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1. Introduction

In this paper we investigate certain aspects of the multiparameter spectral theory of
systems of singular ordinary differential operators. Such systems arise in various
contexts. For instance, separation of variables for a partial differential equation on an
unbounded domain leads to a multiparameter system of ordinary differential equations,
some of which are defined on unbounded intervals. The spectral theory of systems of
regular differential operators has been studied in many recent papers, e.g. [1, 3, 6, 9, 19,
21], but the singular case has not received so much attention. Some references for the
singular case are [7, 8, 10, 13, 14, 18, 20], in addition general multiparameter spectral
theory for self adjoint operators is discussed in [3, 9, 19].

The questions considered in this paper relate to the geometry of the spectrum of the
system as a subset of Uk. We prove various results on the structure and location of
certain subsets of the spectrum. In addition we consider some aspects of the oscillation
theory of the eigenfunctions of the differential operators.

In Section 2 we introduce some notation and definitions and describe the main
assumptions that will be imposed on the multiparameter systems considered. In
particular we will assume throughout the paper that the system is "right definite" in a
sense specified below. This condition is standard in multiparameter spectral theory, see
[19], Also in Section 2 we discuss certain cones in Uk which will be used later to discuss
the distribution of various points of the spectrum.

An abstract multiparameter system satisfying the conditions of Section 2 is considered
in Section 3 and the location and structure of the spectrum is investigated. The methods
used are mostly variational and are similar in spirit to those of [3].

In Section 4 a particular class of singular differential operators is defined and it is
shown that the resulting multiparameter system satisfies the hypotheses of the previous
section. In addition the detailed structure of the operators enables us to deduce more
precise information concerning the spectrum than was available in Section 3. We also
consider the oscillation properties of the eigenfunctions of the differential system and
relate these to a subset of the spectrum defined in Section 3.

The operators considered in Section 4 are singular in the sense that their intervals of
definition are semi-infinite (of the form [a, oo)). Other types of singularity could also be
considered using similar methods, e.g. intervals of the form (— co, oo) or singular
coefficients in the differential operators. In addition a combination of regular and
singular differential operators could be considered.
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50 B. P. RYNNE

Finally, in Section 5, we consider the question of the number of eigenvalues of the
multiparameter system. In the regular case there are necessarily an infinite number of
isolated eigenvalues of finite multiplicity having no finite point of accumulation.
However, in the singular case, this need not be true. We give sufficient conditions which,
when satisfied, determine whether the number of isolated eigenvalues of finite
multiplicity is finite or infinite.

2. Notation and definitions

Suppose we are given infinite dimensional Hilbert spaces Hr, r=l,...,k, and let Ur

denote the set {ure//r: | |ur| | = l}. Let U be the set

Now suppose that we have self adjoint linear operators Tr, Vrs,r,s—\,...,k, such that:

(i) Vrs:Hr-*Hr is bounded, r,s=\,...,k;

(ii) Tr:D(Tr)cHr->Hr is bounded below, r=l,...,k.

For any ur e Ur let vrs(ur) = (Vrsur, ur), and define the matrix

[>rs(ur)], ueU.

We assume that there exists <5>0 such that

detF(u)^(5, for all ueU. (2.1)

This condition is known as right definiteness and is a standard assumption in
multiparameter theory.

For any vectors X,peUk the notation Xfi will be used for the usual inner product in
Uk, i.e. &'fi = Yjs=i ̂ s > a n d if M is a kxk matrix MX denotes the usual multiplication
of a matrix and a vector. Also, if S is a topological space and A <= S then the notation A
denotes the topological closure of the set A in S.

We now introduce some subsets of Uk which will be useful in the discussion of the
geometry of the spectrum. Note that a partial order ^ can be defined on Uk by

Hr, r = l , . . . ,k, X,fieUk.

Definition 2.1. Let 0 denote the vector (0, . . . , 0) e R\ and define the sets

C = {XeUk:V(u)Xg:0 for some ueU},

C + = {AelR*:there exists WeV(U) such that

where V(U) denotes the set {V(u):ueU}.
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MULTIPARAMETER SPECTRAL THEORY 51

It is obvious that CczC^ and the sets C,C+, are cones (a set / idR* is said to be a
cone if aeA=>aaeA for all numbers a^O). These cones have been used in several
papers e.g. [1, 3] and a detailed discussion of their geometry is contained in [5]. In
particular Theorem 4.4 and Corollary 4.6 of [5] shows that the right definiteness
condition (2.1) implies that C + = C and that C + does not contain a line.

Lemma 2.2. For any k,(oeUk the set A=(k + C+)r\((o — C+) is compact.

