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SOME ASYMPTOTIC PROPERTIES OF SOLUTIONS 
OF A NEUTRAL DELAY EQUATION 

WITH AN OSCILLATORY COEFFICIENT 

JOHN R. GRAEF AND PAUL W. SPIKES 

ABSTRACT. The authors consider the nonlinear neutral delay differential equation 

\y(t) + P(t)y(8(t))](n) + Q(t)f(y(h{t))) = 0 

and obtain results on the asymptotic behavior of solutions. Some of the results require 
that P(t) has arbitrarily large zeros or that P{t) oscillates about — 1. 

1. Introduction. Recently the oscillatory and asymptotic behavior of the solutions 
of neutral delay differential equations (differential equations in which the highest order 
derivative of the unknown function appears both with and without delays) has been stud­
ied by a number of authors, for example see [1-15] and the references contained therein. 
Virtually all such results are for equations of the form 

(D) [y(t) + P(t)y(g(t))](n) + F(t,y(hi(tj),...,y(hm(t))) = 0 

with the majority of them being for n either one or two, g(t) = t — r, and ht(t) — t — at 
for / = 1,2,..., m. Furthermore, the function P is almost always required to either be a 
constant function or have its image to be a subset of either [Ai, —1], [—1, 0], or [0, À2] 
for some constants Ai and A2. In particular, Ladas and Sficas [8] showed that if/? and q 
are constants, q > 0, and n is odd, then the point p = — 1 is a bifurcation point for the 
behavior of the nonoscillatory solutions of the constant coefficient linear equation 

(Ec) WO +py(t - r)](n) + qy(t - a) = 0. 

More precisely, they showed that: 
(i) If p < —1, the absolute value of any nonoscillatory solution of (Ec) tends to +00 

as t —-> 00; 

(ii) If p — —1, every solution of (Ec) oscillates; and 
(iii) If p > — 1, any nonoscillatory solution of (Ec) tends to 0 as t —» 00. 

Ladas and Sficas [8, Theorem lb] also showed that if n is even and/? > — 1, then every 
nonoscillatory solution y(t) of (Ec) satisfies 

(*) y(t) —» 0 as t —• 00. 
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They also conjectured that if n is even and p = — 1, then (*) holds. Examples given in 
[8] showed that for n even and p < — 1 it is possible to have 

(**) |;y(f)| —• oo as f —KX> 

as well as (*). This led them to conjecture that if n is even, p < — 1, and y(t) ^ 0 is a 
solution with z(t) = y(t) + py(t - r) satisfying z(0(f)z(,'+1)(f) < 0 for / = 1,2,..., n - 1, 
then (*) holds. Xu [14] proved that both conjectures in [8] were true ([14, Theorems 1 
and 2]). In [14, Theorem 5], Xu proved that if n is even, p < - 1 , zik\t)z(k~l\t) > 0 for 
some k with 0 < k < n — 1, then (**) holds. Thus, by combining Theorems 2 and 5 in 
[14], if n is even and/7 < — 1, then any nonoscillatory solution of (Ec) satisfies either (*) 
or (**) (see Conjecture 1 in [2]). In another direction, and this is not applicable in the 
constant coefficient case, many of the results on the asymptotic behavior of nonoscilla­
tory solutions allow for cases like P(t) > 0 or P(t) < 0. While some authors have proved 
some oscillation results which allow for P(t) to oscillate, only the recent paper of Lu [12] 
on linear equations has results explicitly requiring P(t) to have arbitrarily large zeros. 

The discussion above gives rise to the following two questions. First, what effect 
does allowing the function P(t) to oscillate about — 1 and/or 0 have on the oscillatory 
and asymptotic behavior of solutions; and, second, does (ii) hold for nonlinear equations 
whenP(0 = - l ? 

Here we investigate these questions for the nonlinear equation 

(E) [y(t) + P(t)y(g(t))](n) + Q(t)f(y(h(t))) = 0 

where: n > 1; g, h, P, Q: [r0, oo) —> R are continuous with Q(t) > 0, g(t) < t, h(t) < t, 
g(t) —> oo and h{t) —•» oo as t —» oo; neither P nor Q is identically zero on any half line; 
and/: R —^ Ris continuous with uf{u) > 0 for u ^ 0. A number of our results will be 
for the case when g(t) = t — r, r > 0, i.e., for the equation 

(Er) \y{t) + P(t)y(t - r)](w) + Q(t)f(y(h(t))) = 0. 

