and S5(E) = {3, 4}. Then, K1 = Q(
√

5) and E is the twist by 5 of an elliptic curve
E ′/Q with rational 5-torsion. There are infinitely many such elliptic curves E as X1(5)
has genus 0. By inspection of Cremona’s tables [4], the example with smallest conductor is
E = E50A. E50B2 have rational 5-torsion.
` = 7: a = 5 is the only possibility. In this case

χ1 = ω
2
7 and χ2 = ω

5
7 ,

and S7(E) = {3, 5, 6}. Then, K1 is the cubic field inside Q(ζ7) and E has a rational 7-torsion
over K1. The example with smallest conductor is the curve E = E49A1 with complex
multiplication by the maximal order in Q(

√
−7) (see also Section 7). For curves without

complex multiplication, the example with smallest conductor is E = E637A with conductor
NE = 637 = 72 · 13.
` = 13: The possible values of a are 5, 7, 11. Then, [K1 : Q] = 3, 2, 6 respectively, and E

has rational 13-torsion over K1 ⊆ Q(ζ13). If a = 7, K1 = Q(
√

13) which is impossible by
the result of Momose [13]. We want to generalize this result to K1 = Q(ζ13 + ζ−1

13 ).
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Proposition 6.1 Assume the Birch and Swinnerton-Dyer conjecture for abelian varieties
over number fields. Then, X1(13)(K13) has no noncuspidal K13-rational points, where K13 =
Q(ζ13 + ζ−1

13 ).

Proof The modular curve X1(13) has genus 2, and has 12 cusps over K13, 6 rational cusps
and 6 cusps defined over K13. Let J1(13) be the Jacobian of X1(13). According to the Birch
and Swinnerton-Dyer conjecture, the rank of J1(13)(K13) is the order of vanishing of the L-
series L

(
s, J1(13),K13

)
at s = 1. Let f1 and f2 be a basis of eigenforms for the 2-dimensional

space of cusp forms S2

(
Γ1(13)

)
. Then,

L
(

s, J1(13),Q
)
= L(s, f1)L(s, f2),

and
L
(

s, J1(13),K13

)
=
∏
χ

L(s, f1, χ)L(s, f2, χ)

where the product is taken for all χ characters of Gal(K13/Q). The order of vanishing at
s = 1 of each

L(s, fi , χ) =
∑
n≥0

an( fi)χ(n)n−s

was computed by J. Fearnley using PARI [2], and he showed that each L(s, fi , χ) does not
vanish at s = 1. Assuming the Birch and Swinnerton-Dyer conjecture, this shows that
J1(13)(K) has rank 0.

We now compute #X1(13)(K13), using Coleman’s effective version of Chabauty’s esti-
mate [3]: if C is a curve of genus g over a number field K with Mordell-Weil group of rank
at most g − 1, if p is an unramified prime of K at which C has good reduction, and if the
residue characteristic of p is greater than 2g, then

#C(K) ≤ #C(Fp) + 2g − 2.

We take C = X1(13), K = K13 = Q(ζ13 + ζ−1
13 ), and p a prime of K13 of residue character-

istic 5. This gives

#X1(13)(K13) ≤ #X1(13)(F25) + 2.(7)

We then have to count the number of points of X1(13) over the finite field with 25 elements.
But, following Ogg [14], we use the fact that the curve X1(13) is also a moduli space in finite
characteristic, and X1(13)(F25) parametrizes isomorphism classes of elliptic curves over F25

with a F25-rational 13-torsion point. Suppose that X1(13)(F25) has a non-cuspidal rational
point corresponding to an elliptic curve E over F25. Then, we must have 13 | 26 − a25(E),
with |a25(E)| ≤ 10, where a25(E) is the trace of the Frobenius endomorphism over F25. This
implies that a25(E) = 0, which is impossible as then E would be a supersingular elliptic
curve in characteristic 5, and 5 splits in the quadratic field Q(

√
a2

25(E)− 4 · 25) = Q(i). It
follows that X1(13)(F25) has no non-cuspidal points, and using (7), we get #X1(13)(K13) ≤
14. Suppose that P ∈ X1(13)(K13) is a non-cuspidal point. Then, P /∈ X1(13)

(
Q(
√

13)
)

by
the result of Momose [13], and then P has 3 or 6 Galois conjugates, which are also points
on X1(13)(K13). Then, #X1(13)(K13) ≥ 15, which contradicts (7). This proves that, under
the Birch and Swinnerton-Dyer conjecture, X1(13)(K13) has no non-cuspidal points.
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7 Complex Multiplication Curves

The case of curves with complex multiplication is well-known, and we recall it here. For
such a curve, we know how to compute the ap(E)’s by the work of Deuring [6], who proved
that L(E, s) = L(s, χ) for some Hecke character χ. We use here the explicit formulas given
by Stark in [17] for the values of ap(E) at split primes p.