Proof. Note that the set A may be empty. We regard the empty set as compact. The
set A is closed since C+ is closed. Now suppose that A is unbounded and let /i",
n = l ,2 , . . . , be a sequence of points in A with | | / I " | | - K » as M-KDO. Define v"=(l/||/i"||)|i"
and let v"->v as n-*oo (by choosing a subsequence if necessary). Since C + is a closed
cone it follows that v e C + and ve— C + . Thus v and — v belong to C+. This implies
that C + contains a line, which contradicts Theorem 4.4 of [5], and hence the set A must
be bounded. •

Finally we define a cone D by

Definition 2.3.

D = {keUk: there exists C<0 such that K(u)A£(C,...,O, for all ueU}.

It is shown in [4] that (2.1) implies that D is not empty. It is obvious that DczC.
The multiparameter spectrum of the system of operators [7^, Vrs~], will now be defined,

together with various subsets of the spectrum. If T is a linear operator in a Hilbert
space H we let a(T) denote the usual spectrum of T.

Definition 2.4. Define the operators Wr(k) in the spaces Hr, r = 1,. . . , k, by

WXk) = Tr+ £ XsVrs, D{WXk)) = D{Tr), AeC*.
s=l

The spectrum, a, of the multiparameter system [7^, Vrs] consists of the set of points
keCk such that

Oeo(WXi.)),r=l,...,k.

This definition of the spectrum coincides with the definition via spectral measures
used in [9, 19] (see [19, Theorem 4.7]).

It is well known that the right definiteness assumption (2.1) implies that aaUk,
therefore we need only consider the operators Wr(k) for values of k £ Uk. For these values
of k the operators W^k) are self adjoint. The spectrum can now be partitioned into
various subsets. First we consider the case of a single operator.
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Definition 2.5. Let T be a self adjoint operator in a Hilbert space H. A point
Xea(T) is said to be an eigenvalue of T if there exists a non zero vector ueH such that
Tu = Xu. The vector u is an eigenvector. The multiplicity of the operator T at X is defined
to be m(T,X) = DimN(T—XI), where N(T—XI) denotes the null space of the operator
T—kl. If A is not an eigenvalue the multiplicity of T at k is zero.

A point kea(T) is said to be in the essential spectrum of T, ae(T), if there exists a
sequence of unit vectors u"eH such that

asn-*oo,

but u" has no strongly convergent subsequence.
A point kea{T) is said to be in the point spectrum of T, ap{T), if k is an eigenvalue of

Tand k$oe{T).

Note that there are several definitions of the essential spectrum of an operator in the
literature (see [12, 15]), not all of which are equivalent to each other. Our definition of
the essential spectrum is based on [15, p. 14] and contains the essential spectrum of
Dunford and Schwartz, together with any eigenvalues of infinite multiplicity. Also our
definition of the point spectrum is smaller than the usual definition in that it does not
contain eigenvalues which lie in the essential spectrum.

We now consider a similar partition of the multiparameter spectrum.

Definition 2.6. A point Xea is said to be an eigenvalue of the multiparameter system
[Tr, Vrs] if 0 is an eigenvalue of each of the operators Wr(X), r=l,...,k. The multiplicity
of the system at A is defined to be the vector m(A)=(m1(A),...,mk(X)), where mr{X) =
m(Wr(X), 0) is the multiplicity of the operator Wr(X) at 0. We say that an eigenvalue A has
finite multiplicity if and only if mr(X) is finite for each r.

The essential spectrum, ae, of the multiparameter system, [7^, Vrs], consists of the set
of points A e a for which

0ece(Wr(X)), r=l,...,fc.

Similarly Xea belongs to the point spectrum ap if

0eap(Wr(X)), r=\,...,k.

Finally Xea is said to be in the mixed spectrum, <xm, if Xeo\{oe<uop}.

The above definitions of the subsets of the multiparameter spectrum rely on the
operators Wr(X) rather than the spectral measure of the system as defined in [9] or [19].
It can be shown that the set ap as defined above coincides with the set of isolated points
in a whose associated spectral projections have finite dimensional ranges.
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3. Geometry of the spectrum

Having defined various subsets of the spectrum above we now consider the
geometrical structure of these subsets. Firstly we describe certain variational results for
self adjoint operators which will be required below.

Suppose that the operator T, defined in the infinite dimensional Hilbert space H, is
self adjoint and bounded below. Let

(if ae(T) is empty then we put pe(T) = ao), and let (fp(T)<=ap(T) be the set of eigenvalues
AeCTp(T) for which X<pe(T). The set a'p(T) has the form

where p'(T) is an increasing sequence of numbers and we assume that the number of
occurrences of an eigenvalue X in the sequence p'(T) is equal to the multiplicity of the
eigenvalue. The number N(T) may be a finite integer or infinity. If N(T) = 00 then

Using the minimax principle, [22], we can define the numbers

j

where £' c H is an arbitrary i dimensional linear subspace of H. It can easily be shown,
using the definition of the essential spectrum, that for i^N(T), yi(T) = p'(T), while for
i>N(T), y'(T) = pe(T) (if JV(T) = 00 then y'{T) = p'(T) for all i^O). Thus applying the
minimax principle to the operator T yields the set a'p and the point pe{T).