For notational purposes we let 

z(t) = y(t) + P(t)y(t - r) and w(t) = y(t) + P(t)y(g(tj). 

We will also ask that 

(1) f(u) is bounded away from zero if u is bounded away from zero, 

and that 
TOO 

(2) / Q(s)ds =oo. 

Since we are only interested in the oscillatory and asymptotic properties of solutions, 
every solution y(t) of either (E) or (ET) considered here is assumed to be continuable and 
nontrivial, i.e., y(t) is defined on [ty, oo) for some ty > to and sup{|.y(0| : t > t\} > 0 for 
every t\ > ty. Such a solution will be called oscillatory if its set of zeros is unbounded 
from above and will be called nonoscillatory otherwise. We will say that either (E) or 
(Rr) is oscillatory if all its nontrivial continuable solutions are oscillatory. 
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2. Oscillation and asymptotic behavior. For use in the proof of our first result, we 

will say that P(t) has property (H) if: 

(H) for every t\ > to there exists T > t\ with the property that for 

each fixed t in [7, T + r] there is a nonnegative integer Nt such 

that P(t + Ntr) = -Pt > - 1 . 

We will also need the following result which was proved as a part of Lemma 2 in [2]. 

LEMMA 1. Suppose that, in addition to (1) and (2), there exists a constant P\ < 0 

such that P\ < P(t) <0.Ifn is even and y(t) is a nonoscillatory solution of (E), then 

w(t) < 0 (w(0 > 0)fory(t) > 0 (y(t) < O). 

Throughout this paper, proofs will be carried out only for the case when a nonoscil­

latory solution of the equation involved is eventually positive, since the corresponding 

proof for an eventually negative solution is similar in each case. We begin with a result 

for (Rr) where P(t) is allowed to oscillate about — 1. 

THEOREM 2. Suppose that, in addition to (l)-(2), n is even and there exists a con­

stant P2 < 0 such that 

(3) P2<P(t)<0. 

IfP(i) has property (H), then any nonoscillatory solution y(t) of(ET) satisfies y(t) —> 0 

as t —> 00. 

PROOF. Let y(t) be a nonoscillatory solution of (E^) such that y(t — r) > 0 and 

y(/i(0) > 0 for t > t\ > to. By Lemma 1, there exists h > t\ such that z(t) < 0 for 

t>t2\ since P(t) has property (H) and satisfies (3), there exists T > t2 such that for each 

tin [7, T + r ] , 0 > P(t + Ntr) — —Pt > — 1 for some positive integer Nt. Therefore, for 

each fixed tin [T,T + r ] , 

y(t + Ntr) + P(t + NtT)y(t + (Nt - l ) r ) = z(t + Ntr) < 0, 

and hence 

y(t + NtT)<Pty(t + (Nt-l)T). 

Iterating, we obtain 

y(t + (Nt +j)r) < P;ly{t + (Nt - l ) r ) — 0 

as j —» 00. Thus, for each fixed t in [T, T + r ] , y(t + kr) —• 0 as k —•> 00 and therefore 

y{f) —» 0 as t —> 00. 

If g a n d / satisfy ( l)-(2) and n is even, then the equation 

(Ei) y(t) + (s in/- ^ ) y ( r - ^ + fi(^(^(0)) = 0 
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satisfies all the hypotheses of Theorem 2. To see that P(t) — siiu — \ has property (H), 
let T > 0 be given and let t be any number in [7, T + | ] . We must show that there exists 
a nonnegative integer Nt such that 

3 P(t + Ntl)=sin(t + Ntl)--> - l 

or, 
sinu + iV,- ) = sin/cos(Aff- j + cosrsin(7Vr- ) > - . 

If \sint\ < \, then | cos r| > \. In this case, it suffices to let Nt = 1 if cos t > \ and 
Nt = 3 if cosr < —5. For | sinf| > 5, let M = 0 if sinr > \ and TV, = 2 if sinf < -\. 