For ` ≥ 7, let E` be the elliptic curve over Q with complex multiplication by the maximal
order in Q(

√
−`) and conductor NE` = `

2. Then, ρE`,` is contained in a Borel subgroup of
GL2(F`). We show in this section that S`(E`) contains exactly half of elements of F∗` , and we
exhibit the relation between the 2 characters χ1 and χ2 of the Galois representation ρE`,`.

Lemma 7.1 Let E` be one of the 6 curves defined above. Then,

S`(E`) =

{
F∗` \ (F∗` )

2 for ` = 7;

(F∗` )
2 for ` = 11, 19, 43, 67, 163.

Proof For primes p inert in Q(
√
−`), ap(E`) = 0. Let p be a prime which splits in

Q(
√
−`), 4p = u2 + `v2 for some u, v ∈ Z. Then from [17, p. 1118]

ap(E`) =

{(
u
`

)
u for ` = 7;

−
(

u
`

)
u for ` = 11, 19, 43, 67, 163.

As ` ≡ 3 (mod 4),
(

u
`

)
u is always a square modulo `. Also, for any a ∈ F∗` , we can choose

split primes p ≡ (a/2)2 (mod `). This proves the result.

We now examine the characters χ1 and χ2 of the Galois representation ρE`,`. If p is
a split prime with 4p = u2 + `v2 for some u, v ∈ Z, then the characteristic polynomial
x2 − ap(E)x + p has a double root

χ1(σp) = χ2(σp) = (−1)(`2−1)/8
(u

`

) u

2

modulo `. If p is an inert prime, then the characteristic polynomial x2 + p has roots

χ1(σp) = ±
√
−p and χ2(σp) = −χ1(σp)

modulo `. Also, for any a ∈ F∗` , we can choose an inert prime p such that χ1(σp) = a
or χ2(σp) = a; indeed, we take p ≡ −a2 (mod `). We now determine how the sign
χ1(σp) = ±

√
−p is chosen. This will give the relation between χ1 and χ2.

Lemma 7.2 Let χ1 and χ2 be the characters of (2) for one of the curves E` defined above.
Suppose that χ1(σp) /∈ (F∗` )2 for some inert prime p. Then, for all inert primes p, χ1(σp) /∈
(F∗` )2 and χ2(σp) ∈ (F∗` )

2.
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Proof Let N be the normal subgroup of G(`) consisting of the elements fixing the complex
multiplication field Q(

√
−`). Then,

N =

{(
χ1(σp) ∗

0 χ2(σp)

)
such that p splits in Q(

√
−`)

}
.

Let h = ρE`,`(σp) for some inert prime p with χ1(σp) /∈ (F∗` )2. Then, hn =
(
−1 ∗
0 1

)
for

some integer n. Let g = hn. As G(`) is the disjoint union of the 2 cosets N and gN , for any
inert prime p, ρE,`(σp) can be written as

(
−1 ∗
0 1

)(
a2 ∗
0 a2

)
=

(
−a2 ∗

0 a2

)

for some a ∈ F∗` . This proves the result.

As we can always exchange χ1 and χ2 by an isogeny, we can suppose that χ1 and χ2 are
as in the lemma. Then, χ1 and χ2 are characters of order `− 1 and (`− 1)/2 respectively,
and

χ2 =

(
−`

·

)
χ1 = χ

(`+1)/2
1 .

As χ1χ2 = ω`, this is equivalent to χ1 = ω
a
` and χ2 = ω

`−a
` where a = (` + 1)/4. Together

with Lemma 7.1, this gives the last 4 entries of the table of Theorem 1.4.
If E is any other curve in the isomorphism class of E`, then E is a quadratic twist of E` by

some squarefree integer D. Let E`,D denote the twist by D of E`. If D 6= 1 and (D, `) = 1,
then S`(E`,D) = ∅ by Lemma 2.4 and Lemma 7.1. If ` = D, then E`,D is isogenous to E`. If
D 6= ` and ` | D, then E is the twist of a curve isogenous to E` and S`(E`,D) = ∅.