Now suppose that B is a bounded, self adjoint operator on H and let

b+ = sup{(Bu, 11):IMI = 1}, b~ = inf {(Bu,u):||u|| = 1}.

Applying the minimax principle to the self adjoint operator S=T + B produces the
numbers y'(S). It can be seen from the definition of the / that we have

yi(T) + b-^yi(S)^yi(T) + b\ i = 0,l,.... (3.1)

Thus the numbers y\S) depend continuously on the perturbation B in the sense that the
y'{S) can be made arbitrarily close the y'(T), uniformly in 1, by choosing ||B|| small
enough.

These results can now be applied to the multiparameter operators Ŵ (A) defined in
Section 2. We use the notation pf = pe(Tr), pe

r{k) = pe(Wr{X)), yJ(A) = y'(Wr(A))) for each
k e Uk. Since the operators Vrs are bounded it follows from the above remarks that the

are continuous functions of k e Uk for all i and r.
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Definition 3.1. The subset a'p of the multiparameter point spectrum is defined to be

The above variational results provide information about the portion of the spectrum
of T below pe(T), i.e. below the lowest point of the essential spectrum. For certain types
of operators this information is sufficient to determine the location of the complete
spectrum of the operator.

Definition 3.2. The self adjoint operator T is said to be of type SD if oe(T) =

i>m°o).
The multiparameter system [7^, Vrs] is said to be of type SD if, for each AeR*, the

operators W£i), r = l,...,k, are of type SD.

If the operator T is of type SD then obviously &p{T) — ap(T) and a knowledge of the
set o'p(T) and pe(T) (as provided by the minimax principle) completely determines the
location of o(T). In the case of a multiparameter system of type SD we also have
o'p = <jp. The singular differential operators which we will encounter in Section 4 will be
shown to be of type SD.

This completes the preliminary discussion and we may now begin our consideration
of the multiparameter spectrum. For ease of presentation we deal with the point
spectrum and essential spectrum first and then briefly consider the mixed spectrum in a
similar manner.

Let N denote the set of positive integers i^O and define a multi-index to be a vector
of the form i = (ij, , ik)ehlk. Since the points y\(k) are defined via the minimax
principle the following theorem can be proved in the same manner as Theorem 2 of [3].

Theorem 3.3. Corresponding to each multi-index i6Nk, there is a unique point Xea
such that yW) = 0,r=l,...,k.

We define the set A = {A':ieM*}. In view of the above discussion it can be seen that
the points A1 € A need not be multiparameter eigenvalues of finite multiplicity as they are
in [3] where essential spectrum does not occur. Also there may be points in ap which
are not in the set A. However the following result holds.

Theorem 3.4.

Proof. Suppose that Xea'p. Then, by definition, Oea'p(Wr(i.)) for each r, so it follows
from the above variational results that y';(X) = 0 for some ir. Hence A = A' for some multi-
index i. •

We now consider the location, in Uk, of part of the spectrum.
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Theorem 33. Let i, j be multi-indices with i g j . Then X'eX' + C+. If k is such that
pe

r(X)^0 for all r then XeX' + C+ for all ie N*.

Proof. Choose arbitrary multi-indices i,j with i ^ j and let £„ be a sequence of
numbers such that en>0 and en-*0. Given any integer n it follows from the minimax
principle and the definition of X' that there exist subspaces E';cHr such that dim£j.'=ir

and

inf {(Wr(X')ur,ur):ureUrn D(Tr) n £ " } £ - e n .

Now let

5, = inf {(Wr(#)ur, ur): ureU,n D(Tr) n E^}.

Since j ^ i it again follows from the minimax principle, and the definition of X', that
<5rg0. Hence we may choose u"re Ur n D(Tr) n El;L such that {Wr(X')un

r, U?) ^e n . Thus

, «3 - (Wr(X'K, K) ^ 2en

and so

V(u")(X> - X) Z 2en, en=(en, ...,en)e Uk. (3.2)

Repeating this construction for each n gives a sequence u" e U. Now let the matrix M be
an accumulation point of the sequence of matrices V(u") (M exists since the Vrs are
bounded and so the set {V(u")} is bounded). Inequality (3.2) shows that M(A>—A')^0
and hence X1 — X'eC+. The second part of the theorem is proved similarly. •

An immediate consequence of this theorem and the previous one is that ap u oe <=

Theorem 3.5 shows that the points A'eA are ordered in a similar manner to those of
Binding and Browne in [3], using the cone C + instead of C. The cone C could have
been used in Theorem 3.3 if we restricted attention to points A',k'e(j'p, however at
present we have no guarantee that ap is not empty. This question will be considered in
Section 5.