Next we prove a result for (E) with P(t) oscillating about 0. 

THEOREM 3. Ifnis even, (l)-(2) hold, the set of zeros of P{t) is unbounded from 
above, and 

(30 Pi < P(t) < 0, 

then (E) is oscillatory. 

PROOF. Assume that (E) has an eventually positive solutiony(t), say v(gO)) > 0 and 
y(h(t)) > 0 for t > t\ > ô. Lemma 1 ensures the existence of t2 > t\ such that w(t) < 0 
for t > t2. Choose T > t2 such that P(T) = 0. Then y{T) = w(T) < 0 contradicting 
y(t) >0on[r i ,oo) . 

REMARK. The conclusion of Theorem 2 was obtained for equation (E) in [2, Theo­
rem 7] with g(7) increasing and with condition (3) and property (H) replaced by 

(4) -KP[ < P ( r ) < 0 . 

Notice that, in this connection, if (4) holds and (E^) has a nonoscillatory solution, then 
Theorem 3 implies that (3) eventually holds. Thus the upper bound imposed on P(t) in 
(3) is no more restrictive than that required by (4). Also, as a part of Theorem 1(b) in [5], 
it was proved that the nonoscillatory solutions of the linear equation 

(K) WO + P(0y(t - r)](w) + Q(t)y(t - a) = 0, 

satisfy the conclusion of Theorem 2 provided —1 < P[ < P(t) < P'( < 0 and Q(t) > q > 
0. The same conclusion was obtained as a part of Theorem 1(b) in [8] for equation (Ec) 
with — 1 < p and q > 0. In Theorem 1 and a part of Theorem 4 in [14], Xu showed 
that, for n even, the nonoscillatory solutions of an equation of type (Ec) with several 
delays satisfy the conclusion of Theorem 2 for p > — 1. Furthermore, he showed [14, 
Theorem 2] the same result for the eventually positive solutions of that equation when 
p < - 1 and z(i)(t)z(i"l\t) < 0, i = 1,2,..., n. Notice that none of these results apply to 
equation (Ei ) since they all require either P(t) > — 1 or P(t) = p. In this sense Theorem 2 
generalizes all of these results. 

Xu [14, Theorem 6] also proved that for n even and p > 0, all solutions of equa­
tion (Ec) (with several delays) oscillate. Notice that this result and Theorem 3 overlap 
when P(t) = p = 0. 

Next we state a lemma that was proved as a part of Lemma 1 in [2]. 
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LEMMA 4. Suppose that (1) and (2) hold and that y(t) is an eventually positive 
(negative) solution of(E). 

(a) Ifw(t) —-+ 0 as t —• oo, then ww(0 is monotonie, w(l)(f) —• 0 as t —• oo, and 
w®(t)wm\t) < Ofor i = 0 , 1 , . . . , n - 1. 

(b) Let w(t) —> 0 as t —> oo. If n is even, then w(t) < 0 (w(t) > 0) fory(t) > 0 

(y(t) < 0). / /« is odd, then w(t) > 0 (w(t) < O)fory(t) > 0 (y(t) < O). 

The following additional conditions on the functions / , g, h, and Q will be used in 
various places in the remainder of the paper. Assume that: 

(5) / is increasing, 

(6) / (« +v)</ («)+ / (v) if « , v > 0 , 

(7) / (« + v )> / (K)+/ (v ) i f« ,v<0 , 

(8) both hf and g are integrable on [to, b] for all b > to, 

and that there exist positive constants k\, fe, and q such that 

(9) h < g'(t), 

(10) 0 < h\t) < k2, 

and 

(11) Q(0>q. 

We will also assume that for each positive constant £3 there exists a positive constant A 
such that 

(12) \f(k3u)\ <Al/Xii)| for all ii. 

LEMMA 5. Suppose that, in addition to (5)-(12), there exists a positive constant P3 
such that 

(13) | P ( 0 | < P 3 . 