8 Exceptional `

` = 11: The modular curve X0(11) has genus 1, and X0(11)(Q) has 3 noncuspidal rational
points corresponding to the j-invariants j1 = −11 · 1313, j2 = −215 and j3 = −112.
The second j-invariant corresponds to complex multiplication by Q(

√
−11), and each j-

invariant has a model with conductor 112. With the notation of Cremona’s tables [4], let
E1 = E121A1, E2 = E121B1 and E3 = E121C1 such that j(Ei) = ji for i = 1, 2, 3. The
minimal equations for E1, E2, E3 are

E1 : y2 + xy + y = x3 + x2 − 30x − 76

E2 : y2 + y = x3 − x2 − 7x + 10

E3 : y2 + xy = x3 + x2 − 2x − 7.

For those curves, K1,K2 ⊆ Q(ζ11) because they are cyclic extensions of degree dividing 10
ramifying only at the prime 11 [16, Proposition VII.4.1]. Then,

χ1 = ω
a
11 and χ2 = ω

11−a
11
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for some 1 < a < 10, and

ap(Ei) ≡ pa + p11−a (mod 11).

By computing the first ap’s for each curve, one checks that E1, E2, E3 corresponds to a =
2, 3, 4 respectively (possibly after exchangingχ1 andχ2 by considering an isogenous curve).
The following congruences then hold:

ap(E1) ≡ p2 + p9 (mod 11);

ap(E2) ≡ p3 + p8 (mod 11);

ap(E3) ≡ p4 + p7 (mod 11).

This gives S11(E1) = {3, 4, 6, 7}, S11(E2) = {1, 3, 4, 5, 9} (all the squares, as shown in
Section 7), and S11(E3) = {3, 4, 5, 7, 10}.

For the complex multiplication curve E2, the twist by−11 is the isogenous curve E121B2.
Then for all twists E2,D of E2 by a squarefree integer D 6= 1,−11, S11(E2,D) = ∅ by Lemmas
2.4 and 7.1.

E1 is isogenous to the twist of E3 by−11, and for any twist ED of E1 or E3 by a squarefree
integer D 6= 1,−11, S11(ED) = {4, 7} by Lemma 2.4. Such a twist with minimal conductor
is E = E1089F, the twist of E1 by 3.

This proves Theorem 1.3 and Theorem 1.4 for ` = 11. Then, the case ` = 11 does not
fit Theorem 1.1. For any twist ED of E1 or E2 as above, S`(ED) = {4, 7} but K1K2 contains
Q(
√

D) because (
D

·

)
∈ ̂Gal(K1K2/Q).

` = 17: The modular curve X0(17) has genus 1, and X0(17)(Q) has 2 noncuspidal
rational points corresponding to the j-invariants j1 = −172 · 1013/2 and j2 = −17 ·
3733/217. Both curves (which are isogenous to each other by the rational 17-isogeny) have
a model with conductor N = 2 · 52 · 172 = 14450, namely

E1 : y2 + xy + y = x3 − 3041x + 64278

E2 : y2 + xy + y = x3 − 190891x− 36002922

(see [1, p. 80]).
One checks that the traces ap(E1) are surjective modulo 17 (and then also for the isoge-

nous curve E2). This is also true for the twists by −1, ±2, ±5, ±10, ±17, ±34, ±85 and
±170. This is then true for all other twists by Lemma 2.4.
` = 37: The modular curve X0(37) has genus 2, and X0(37)(Q) has 2 noncuspidal

rational points corresponding to the j-invariants j1 = −7 · 113 and j2 = −7 · 1373 · 20833.
The 2 j-invariants have a model with conductor N = 1225 = 52 · 72, namely

E1 : y2 + xy + y = x3 + x2 − 8x + 6

E2 : y2 + xy + y = x3 + x2 − 208083x− 36621194
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(see [12, p. 30]). Then, j(Ei) = ji for i = 1, 2 and E2 = E1/φ where φ is the rational
37-isogeny. In the notation of Cremona’s tables [4], E1 = E1225H1 and E2 = E1225H2.

We check that the traces ap(E1) are surjective modulo 37 (and then the traces ap(E2) as
the curves are isogenous). We then check surjectivity of the traces modulo 37 for all twists
ED of E1 with D = −1,±5,±7,±35. Together with E1 and E2, those twists are all curves of
conductor 1225 and j-invariants j1 and j2: there exists 8 such curves, in 4 isogeny classes.
Finally, one checks surjectivity for the twists by ±37, ±185, ±259, ±1295; they are curves
of conductor 52 · 72 · 372.
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