The geometry of ae will now be considered in more detail. To ensure that ae is non-
empty we require the following assumption.

Condition F. The number pe
r is finite for each r=l,...,k.

Note that the minimax principle and (3.1) implies that Condition F holds if and only
if p%X) is finite for all X e IR\ In particular Condition F is a necessary condition for ae to
be non-empty.

Lemma 3.6. / / Condition F holds then there exists a point X* e Uk such that pe,(X*) ̂  0,
r=l,...,k. For any such point, k*, and any multi-index i eW\ X*ei.'
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Proof. Choose an element fieD and consider the operators

By Definition 2.2 the operator ^=iH,Vn is negative definite so it follows from
Condition F and (3.1) that, for large enough a, X* ea.fi is an appropriate choice. The
second assertion follows from Theorem 3.5. D

Lemma 3.7. / / Condition F holds then A is contained in the compact set A =
(X° + C+)n(X*-C+), where X* is as in Lemma 3.6.

Proof. The result follows from Lemma 2.2, Theorem 3.5 and Lemma 3.6. •

Note that the set A in the above lemma is non-empty since X*eX° + C+, by Lemma
3.6. A similar remark applies to other sets, to be defined below, having the same form as
A.

Now, for any integer t, let t denote the multi-index (t,..., t).

Lemma 3.8. / / Condition F holds then the limit lim^^A1 exists and is finite.

Proof. It follows from the compactness of the set A in Lemma 3.7 that the set
{A':teN}c/4 must have an accumulation point fie A. Theorem 3.5 and the closedness
of C+ shows that X'efi — C+ for all ieNk. Now suppose that the increasing sequence
tn, n = l,2,..., is such that X'"->fi as n->oo. Then it can be shown, as in the proof of
Lemma 2.2, that the sets An={X'" + C+) n(fi — C+) converge to the point fi. Thus /'->/i
as t-*co, since X'eAn for all t^tn.

We will use the notation Ae = limt_0O k\ It should be observed that in this limiting
process the multi-indices t tend to infinity along the line generated by the multi-index
(1 1). However it can easily be shown, in a similar manner to the proof of Lemma
3.8, that the same limit, Xe, is obtained if any other sequence of multi-indices is chosen,
so long as each of the sequences of the components of the multi-indices tend to infinity.

Theorem 3.9. / / Condition F holds then

and the set (X° + C+)n(Xe — C+) is compact. In addition, if the multiparameter system is
of type SD, then
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Proof. Consider the operator W^X") for any r. By definition the ( t+ l ) ' t h eigenvalue
of Wr{X') is zero and X'->Xe as t->oo. So, by the remarks following (3.1), it can be seen
that y'{Wr(X

e))->0. Thus Oeoe(Wr(X
e)), and so Xeeae. If Xecre then XeXl + C + for all t

and, since C + is closed, this implies that XeXe + C+, thus aeczXe + C+. Now, for any
multi-index j , it follows from Theorem 3.5 that X'eX' + C+ for all t large enough, so
letting t-»oo gives XesX' + C+. Hence Theorem 3.5 shows that A<=A = (X° + C+)r\(Xe

— C+). The compactness of the set A follows from Lemma 2.2. Finally, for any fie D, we
have pe

r(X
e + fi)Spe

r{Xe)^0, r=l , . . . , fc , (using (3.1) and the definition of D) so, if the
system is of type SD, we must have Oeae{Wr{Xe + n)). •

We now consider the mixed spectrum of the system and attempt to obtain results
analogous to those obtained above for this set. For simplicity of notation we will only
consider the subset of am given by

<C = {XeUk:Oe(Tp(WAX)),r=l,...,n,OealJ(WXX)), r = n + l,...,k},

where n is an integer, n < k. The notation crJJ,(T) will denote the set

where f=(?i,...,fB)eN".
The following results are similar to the above results for the essential spectrum and

can be proved in the same way. IfTeM" and jef^l* then j ^ T m e a n s jr^7r, r=l,...,n.

Theorem 3.10. Let T, j be multi-indices with j ^ T and let Xea"J\). Then XeX' + C+. In
particular if j = (T, j'), where j 'eNk~n, then XeX' + C+ for all j ' e N * ~ n .

This theorem, together with the previous results, proves the following corollary.

Corollary 3.11.

In considering the mixed spectrum a"m we only require the following finiteness
condition rather than Condition F.

Condition F'. pf<co, r = n + l,...,k.