(a) Ifyif) is an eventually positive solution of(E), then either 

(14) w(i\t) —+ -00 as t —-> 00 

/<9r Ï = 0 , 1 , . . . , ft — 1, or 

(15) w(0(0 - * 0 as t -> 00 WI7/I w(0(r)w(,'+1)(0 < 0 

/or / = 0 , 1 , . . . ,n — 1. 
(b) Ify(t) is an eventually negative solution of(E), then either 

(16) w(i\t) —> 00 as t —> 00 
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for i — 0 , 1 , . . . , n — 1, or (15) holds. 

PROOF. Let y(t) be an eventually positive solution of (E) and let t\ > to be such that 
y{g(fj) > 0 and y(h(tj) > 0 on [tu oo). Then 

(17) win\t) = -Qw(y(h(t)j)<0, 

and therefore w{l\t) is monotonie for / = 0 , 1 , . . . , n — 1 and w^n~l\t) —•» L < oo as 
t —> oo. If L = —oo, then clearly w(0(7) —•+ —oo as / —> oo for / = 0 , 1 , . . . , n — 1. If 
L > — oo, then integrating (17) over [t, T] and then letting T —• oo yields 

w("-1}(0 = L + j T G(5)f (y(fc(5))) ds>L + q ff[y(h(s))^j ds 

by (11). Hence f[y(h(t))j G L^fcoo) and, in view of (8)-(10), it is easily seen that 

f(y(t)) and/N(g(0)) also belong to Ll[t0, oo). In addition, by (13), 

(18) \w(t)\<y(t) + P3y(g(t)). 

Since/ is increasing, it follows from (6) and (12) that 

(19) / ( | w « | ) <f{y(tj) +Af(y(g(tj))9 

for some A > 0, SO/(|M>(0|) ^ L 1 ^ , oo). Therefore, liminf^oo |v^(0| = 0 and, since 
w(t) is monotonie, w(t) —> 0 as t —> oo. We then have, by Lemma 4, that (15) holds. 

REMARK. While conditions (5)-(7) and (12) imposed on the function/ in the hy­
potheses of Lemma 5 may seem to be somewhat artificial, we observe that/(w) = w7, 
where 7 < 1 is the quotient of odd positive integers, satisfies these conditions. 

THEOREM 6. Let (5)-(13) hold. Ifn is even and P(t) is not eventually negative, then 
(E) is oscillatory. 

PROOF. Asssume that (E) has an eventually positive solution y(t). Then there exists 
t\ > t0 such that y(g(tj) > 0 and y(h(t)) > 0 for t > t\. Since P(t) is not eventually 
negative, (14) cannot hold. Thus, by Lemma 5, (15) holds. In particular, n even implies 
that w(t) is negative and satisfies w(t) —> 0 as t —• oo. But w(t) < 0 contradicts P(t) not 
eventually negative. 

REMARK. When Q(t) and P(t) satisty (11) and (13) respectively and P(t) is not even-
tuually negative, equation (E^) satisfies all hypotheses of Theorem 6. Consequently, The­
orem 6 generalizes Theorem 7 in [5]. Theorem 6 also generalizes Theorem 2 of Lu [11], 
who considered the linear equation (E') with several delays. Whether or not the conclu­
sion of Theorem 6 remains valid for nonlinear equations under hypotheses less restrictive 
than (5)—(13) is still an open question. In this connection, we note that it has been proved 
[2, Theorem 5], that (l)-(2) and P(t) not eventually negative are sufficient to ensure that 
any solutiony(t) of (E) is either oscillatory or satisfies liminf^oo \y(t)\ = 0. 
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Theorem 6 implies that the equation 

(E2) y(t)+-(smt)y(t-\) 
(n) 

+ (2 + c o s 0 r 0 - 2 ) = 0, 

t > 2, is oscillatory for n even. Notice that while P(t) = \ sin t has arbitrarily large zeros, 
Theorem 3 does not imply that (E2) is oscillatory since P(t) changes sign on every half 
line [t, 00), t > to, and hence (3') is not satisfied. 

The next result is for the case when n is odd. 

THEOREM 7. Suppose that (5)-(13) hold and that n is odd. If P{i) > 0, then any 
nonoscillatory solution y(t) of(E) satisfies y(t) —> 0 as t —> 00. 