As in the case of the essential spectrum this condition is necessary for a"m to be non-
empty.

Lemma 3.12. Suppose that Condition F' holds and choose any ieW". Then there exists
a point X*(i)eU" such that y^*(T))gO, r = l , . . . , n , p ^ * ( i ) ) g O , r = n+l,...,k. For any
such point, A*(i), and any multi-index j ^ i , X*(i)eX' + C+.

For any TeN" and any integer, t, let (T,t) denote the multi-index (i1,...,7n,t,...,i)€Nk.
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Lemma 3.13. If Condition F holds then, for any leM", the limit >l'n(T) = lim,
exists and is finite.

Theorem 3.14. / / Condition F holds then, for all Te N",

and the set (k° + C+)n (Am(T)-C+) is compact.

We now show that the set a^,(i) is a subset of a k — n dimensional continuum in the
sense of the following theorem.

Theorem 3.15. / / Condition F' holds then, for each leN", there exists a continuous
function A':Uk~"->Mk, such that (7̂ (1) is a subset of the range of k' in Uk. If the system
is of type SD then there exists a continuous function ij/':Mk~''->Uk~'' such that

for some /leR""" and

Proof. Theorem 1 of [3] shows that we may make an invertible transformation
k-*X, and a corresponding transformation of the array [^ J ] -»[^a] , such that the sub
array [?„]",= i is right definite. Now writing ti=(Xu...,Xn), /t = (X+1,...,Xk), we may
consider the first n equations of the transformed system as a perturbed multiparameter
system with q as the spectral parameter and p a perturbation parameter. By the
construction of the above transformation this multiparameter system is right definite for
each p and the perturbation depends continuously (in norm) on ft. It follows that, for
each ft, the points ti'(ft) can be defined as above, via the minimax principle, for each
TeN". In addition the proof of Theorem 2 of [3] shows that the functions tf(fi) are
continuous functions of fi.

Now, by definition of a"Ji), a necessary condition for A e er£,(T) is that X is of the form
(tf(n),n) for some JI and p*(A)^0 for r = n+l,...,k. This proves the first part of the
theorem. If the system is of type SD then this condition is also sufficient thus, since pe

r(k)
is a continuous function of k, the theorem is proved. •

The above discussion of the set (fji) suffers from a similar problem to that of the
discussion of a'p and A, namely that 0 need not belong to the point spectrum of the
operators Wr(X'), r=\,...,n. Thus the sets CT^(T) need not actually be subsets of <fm, or
even of am. Also there may be points in a"m that are not in any ô ,(T) in the same way
that a'p need not equal ap. If the system is of type SD then the latter problem does not
arise, however the former problem remains. A particular situation in which this problem
does not arise is when it is known that the operators W^k), r = l , . ..,n, have an infinite
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number of points in the point spectrum below the essential spectrum. In this case it
follows that 0 must belong to the point spectrum of the operators WAX), r = l,...,n, see
the proof of Theorem 3.4. If the operators Tr have compact resolvents for r=\,...,n,
then this situation holds. In Section 5 we describe sufficient conditions for this to be so
for a class of singular differential operators which do not have compact resolvents.
These operators will also be shown to be of type SD so neither of the above problems
occurs when the conditions of Section 5 are satisfied.

Since the perturbation used in the proof of Theorem 3.15 depends linearly on /i, and
so is analytic, the continuity assertions of the theorem can be improved upon in certain
circumstances. For instance suppose that the null spaces are necessarily at most 1
dimensional (this is true for the differential operators discussed below). Then analytic
perturbation theory of multiparameter eigenvalue problems shows that if, for some ft,
the point i/T(/i) is an eigenvalue of the perturbed subsystem used in the proof of Theorem
3.15 then the function î  is analytic near fi (see [17]). Thus, if it is known that 0 ,̂(1) CCT£I
(see the above remarks), then the functions k' of Theorem 3.15 are analytic.

4. Singular differential operators

In this section we describe an important class of multiparameter systems for which
the abstract theory of the previous section is applicable. In addition more precise
information is available in some respects.

Consider the following multiparameter system of differential equations

r) — uAxr)\ + qAxr)uAxr)+ £ Asvrs(x,)ur{xr) = 0,
dxr } s = i

r=l,...,k, (4.1)

on the open intervals xreIr = (ar, 00), where ar is a finite number, r=l,...,k. We assume
that the functions pr,qr,vrs, r,s = l,...,k, are real valued and continuous on the closed
intervals Tr and the vrs are bounded. In addition suppose that the functions pr are
continuously differentiable and there exists <x>0 such that pr(xr)^a for all x r e / r ,
r=l,...,k.

The one parameter spectral theory of singular differential operators of this type is
studied extensively in e.g. [2, 12, 15, 16]. Other types of singularity could also be
considered in a similar manner, as could the case where some of the operators are
singular and some regular. Examples III and IV of [20] are of the above form. Some
aspects of the multiparameter spectral theory of differential operators defined on
intervals of the form ( — 00,00) and having periodic coefficients are considered in [10,
18].

We remark that most of the results on differential operators that we require are
contained in [12], however in [12] the coefficient functions are assumed to be C°° so we
usually refer to other sources.

Letting L2(/r) denote the Hilbert space of square integrable functions defined on Ir we
define bounded self adjoint linear operators Vn:l}(Ir)-*l3(Ir) by

(Vrsur)(x,) = v,J(xr)ur(x,), u,€ L2(Ir), r = 1, . . . , * .
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Now let Co(Ir) be the set of infinitely differentiable functions with compact support in Ir

and define the operators Tr:C$'(Ir)-+l3(Ir) by

d ( d \
(7>r) (xr) = - — I pr(xr) — ur(xr) 1 + qr(xr)ur(xr), ur e C£(/r), r = 1,..., k.

The operators fr are symmetric linear operators in the spaces L2(/r) (see [15, p. 22]). We
can now choose self adjoint extensions Tr of the operators tr (see [15, p. 24]), which
leads to the Hilbert space realization of the system (4.1)

In order to apply the theory of Section 3 we require the definiteness condition

det [yrs(xr)] ^ /?, for all xr e Ir, r = 1,..., k, (4.3)

for some /9>0. This condition corresponds to the abstract right definiteness condition
(2.1). In addition to the above assumptions we suppose that the following limits exist
and are finite

pr°° = lim pr(xr), qf = lim qr(xr), v% = lim vrs(xr), r,s=l,...,k.
x^ -* oo xr -* oo xf -* co

Now let F00 be the matrix with components (F°°)rs = i£, and define qco=(qT,--,q?),
\™ = (v?[,...,v%), r=l,...,k. The definiteness assumption (4.3) implies that the matrix
V* is non-singular.

The operators Wr(X) defined in Section 2 are now differential operators of the form

ureD(Tr), r=l , . . . ,k . (4.4)

It is shown in Theorem 2.9 of [15] that, for each keUk, a differential operator of this
form, with the above hypotheses on the coefficient functions, is bounded below and is of
type SD. Thus the multiparameter system (4.2) is of type SD and the results of Section 3
are applicable to this system. In addition we have

pe
r{k) = q? + k-y?, (4.5)

see Theorem 2.9 of [15]. This information enables us to improve Theorem 3.9 on the
location of ae and ap.

Definition 4.1. Define the cone
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The cone C* is convex and the non-singularity of the matrix K°° implies that C°° is
contained in a half plane in R*. It is obvious that C°<zC+. Let ca=-(Va>)'lqa>. It
follows from (4.5) that /?*(«) = 0, for each r, and hence Theorem 3.5 shows that

for allied*.

Theorem 4.2. Under the above hypotheses the spectrum of the multiparameter system
(4.2) satisfies

and the set (A° + C+) n(a>—C°°) is compact (int denotes topological interior). Also co — ke,
where ke is as in Section 3. Finally

u

Proof. The spectral structure of the operators Ŵ(A) implies that a point AeR'
belongs to ae if and only if p*(A)^0 for each r=l,...,fc. Thus, by the above remarks,
keoeoq? + X-v?£0, r=l fc, or, equivalently, q^ + K^A^O. Equality holds in this
relation only when X = co, thus the first statement now follows from Definition 4.1.
Similarly keop=>q? + k-vr

CD>0, r=l,...,k, which, together with Theorem 3.5, proves the
second statement in a similar manner to the first. The third statement follows similarly.
The compactness result follows from Lemma 2.2. These results, together with Theorem
3.9 and the definition of Ae, show that ke e(<o-C°°) niio + C") and so, since C°° does
not contain a line, we have ke = ca. The final result is proved in a similar manner to the
proof of the first three statements. •

Note that the remarks following Lemma 3.8 concerning the limiting process also hold
in the present situation. Also Theorem 4.2 shows that any accumulation point of the
point spectrum ap must belong to the boundary of the set ot — C".

In the construction of the self adjoint multiparameter system (4.2) we chose self
adjoint extensions Tr of the symmetric operators Tr. In general these extensions are not
unique so it is natural to ask what effect the choice of the extension has on the
spectrum of the multiparameter system. The following discussion of this question does
not depend on the operators being differential operators and applies to any system of
the form (4.2) where the Tr are self adjoint extensions of symmetric operators Tr.
However we assume that the operators tr are closed. This assumption is not restrictive
since any symmetric operator is closable. For each r let (d*,d~) denote the deficiency
indices of the symmetric operators fr (see [12]). Since the operators Tr possess self
adjoint extensions if and only if d* =d~ we assume that d* = d~ =dr, say, r=\,...,k,
and define a "deficiency vector" deNk for the multiparameter system by d=(dlt.. .,dk).
We assume that dr<ao for each r.