PROOF. Let y(t) be an eventually positive solution of (E), say y(g(0) > 0 and 
y(/*(0) > 0 for t > t\ > to. Now P(t) > 0 makes (14) impossible, so by Lemma 5, 
(15) holds. But then y(t) —• 0 as t —» 00 since y(t) < w(t). 

The equation 

(E3) [y(0 + (1 + sint)y(t - l)]*2*"» + (2 + cos t)yi(t-2) = 0, 

k>l, satisfies all the hypotheses of Theorem 7. 

REMARK. The conclusions of Theorems 6 and 7 were obtained in Theorems 11 and 
12 respectively in [2] under the hypotheses that (11) holds and that there exists a positive 
constant A1 such that 

(20) \f(u)\ >Ai|w|forallW. 

Notice that the theorems in [2] do not apply to equations (E2) and (E3) since the function 
f(u) = uî in both these examples fails to satisfy the inequality in (20) for \u\ > 1. Thus, 
Theorems 6 and 7 in this paper are independent of Theorems 11 and 12 in [2]. Also, 
Theorem 7 generalizes a part of Theorem 1(b) in [5]. Xu [14, Theorem 4] proved a result 
like Theorem 7 for linear equations with constant coefficients and several delays under 
the assumption that P(t) = p > — 1. 

Next, we obtain a boundedness result for the nonoscillatory solutions of (Er), with 
P(t) allowed to change signs, by requiring a modified version of (20), namely, that there 
exist positive constants B and C such that 

(21) \f(u)\ > B\u\ for \u\ < C. 

THEOREM 8. Suppose that (5)-(8), (10)-(12), and (21) hold and that there exists a 
constant P4 such that 

(22) -l<P(t)<P4-

Then every nonoscillatory solution of(ET) is bounded. 

PROOF. Let y(t) be a nonoscillatory solution of (E^) such that y(t — r) > 0 and 

T (h(f)) > 0 for t > t\ >to. First observe that (9) is satisfied, since g(f) — t — r, and that 
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(22) implies (13). Therefore, the hypotheses of Lemma 5 are satisfied, so either (14) or 
(15) holds. If (14) holds, we have, by (22), that -y(t - r) < z(t) —* -oo as t —• oo, so 
y(t) —+ oo as t —> oo. But, again by (22), y(t) = z(t)—P(t)y(t—r) < y(t—r) contradicting 
y(t) —•» oo as t —> oo. Hence, we conclude that (15) holds. 

If n is odd, there exists ti > t\ such that 0 < z(t) < C for t > ^. Furthermore, 
from the proof of Lemma 5, we have/(z(0) £ Ll[to,oo) which, together with (21), 
implies that z(t) G L1 [fo, oo). Now z(f) G L1 [to, oo) and monotonie implies that the series 
E£li z(t + £r) converges uniformly on [7, 7 + r] for any 7 > to- Thus, there exists a 
positive integer N such that for all k, E^^+i z(t + IT) < 1 for every f in [7,7 + r]. But 

£ z(t + £T) = y(f + (N + &)T) + P(f + (iV + l)r)y(t + Wr) 

+ J2[l+P{t + (N+j)r)}y(t+(N+j - l)r) 
7=2 

which implies, in view of (22), that for all k 

y(t +(N + k)r) < 1 + y(t + Nr) 

for each / in [7, 7 + r]. Hence y(t) is bounded. 
If « is even, then z(t) < 0 by (15) and so P(t) is eventually negative. Now if y(t) is 

unbounded, i.e., limsup^^y(t) = oo, then there is an increasing sequence {sk} —^ oo 
as k —» oo such that P(0 < 0 for t > s\, 

v(^) —-» oo as k —-> oo, and y(sk) = max{_y(0 : t\ < t < sk}. 

We then have 

z(sk) = y(sk) + P(sk)y(g(sk)) > y(sk) + P(sk)y(sk) = (l + P f e ) ) ^ ) > 0 

which contradicts z(0 < 0. Thus y(t) is bounded. 

COROLLARY 9. Suppose that (5)-(8), (10)-(12) and (21) hold. If' n is odd and 
P(t) = — 1, f/i£M (EJ w oscillatory. 

PROOF. Assume that (E?) has a nonoscillatory solution y(t). By Theorem 8, y(t) is 
bounded. But under hypotheses implied by (5) and (11), Theorem 8 in [2] shows that 
\y(t)\ —•» oo as t —•> oo contradicting the boundedness of ;y(f). 

REMARK. Notice that the equation 

(E4) MO ~ y(t - T)f2k~l) + QODy1 (h(t)) = 0, 

k > 1, satisfies all the hypotheses of Corollary 9 for any /z and Q satisfying (8) and 
(10)-(ll),and7 < 1 the quotient of odd positive integers. Hence, Corollary 9 generalizes 
Theorem 2(ii) in [8] and the single delay case of the corollary in [11]. Corollary 9 also 
gives an affirmative answer to the second question raised in the Introduction. As a part 
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of Theorem 6 in [14], Xu extended the result of Ladas and Sficas [8, Theorem 2(ii)] to an 
equation of type (Ec) with several delays. Thus, Corollary 9 also generalizes Xu's result 
for the case of one delay. 

In our final theorem we replace condition (22) in Theorem 8 by the more restrictive 
condition that there exists a constant P5 such that 

(23) - 1 <P5 <P(t) <P4 

and obtain the following sharper conclusion. 

THEOREM 10. If conditions (5)-(8), (10)-(12), (21), and (23) hold, then any non-
oscillatory solution y(t) of(ET) satisfies y(t) —• 0 as t —> 00. 

PROOF. Let y(t) be an eventually positive solution of (Er), say y(t — r) > 0 and 
y(/z(0) > 0 for t > t\ > to. Then by Theorem 8, y(t) is bounded. Let T be any number 
satisfying T > t\ and suppose there exists t in [T, T+T\ such \hdXy{t+kr) -f* 0 as k —»• 00. 
Then there is a subsequence {kj} of {k} such that y(t + fyr) —> K > 0 as 7 —> 00. Choose 
À > 0 so that 0 < P6 — X — P$ < 1; then, since z(t) —> 0 as / —> 00, there exists a 
positive integer TV such that z(f + AV) < \y(t + (N — l)r). Hence we have 

y(t + Wr) = z(t + NT) - P(t + Nr)y(t + (JV - 1 )r) 

< Ay(f + (iV - l)r) - P5y(t + (N- l)r) 

= P6y(r + (7V-l)r). 

Iterating, we obtain 

y(r+(7V+£)r) < (P6)t
+ly(t+(N- l)r), 

£ = 0,1,2, The last inequality implies that y(t + kr) —-» 0 as /: —> 00 which is a 
contradiction. Thus, we conclude that for each fixed t in [T, T + r],y(t + kr) —• 0 as 
k —» 00 and therefore y(0 —->• 0 as / —> 00. 

REMARK. Notice that while the conclusions of Theorems 7 and 10 are identical, the 
conditions imposed on the functions/, g and P in the two theorems are different so that 
neither theorem implies the other. 

REMARK. AS noted in the remark following Theorem 7, the conclusion of Theo­
rem 10 was obtained for equation (E) in [2, Theorem 12] under the hypotheses that (11) 
and (20) hold and that (23) holds with P5 > 0. Also, Theorem 10 generalizes a part of 
Theorem 1(b) in [5] and, for one delay, Theorem 1 in [11]. 

It follows from Theorem 10 that all nonoscillatory solutions of equation (E2) tend to 
zero as t —» 00. Since P(t) = \ sin t changes sign for arbitrarily large t, none of the results 
cited in the preceeding remark apply. Also, observe that Theorem 7 does not apply to (E2) 
with n odd. In this regard, also notice that the equation 

y(f) + (1 + sin t)y(t — - tanhf 
in) ! 

+ (2 + cos0 j I ( ^ -2 ) = 0, 
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t > 2, satisfies all the hypotheses of Theorem 7, but g(t) = t — \ tanhf does not satisfy 
the hypotheses of Theorem 10 which requires a constant delay. 

In conclusion, we would like to point out a couple of directions for further study. First 
of all, it would be interesting to see which of the results in this paper carry over to the 
case where Q(t) < 0. Secondly, any results on the behavior of solutions of forced neutral 
equations, whether analogous to the theorems in this paper or not, would be of interest. 
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