If we let fl^(A) = 7̂  + £J= 1 k,Vn, r=l,...,k, then since the operators Vr, are bounded
and self adjoint it follows from Theorem 6, p. 33 of [16], that the operators Wr(k) have
deficiency indices (dr, dr) for all k e R*.
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Theorem 43. The essential spectrum ae of (4.2) is independent of the choice of the
self adjoint extensions Tr.

Proof. Theorem 2.2 of [15] shows that the essential spectrum oe(WXk)) ' s independent
of the extension Tr, for each keUk and r=l,...,k. Therefore the set ae = {k:0e(Te(VK(k)),
r = 1,..., k} is independent of the extensions chosen. •

In the following theorem the essential spectrum of a symmetric operator is defined in
the same way as the essential spectrum of a self adjoint operator was defined above.

Theorem 4.4. Let d be the deficiency vector of the multiparameter system [7^, Vrs] and
let m be any multi-index satisfying mrgd. Given any keUk such that 0£oe( Wr(X)),
r=l, . . . , /c, let m(A) be the multiplicity of the system [7^, Vrs] at k. Then there exists a self
adjoint extension Tr of Tr, for each r, such that the resulting self adjoint multiparameter
system has keap with multiplicity m(k) = m(A) + m.

Proof. Apply the proof of Theorem 10, p. 1400 of [12], to the operators Wr(k). •

Returning to the system of differential operators it can be shown that dr = 1 for each r
(Theorem 5, p. 203 of [16]). Therefore Theorems 4.3, 4.4 are applicable to this system if
we regard the operators Tr as the closure of the operators defined above on the domains
CQ(IT). In particular the proof of Theorem 4.2 shows that the set of points k e Uk such
that 0<£oe(Wr(k)), r=l,...,k, is equal to int(a>-C°°) so, for this system, Theorem 4.4
shows that the containment of ap in Theorem 4.2 is the best possible in general. Note
also that the above hypotheses imply that rn(A)=0 (see [12; p. 1400]), and the operators
Wr(k) have at most 1-dimensional kernels, (see Appendix II, Section 7 of [2]).

We now briefly consider the oscillation properties of the eigenfunctions of the
multiparameter system. Recall that in the present case <rp<=A, however not all points
A1 e A are necessarily in op.

Theorem 4.5. / / k'eop then there exists an eigenfunction u'(\) = (u\(xl),...,u
i
k(xk))

(x = (xj,...,xk)) such that the function u'r(xr) has exactly ir zeros in Ir. The eigenfunction
u' is unique up to scaling of the component functions.

Proof. The proof is based on the oscillation properties of one-parameter singular
differential operators (see [12] or [11, p. 255, Prob. 2]) and, using these properties, is
similar to the proof of Theorem 3.1 of FJ6], which deals with the case of regular
differential operators. •

5. Kneser conditions

In Section 3 the points k'ea were defined for all \sNk; however, these points need not
be isolated eigenvalues of finite multiplicity. We now consider the multiparameter
system of differential operators (4.2) and present some conditions which enable us to
determine whether the system has a finite or infinite set of isolated eigenvalues. In
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particular we provide sufficient conditions to assert that the point spectrum of the
system (4.2) consists of the set A. The discussion is based on the so called "Kneser
conditions" used in the one parameter oscillation theory of singular differential
operators (see [15, p. 199; or 12, p. 1481]).

The conditions we are going to consider depend critically on the behaviour of the
coefficients of the differential operators as xr-»oo. For the rest of this section we suppose
that the system (4.1) satisfies all the assumptions of Section 4 and, in addition, we
impose the following hypothesis on the functions vrs.

Condition K. The functions i>rs(xr) tend to the finite limits v% as xr-KX> and satisfy

lim xr
2(yrs(*r) - O = 0, r, s = 1,..., k.

*r-oo

In the proofs of the following theorems we require the Sturm comparison theorem as
stated in Lemma 3.5, p. 1462 of [12]. The proof of this lemma given in [12] is valid
with the continuity conditions we have imposed on the coefficients of the operators

Theorem 5.1. Suppose that the array of coefficients vrs satisfies Condition K and
suppose that the coefficients qr in the operators Tr satisfy

lim qr(xr) = qf, lim sup xr
2(^r(xr) - q?) < - 1 / 4 , r = 1,.. . , k.p x2

xf -* oo

Then the point spectrum of the system (4.2) is equal to the set A.

Proof. It follows from the boundedness assumptions on the functions pr and Sturm's
comparison theorem that, for any XeUk, we may apply Kneser's theorem [15, p. 199] to
the operators Wr{fy- This theorem, together with Theorem 5.2 of [15], shows that the
spectrum of the operator Wr(l) contains an infinite sequence of isolated eigenvalues of
finite multiplicity converging to the lowest point of the essential spectrum. Thus if A=A',
for any i, it follows from the definition of X', using the minimax principle, in Section 3
that 0 is the (i r+l)th eigenvalue of Wr(X), i.e. 0eap(Wr(i.)), so i'eop. Thus A c d p and
the result now follows from Theorem 3.4. •

Lemma 5.2. Suppose that Condition K holds and let AczUk be a compact set. Define
the functions

h?(xr) = inf < £ ksvrlxr) \, xrelr, r = 1,..., k.

The functions h* are bounded, continuous functions on the intervals Tr. In addition, if we
define

leA (j=l
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then limx^oo/i^(x,) = /i^ao and

lim xf(h^xr)-h*'°)=O, r=l,...,k.

Proof. The result follows easily from the boundedness and continuity of the
functions vr, together with the above hypotheses on the behaviour of the functions as
X,-KX>. •

Theorem 5.3. Suppose that the array of coefficients vrs satisfies Condition K and let
the coefficients qr satisfy

xf -* oo x -* oo

Then the point spectrum of the system (4.2) consists of a finite number of points.

Proof. Let A be the set /4=(A° + C+)n(to-C°°). Theorem 4.2 shows that A is a
compact set, therefore the functions hf of Lemma 5.2 can be defined for this set. Now
consider the differential equations

) = 0, r=l,...,k. (5.1)

Let nr be the maximum number of zeros of any solution yr of (5.1) in Ir and let nr(k) be
the maximum number of zeros of any solution ur of (4.1) in Ir, for each keA. By the
construction of the functions hA we have

k
™r \Xr) = 2-i s rs\-*r/> Xr t i f ,

s = l

for all keA. Therefore using the Sturm comparison theorem it follows that nr(A)^nr +1
for all keA.

By the construction of the point to and Definition 4.1 we see that

_ A s t £ H inf (
leA ( s = l I iea-C

and hence, by Lemma 5.2, we have

,) + tf (x,)] = q? + inf { £ ^ » - | = 0, r = 1,..., k

By Lemma 5.2 and the hypotheses on the qr we also have

lim inf x2
t \_qr(xr) + hA{xr)] > - 1 / 4 , r = 1,.. . , k.
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Thus we can apply Kneser's theorem to the equations (5.1) to show that the numbers nr

must be finite for each r = 1,..., k.
Now suppose that X1 e ap for some i e N*. From Theorem 4.2 it follows that i} e A.

By Theorem 4.5, there exists an eigenfunction vi' = (t/1,...,i^k) such that the function
u'r has exactly ir zeros in Ir so the above result shows that i,gn,+ l. Hence the number
of indices i for which kl e op is finite and, since ap <= A, this proves the theorem. •

We note that we could consider the situation where some of the coefficients qr satisfy
the hypotheses of Theorem 5.1 while others satisfy the hypotheses of Theorem 5.3. In
this case there exists bounds on the values of ir for which k'eap for some values of r.
However, in general, this is not sufficient to decide whether the number of points in ap

is finite or infinite.
The Kneser conditions can also be used to resolve the question of the existence of the

mixed spectrum as discussed at the end of Section 4. If the operators Tr, r=l,...,n,
satisfy the hypotheses of Theorem 5.1 then it follows from the definition of the sets o"J\)
and <fm, together with the method of proof of Theorem 5.1, that efm(\) <= a"m. In addition
the remarks following Theorem 4.4 show that the kernels of the operators Wr(A) are at
most 1-dimensional so the discussion at the end of Section 3 is applicable to this system.

Finally we remark that the result of Theorem 5.1 can be obtained under other
conditions. All that the proof required was that for each r the operators Wr(X) have an.
infinite sequence of eigenvalues in the point spectrum below the essential spectrum. If
some of the operators Tr are regular, and so have compact resolvent, then the
corresponding operators Wr(fy do not have any essential spectrum and the sequence of
eigenvalues tends to infinity. Therefore no further conditions on these operators are
necessary to obtain Theorem 5.1. This result also holds for "quasi-regular" differential
operators (see [2] for a discussion of quasi-regular differential operators), so again we
do not require further conditions on such operators. Another sufficient condition for the
operators Tr to have the necessary spectral behaviour is that limx _ x qr(xr) = oo (see
[16]). In this case the operators again do not have any essential spectrum. In addition
to these conditions, Chapter 6 of [15] contains other oscillation criteria which could
have been used in the above discussion instead of Kneser's theorem to produce similar
results.
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